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Abstract

By using the method of dynamical system, the exact travelling wave solu-
tions of the coupled nonlinear Schrödinger-KdV equations are studied. Based
on this method, all phase portraits of the system in the parametric space
are given. All possible bounded travelling wave solutions such as solitary
wave solutions and periodic travelling wave solutions are obtained. With the
aid of Maple software, the numerical simulations are conducted for solitary
wave solutions and periodic travelling wave solutions to the coupled nonlin-
ear Schrödinger-KdV equations. The results show that the presented findings
improve the related previous conclusions.
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1 Introduction
In recent years, the investigation of the exact travelling wave solutions to non-

linear wave equations plays an important role in nonlinear science, since the exact

travelling wave solutions can provide much physical information and more insight of

the physical and mathematical aspects of the problem and then lead to further ap-

plications. Several effective methods for obtaining exact travelling wave solutions of

nonlinear wave equations, such as (G′/G)-expansion method [1], the theta function

method [2], Darboux and Backlund transform [3], tanh-coth method [4], sine/cosine
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method [5], Jacobi elliptic function expansion method [6], the homogeneous balance

method [7], the symmetry method [8], functional variable method [9] have been

developed. Among them, the dynamical system method is one of these effective

methods which has been applied to many nonlinear wave equations [10,11].

In this paper, we consider the following coupled nonlinear Schrödinger-KdV

equations [12] {
iut + uxx = uv,

vt + αvvx + βvxxx = (|u|2)x,
(1.1)

where α, β are real parameters. u is a complex function and v is a real function.

The study of coupled nonlinear Schrödinger-KdV equations has attracted extensive

interest in physics and mathematics. Many numerical methods have been used

to solve numerically the single nonlinear Schrödinger and the single KdV equation

using finite element and finite difference methods [13-16]. Analytical solutions of the

coupled nonlinear Schrödinger-KdV equations using different methods were given in

[17-19]. Here, we shall use the dynamical system method to seek exact travelling

wave solutions of (1.1).

In order to find travelling wave solutions of (1.1), we assume that

u(x, t) = ϕ(ξ)eiη, v(x, t) = ψ(ξ), ξ = kx− ct, η = px+ lt, (1.2)

where k, c, p and l are travelling wave parameters.

Substituting (1.2) into the first equation of (1.1), canceling eiη and separating

the real and imaginary parts, we have{
ϕ′(2kp− c) = 0,

k2ϕ′′ − (p2 + l)ϕ− ϕψ = 0.
(1.3)

Obviously, from (1.3), we know that if ϕ′ = 0, then (1.1) has a trivial solution.

Otherwise, (1.3) must be satisfied

2kp− c = 0. (1.4)

Substituting (1.2) into the second equation of (1.1), and integraling once (integral

constant is zero), we have

βk3ψ′′ − cψ +
αk

2
ψ2 − kϕ2 = 0. (1.5)

Therefore, (1.1) is reduced to
2kp− c = 0,

k2ϕ′′ − (p2 + l)ϕ− ϕψ = 0,

βk3ψ′′ − cψ + αk
2 ψ

2 − kϕ2 = 0.

(1.6)

It is very difficult to solve this equations by some ordinary methods, so we

consider the special transformation in subtle ways
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ϕ = mψ. (1.7)

Here, m is a constant to be determined later. Substituting (1.7) into (1.6), the

system is changed into
2kp− c = 0,

k2ψ′′ − (p2 + l)ψ − ψ2 = 0,

βk3ψ′′ − cψ + αk
2 ψ

2 −m2kψ2 = 0.

(1.8)

Compared the coefficients of the second equation with those of the third equation

of (1.8), we have

m =

√
α+ 2β

2
, p2 + l =

c

βk
, 2kp− c = 0. (1.9)

Under condition (1.9), system (1.8) is reduced to the following equation

k2ψ′′ − (p2 + l)ψ − ψ2 = 0. (1.10)

Let A = p2+l
k2

, B = 1
k2
, k ̸= 0. Thus, (1.10) has the following form

ψ′′ −Aψ −Bψ2 = 0, (1.11)

which corresponds to the following two-dimensional Hamiltonian system

dψ

dξ
= y,

dy

dξ
= Aψ +Bψ2, (1.12)

with the Hamiltonian

H(ψ, y) =
1

2
y2 − 1

2
Aψ2 − 1

3
Bψ3 = h. (1.13)

According to the Hamiltonian, we can get all kinds of phase portraits in the

parametric space. Because the phase orbits defined the vector fields of system (1.12)

determine all their travelling wave solutions of (1.1), we can investigate the bifur-

cations of phase portraits of system (1.12) to seek the travelling wave solutions of

(1.1).

The rest of this paper is built up as follows. In Section 2, we give all phase

portraits of system (1.12) and discuss the bifurcations of phase portraits of system

(1.12). In Section 3, according to the dynamics of the phase orbits of system (1.12)

given by Section 2, we obtain all possible bounded travelling wave solutions of (1.1).

Finally, a conclusion is given in Section 4.

2 Bifurcations of Phase Portraits of System (1.12)

In this section, we consider the phase portraits of (1.12). Let right hand terms

of system (1.12) be zeros, that is y = 0, and Aψ +Bψ2 = 0, then the system (1.12)
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has two equilibrium points S(−A
B , 0) and O(0, 0). For the Hamiltonian H(ψ, y) =

1
2y

2 − 1
2Aψ

2 − 1
3Bψ

3 = h, we write h0 = H(0, 0) = 0, h1 = H(−A
B , 0) = − A3

6B2 .

With the change of the parameter group of A and B (B = 1
k2
> 0), the system has

different phase portraits for (1.12) as shown in Figs. 1 and 2.

Figure 1: The bifurcations of phase portraits
of (1.12) (A > 0, B > 0).

Figure 2: The bifurcations of phase portraits
of (1.12) (A < 0, B > 0).

If AB ̸= 0, from Figs. 1 and 2, we summarize crucial conclusion as follows.

(1) When A > 0 (< 0), O is a saddle point (center point) and S is a center

(saddle point).

(2) System (1.12) has a unique homoclinic orbit Γ which is asymptotic to the

saddle and enclosing the center. There is a family of periodic orbits which are

enclosing the center and filling up the interior of the homoclinic orbit Γ.

3 Exact Travelling Wave Solutions of (1.1)

In this section, we consider the bifurcations of the phase orbits of system (1.12).

Because only bounded travelling waves are meaningful to a physical model, we just

pay more attention to the bounded solutions of (1.1). In addition, because of B > 0,

we just consider the travelling wave solutions of (1.1) when B > 0. According to

equation (1.13), we have y =
√
Aψ + 2

3Bψ
2 + 2h. Substituting it into dψ

dξ = y, that

is, dψ√
Aψ+ 2

3
Bψ2+2h

= dξ. By using the Jacobian elliptic functions [20], integrating

dψ√
Aψ+ 2

3
Bψ2+2h

= dξ, we can obtain the exact travelling wave solutions of (1.1).

(1) When A > 0, B > 0, there exists a smooth solitary solution which corre-

sponds to a smooth homoclinic orbit Γ of (1.12) defined by H(ψ, y) = h0 = 0. We

have the parametric representation

ψ(ξ) =
−3A+ 3Atanh2(

√
A
2 ξ)

2B
. (3.1)
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(2) When A < 0, B > 0, there exists a smooth solitary solution which corre-

sponds to a smooth homoclinic orbit Γ of (1.12) defined by H(ψ, y) = h1. We have

the parametric representation

ψ(ξ) =
|A|
B

[
1− 3

2
sech2

(√|A|
2

ξ
)]
. (3.2)

(3) When A > 0 (A < 0), B > 0, similarly, there exist periodic travelling wave

solutions which correspond to the family of periodic orbits Γh of (1.12) defined by

H(ψ, y) = h, h ∈ (h1, 0) (h ∈ (0, h1)). We have the following parametric represen-

tation

ψ(ξ) = z3 + (z2 − z3)sn
2
(√6B(z1 − z3)

6
ξ,

√
z2 − z3
z1 − z3

)
, (3.3)

where the parameters z1, z2, z3 with z1 > z2 > z3 are defined by y2 = 2h + Aψ2 +
2
3Bψ

3 = 2
3B(z1 − ψ)(z2 − ψ)(ψ − z3).

By using the above results and considering conditions (1.9), we obtain the exact

travelling wave solutions of (1.1) as follows.

(1) When A > 0, B > 0,
u1(x, t) = mei(px+lt)

−3A+ 3Atanh2(
√
A
2 (kx− ct))

2B
,

v1(x, t) =
−3A+ 3Atanh2(

√
A
2 (kx− ct))

2B
.

(3.4)

(2) When A < 0, B > 0,
u2(x, t) = mei(px+lt)

|A|
B

[
1− 3

2
sech2

(√|A|
2

(kx− ct)
)]
,

v2(x, t) =
|A|
B

[
1− 3

2
sech2

(√|A|
2

(kx− ct)
)]
.

(3.5)

(3) When A > 0 (A < 0), B > 0,
u3(x, t) = mei(px+lt)

[
z3 + (z2 − z3)sn

2
(√6B(z1 − z3)

6
(kx− ct),

√
z2 − z3
z1 − z3

)]
,

v3(x, t) = z3 + (z2 − z3)sn
2
(√6B(z1 − z3)

6
(kx− ct),

√
z2 − z3
z1 − z3

)
.

(3.6)

Based on the above results, by using the numerical simulation method, the 3D

graphics of bounded solutions of (1.1) are shown in Figs. 3-8 (drawn by software

Maple).
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Figure 3: The 3D graphics of |u1| (k = p =
l = 1, c = 2, α = 2, β = 1,−5 ≤ x ≤ 5, 0 ≤
t ≤ 0.5).

Figure 4: The 3D graphics of v1 (k = p =
l = 1, c = 2, α = 2, β = 1,−5 ≤ x ≤ 5, 0 ≤
t ≤ 0.5).

Figure 5: The 3D graphics of |u2| (k = 1, p =
1 −

√
3, l = −1, c = 2 − 2

√
3, α = 2, β =

1,−5 ≤ x ≤ 5, 0 ≤ t ≤ 0.5).

Figure 6: The 3D graphics of v2 (k = 1, p =
1 −

√
3, l = −1, c = 2 − 2

√
3, α = 2, β =

1,−5 ≤ x ≤ 5, 0 ≤ t ≤ 0.5).

Figure 7: The 3D graphics of |u3| (k = p =
l = 1, c = 2, h1 = −2

3 , α = 2, β = 1,−5 ≤
x ≤ 5, 0 ≤ t ≤ 5).

Figure 8: The 3D graphics of v3 (k = p =
l = 1, c = 2, h1 = − 2

3 , α = 2, β = 1,−5 ≤
x ≤ 5, 0 ≤ t ≤ 5).
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By using the approach of dynamical system, we obtain the travelling wave solu-

tions of (1.1). Among them, (3.4) and (3.5) are soliton solutions which are expressed

by the hyperbolic functions. (3.6) is a periodic solution which is expressed by Jaco-

bian elliptic function. Note that our solutions in this paper are different from the

given ones in references [17-19].

4 Conclusion

By using the method of dynamical system, the exact explicit travelling wave

solutions of (1.1) are shown which have periodic wave solutions and solitary wave

solutions. Of course, the dynamical system method is not only able to solve the

coupled nonlinear Schrödinger-KdV equations, it can also be applied to some other

nonlinear equations.

Furthermore, if without the condition that B > 0, system (1.12) has another

case. If A > 0 (A < 0), B < 0, there exist periodic travelling wave solutions

corresponding to the family of periodic orbits Γh of (1.12) defined by H(ψ, y) = h,

h ∈ (h1, 0) (h ∈ (0, h1)). We have the following parametric representation

ψ(ξ) = z1 − (z1 − z2)sn
2
(√6|B|(z1 − z3)

6
ξ,

√
z1 − z2
z1 − z3

)
, (4.1)

where the parameters z1, z2, z3 with z1 > z2 > z3 are defined by y2 = 2h + Aψ2 +
2
3Bψ

3 = 2
3 |B|(z1 − ψ)(ψ − z2)(ψ − z3). Then we obtain additional travelling wave

solutions of (1.1) as follows:
u(x, t) = mei(px+lt)

[
z1 − (z1 − z2)sn

2
(√6|B|(z1 − z3)

6
(kx− ct),

√
z1 − z2
z1 − z3

)]
,

v(x, t) = z1 − (z1 − z2)sn
2
(√6|B|(z1 − z3)

6
(kx− ct),

√
z1 − z2
z1 − z3

)
.

(4.2)
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