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Abstract

In this paper, we are concerned with the symmetric positive solutions of a
2n-order boundary value problems on time scales. By using induction principle,
the symmetric form of the Green’s function is established. In order to construct
a necessary and sufficient condition for the existence result, the method of
iterative technique will be used. As an application, an example is given to
illustrate our main result.
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1 Introduction
The theory of measure chains (time scales) was first introduced by Stefan Hilger

in his Ph.D. thesis (see [1]) in 1988. Although it is a new research area of math-

ematics, it has already caused a lot of applications, e.g., insect population models,

neural networks, heat transfer and epidemic models (see [2,3]). Some of these mod-

els can be found in [4-6]. Such as in [5], Q.K. Song and Z.J. Zhao discussed the

problem on the global exponential stability of complex-valued neural networks with

both leakage delay and time-varying delays on time scales. By constructing ap-

propriate Lyapunov-Krasovskii functionals and using matrix inequality technique, a

delay-dependent condition assuring the global exponential stability for the consid-

ered neural networks was established.

In the past few years, more and more scholars concentrated on a positive solution

of boundary value problems for differential equations on time scales (see [7-12]). In
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[13,14], by using some fixed point theorems, the existences of pseudo-symmetric solu-

tions of dynamic equations on time scales were obtained. In [15,16], the fourth order

integral boundary value problems on time scales for an increasing homeomorphism

and homomorphism were discussed. Recently, the conditions for the existence of

symmetric positive solutions of boundary value problems were constructed in [17,18].

By applying an iterative technique, the existence and uniqueness of symmetric pos-

itive solutions of the 2n-order nonlinear singular boundary value problems of differ-

ential equation {
(−1)nu(2n)(t) = f(t, u(t)), t ∈ (0, 1),

u(2k)(0) = u(2k)(1) = 0, k = 0, 1, 2, · · · , n− 1,

were obtained.

In this paper, we are concerned with the existence of symmetric positive solutions

of the following 2n-order boundary value problems (BVP) on time scales{
(−1)nu∆

2n
(t) = f(σ(t), uσ(t)), t ∈ [0, σ(1)],

u∆
2i
(0) = u∆

2i
(σ(1)) = 0, 0 ≤ i ≤ n− 1,

(1)

where f : [0, σ(1)] × [0,∞) → [0,∞) is continuous and f(t, u) may be singular at

u = 0, t = 0 (and/or t = σ(1)). If a function u : [0, σ(1)] → R is continuous and

satisfies u(t) = u(σ(1) − t) for t ∈ [0, σ(1)], then we say that u(t) is symmetric

on [0, σ(1)]. By a symmetric positive solution of BVP (1), we mean a symmetric

function u ∈ C2n[0, σ(1)] such that (−1)iu∆
2i
(t) > 0 for t ∈ (0, σ(1)) and i =

0, 1, · · · , n− 1, and u(t) satisfies BVP (1). We assume that σ(1) and 0 are all right

dense. Throughout this paper we let T be any time scale (nonempty closed subset

of R) and [a, b] be a subset of T such that [a, b] = {t ∈ T : a ≤ t ≤ b}. T satisfies

σ(a− σ(b)) = σ(a)− σ(b), (2)

and it is easy to see that T = R or T = hZ satisfies (2). And thus T̃ = {σ(t)|t ∈ T} =

T.

2 Preliminary

Before discussing the problems of this paper, we introduce some basic materials

for time scales which are useful in proving our main results. These preliminaries can

be found in [17-20].

Lemma 2.1[20](Substitution) Assume that ν : T → R is strictly increasing and

T̃ := ν(T) is a time scale. If f : T → R is an rd-continuous function and ν is

differentiable with rd-continuous derivative, then for a, b ∈ T,
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∫ b

a
f(t)ν∆(t)∆t =

∫ ν(b)

ν(a)
(f ◦ ν−1)(s)∆̃s.

Throughout this paper, similar to [18], we assume that:

(A1) For (t, u) ∈ [0, σ(1)]× [0,∞), f(t, u) is symmetric in t, that is, f satisfies

f(σ(1)− t, u) = f(t, u), for t ∈ (0, σ(1)). (3)

(A2) For (t, u) ∈ [0, σ(1)] × [0,∞), f is non-decreasing with respect to u and

there exists a constant λ ∈ (0, 1), such that if σ ∈ (0, 1], then

σλf(t, u) ≤ f(t, σu). (4)

It is easy to see that (4) implies that if σ ∈ [1,∞), then

f(t, σu) ≤ σλf(t, u). (5)

For convenience, in this paper we let

e(t) =
t

σ(1)
(σ(1)− t), for t ∈ [0, σ(1)]. (6)

Lemma 2.2 Let v ∈ C[0, σ(1)], then the following BVP{
(−1)nu∆

2n
(t) = v(t), t ∈ [0, σ(1)],

u∆
2i
(0) = u∆

2i
(σ(1)) = 0, 0 ≤ i ≤ n− 1

(7)

has a unique solution

u(t) =

∫ σ(1)

0
Gn(t, s)v(s)∆s, (8)

where Gn(t, s) is defined in [0, σ(1)]× [0, σ(1)], and it follows from [19] that

Gi(t, s) =

∫ σ(1)

0
G(t, τ)Gi−1(τ, s)∆τ, 2 ≤ i ≤ n, (9)

G1(t, s) = G(t, s) =
1

σ(1)

{
t(σ(1)− σ(s)), t ≤ s,

σ(s)(σ(1)− t), t > σ(s),
(10)

which satisfies

G(t, s) > 0, (t, s) ∈ (0, σ(1))× (0, 1).

It is easy to see

e(s)e(t) ≤ G(t, s) ≤ G(t, t) =
t

σ(1)
(σ(1)− σ(t))

≤ t

σ(1)
(σ(1)− t) = e(t), (t, s) ∈ [0, σ(1)]× [0, 1]. (11)
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Lemma 2.3 For any t, s ∈ [0, σ(1)], from (2) we have

Gn(σ(1)− t, σ(1)− σ(s)) = Gn(t, s), n ≥ 1. (12)

Proof For any t, s ∈ [0, σ(1)], when n = 1, it is easy to see G1(σ(1)− t, σ(1)−
σ(s)) = G1(t, s).

Assume that

Gn(σ(1)− t, σ(1)− σ(s))

=

∫ σ(1)

0
G(σ(1)− t, τ)Gn−1(τ, σ(1)− σ(s))∆τ

=

∫ σ(1)

0
G(σ(1)− t, τ)

∫ σ(1)

0
G(τ, τ)Gn−2(τ, σ(1)− σ(s))∆τ∆τ

=

∫ σ(1)

0
G(σ(1)− t, τ)

∫ σ(1)

0
G(τ, τ) · · ·

∫ σ(1)

0
G(τ, τ)G1(τ, σ(1)− σ(s))∆n−1τ

=

∫ σ(1)

0
G(t, τ)

∫ σ(1)

0
G(τ, τ) · · ·

∫ σ(1)

0
G(τ, τ)G1(τ, s)∆

n−1τ

= Gn(t, s). (13)

We consider Gn+1(σ(1)− t, σ(1)− σ(s)).

From (13), we obtain

Gn+1(σ(1)− t, σ(1)− σ(s))

=

∫ σ(1)

0
G(σ(1)− t, τ)Gn(τ, σ(1)− σ(s))∆τ

=

∫ σ(1)

0
G(σ(1)− t, τ)

∫ σ(1)

0
G(τ, τ) · · ·

∫ σ(1)

0
G(τ, τ)G1(τ, σ(1)− σ(s))∆nτ

=

∫ σ(1)

0
G(σ(1)−t, τ)

∫ σ(1)

0
G(τ, τ) · · ·

∫ σ(1)

0
G(τ, τ)G1(τ, σ(1)−σ(s))∆n−1τ

∫ σ(1)

0
G(τ, τ)∆τ

=

∫ σ(1)

0
G(t, τ)

∫ σ(1)

0
G(τ, τ) · · ·

∫ σ(1)

0
G(τ, τ)G1(τ, s)∆

n−1τ

∫ σ(1)

0
G(τ, τ)∆τ

=

∫ σ(1)

0
G(t, τ)

∫ σ(1)

0
G(τ, τ) · · ·

∫ σ(1)

0
G(τ, τ)G1(τ, s)∆

nτ

=

∫ σ(1)

0
G(t, τ)Gn(τ, s)∆τ = Gn+1(t, s).

Therefore, the proof of Lemma 2.3 is complete.

Remark 2.1 For any t, s ∈ [0, 1], we have

Gn(1− t, 1− s) = Gn(t, s), n ≥ 1

in a real space R, with the Green’s function
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G1(t, s) = G(t, s) =

{
t(1− s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1.

Let E be the Banach space C(2n)[0, σ(1)], and define

P = {u ∈ E : u(0) = u(σ(1)) = 0, u(t) > 0 for t ∈ (0, σ(1)), u(t) = u(σ(1)− t)

and there exist constants lu, Lu with 0 < lu < 1 < Lu such that

lue(t) ≤ u(t) ≤ Lue(t) for t ∈ [0, σ(1)]}. (14)

Lemma 2.4 Assume that u ∈ C2[0, σ(1)] with u(t) ≥ 0 and u∆∆((t)) ≤ 0 for

t ∈ [0, σ(1)], then

u(t) ≥ max
s∈[0,σ(1)]

u(s)e(t), t ∈ [0, σ(1)].

Proof The proof is similar to that of Lemma 2.3 in [18].

Lemma 2.5 If u(t) is a symmetric solution of BVP (1), then there exist con-

stants c1, c2 with 0 < c1 < 1 < c2 such that

c1e(t) ≤ u(t) ≤ c2e(t), t ∈ [0, σ(1)]. (15)

Proof For c1e(t) ≤ u(t), since u(t) is a symmetric positive solution of (1),

we obtain u(t) > 0 and u∆∆((t)) ≤ 0 for t ∈ [0, σ(1)]. Choose a positive number

c1 < min
{
1, max

s∈[0,σ(1)]
u(s)

}
, then Lemma 2.4 implies c1e(t) ≤ u(t), t ∈ [0, σ(1)].

For u(t) ≤ c2e(t), again from the fact that u(t) ≥ 0 and u∆∆((t)) ≤ 0 for

t ∈ [0, σ(1)], we obtain

u(t) ≤ u∆(0)t, t ∈ [0, σ(1)],

and

u(t) ≤ −u∆(σ(1))(σ(1)− t), t ∈ [0, σ(1)].

When t ∈ [0, σ(1)/2], we have σ(1) ≤ 2(σ(1)− t), then

u(t) ≤ u∆(0)t ≤ 2u∆(0)t

σ(1)
(σ(1)− t) = 2u∆(0)e(t), t ∈ [0, σ(1)/2].

When t ∈ [σ(1)/2, σ(1)], we have σ(1) ≤ 2t, then

u(t) ≤ −2u∆(σ(1))t

σ(1)
(σ(1)− t) = −2u∆(σ(1))e(t), t ∈ [σ(1)/2, σ(1)].

The symmetry of u(t) implies that u∆(0) = −u∆(σ(1)). Choose a number c2 >

max
{
1, 2u∆(0)

}
. Then u(t) ≤ c2e(t), t ∈ [0, σ(1)].

Clearly, (15) holds, and this completes the proof of Lemma 2.5.

Lemma 2.6[20] Let [a, b] ∈ T, and f be right-dense continuous. If [a, b] consists

of only isolated points, then
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∫ b

a
f(t)∆t =



∑
t∈[a,b)

(σ(t)− t)f(t), if a < b,

0, if a = b,

−
∑

t∈[b,a)
(σ(t)− t)f(t), if a > b.

(16)

3 The Existence Result

Theorem 3.1 Assume (A1) and (A2) hold. Then BVP (1) has at least one

symmetric positive solution if and only if

0 <

∫ σ(1)

0
f(σ(t), eσ(t))∆t < ∞. (17)

Proof Necessity Assume first that u(t) is a symmetric positive solution of (1).

We will show that (17) holds. Let c1 and c2 be given as in Lemma 2.5 for this u(t).

By Lemma 2.5, u(t) satisfies (15).

From (1), for t ∈ (0, σ(1)), when n is odd, u∆
2n
((t)) ≤ 0 and when n is even,

u∆
2n
((t)) ≥ 0. Then

u∆
2n−1

(σ(1)) ≤ u∆
2n−1

(0), when n is odd, (18)

u∆
2n−1

(σ(1)) ≥ u∆
2n−1

(0), when n is even. (19)

By (4),(5),(15),(18) and (19),∫ σ(1)

0
f(σ(t), eσ(t))∆t ≤

∫ σ(1)

0
f(σ(t), c−1

1 uσ(t))∆t ≤ c−λ
1

∫ σ(1)

0
f(σ(t), uσ(t))∆t

= (−1)nc−λ
1 (u∆

2n−1
(σ(1))− u∆

2n−1
(0)) < ∞, (20)

and∫ σ(1)

0
f(σ(t), eσ(t))∆t ≥

∫ σ(1)

0
f(σ(t), c−1

2 uσ(t))∆t ≥ c−λ
2

∫ σ(1)

0
f(σ(t), uσ(t))∆t

= (−1)nc−λ
2

(
u∆

2n−1
(σ(1))− u∆

2n−1
(0)

)
> 0. (21)

Now, (17) follows from (20) and (21).

Sufficiency Now assume that (17) holds. We will show that BVP (1) has at

least one symmetric positive solution.

Define an operator T : E → E by

Tu(t) =

∫ σ(1)

0
Gn(t, s)f(σ(s), u

σ(s))∆s, (22)
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where Gn(t, s) is defined by (9) and (10). It is clear that u is a solution if and only

if u is a fixed point of T .

Claim 1 The operator T : P → P is completely continuous and non-decreasing.

In fact, for u ∈ P, it is obvious that Tu ∈ E, Tu(0) = Tu(σ(1)) = 0, Tu(t) > 0,

for t ∈ (0, σ(1)). From (22), we have

Tu(σ(1)− t) =

∫ σ(1)

0
Gn(σ(1)− t, s)f(σ(s), uσ(s))∆s.

Assuming s = σ(1) − σ(ξ), since ∆̃(ξ) = ∆ξ, from (3),(12)and Lemma 2.1, we can

obtain

Tu(σ(1)− t)

=

∫ σ−1(0)

σ(1)
Gn(σ(1)−t, σ(1)−σ(ξ))f(σ(σ(1)−σ(ξ)), uσ(σ(1)−σ(ξ)))∆(σ(1)−σ(ξ))

=

∫ σ(1)

σ−1(0)
Gn(σ(1)− t, σ(1)− σ(ξ))f(σ(σ(1)− σ(ξ)), uσ(σ(1)− σ(ξ)))∆̃(ξ)

=

∫ σ(1)

σ−1(0)
Gn(σ(1)− t, σ(1)− σ(ξ))f(σ(1)− σ(ξ), uσ(σ(1)− σ(ξ)))∆̃(ξ)

=

∫ σ(1)

σ−1(0)
Gn(σ(1)− t, σ(1)− σ(ξ))f(σ(1)− σ(ξ), u(σ(1)− σ(ξ)))∆̃(ξ)

=

∫ σ(1)

0
Gn(t, ξ)f(σ(ξ), u

σ(ξ))∆ξ = Tu(t).

Thus, for any u ∈ P, from (4),(5),(10),(11) and (17), we obtain that for t ∈
[0, σ(1)],

Tu(t) =

∫ σ(1)

0
Gn(t, s)f(σ(s), u

σ(s))∆s

=

∫ σ(1)

0

∫ σ(1)

0
G(t, τ)Gn−1(τ, s)∆τf(σ(s), uσ(s))∆s

=

∫ σ(1)

0
G(t, τ)

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), u

σ(s))∆s∆τ

≤
∫ σ(1)

0
e(t)

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), u

σ(s))∆s∆τ

≤
∫ σ(1)

0
e(t)

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), Lue

σ(s))∆s∆τ

≤ Lλ
u

∫ σ(1)

0

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), e

σ(s))∆s∆τe(t)

≤ LTue(t), (23)
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and

Tu(t) =

∫ σ(1)

0
G(t, τ)

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), u

σ(s))∆s∆τ

≥
∫ σ(1)

0
e(t)e(τ)

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), u

σ(s))∆s∆τ

≥
∫ σ(1)

0
e(t)e(τ)

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), lue

σ(s))∆s∆τ

≥ lλu

∫ σ(1)

0
e(τ)

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), e

σ(s))∆s∆τe(t)

≥ lTue(t), (24)

where LTu and lTu are positive constants satisfying

LTu > max

{
1, Lλ

u

∫ σ(1)

0

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), e

σ(s))∆s∆τ

}
,

lTu < min

{
1, lλu

∫ σ(1)

0
e(τ)

∫ σ(1)

0
Gn−1(τ, s)f(σ(s), e

σ(s))∆s∆τ

}
.

Thus, it follows from (23) and (24) that there exist constants LTu and lTu with

0 < lTu < 1 < LTu such that

lTue(t) ≤ Tu(t) ≤ LTue(t), t ∈ [0, σ(1)]. (25)

Therefore, Tu(t) ∈ P, that is, T : P → P. A standard argument can be used to show

that T : P → P is completely continuous.

From (A2), it is easy to see that T is non-decreasing with respect to u. Hence,

Claim 1 holds.

Claim 2 Let δ and γ be fixed numbers satisfying

0 < δ ≤ l
1

1−λ

Te and λ ≥ L
1

1−λ

Te , (26)

and assume

u0 = δe(t), v0 = γe(t), (27)

un = Tun−1 and vn = Tvn−1, for n = 1, 2, · · · . (28)

Then,

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0, (29)

and there exists a u∗ ∈ P such that

un(t) → u∗(t), vn(t) → u∗(t), uniformly on [0, σ(1)]. (30)
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In fact, 0 > lTe < 1 < LTe since Te ∈ P. So 0 < δ < 1 < γ. From (27), we have

u0, v0 ∈ P and u0 ≤ v0.

On the other hand,

u1(t) = Tu0(t) =

∫ σ(1)

0
Gn(t, s)f(σ(s), δe

σ(s))∆s

≥ δλ
∫ σ(1)

0
Gn(t, s)f(σ(s), e

σ(s))∆s

= δλTe ≥ δλlTee(t) ≥ δλδ1−λe(t) = u0(t),

v1(t) = Tv0(t) =

∫ σ(1)

0
Gn(t, s)f(σ(s), γe

σ(s))∆s

≤ γλ
∫ σ(1)

0
Gn(t, s)f(σ(s), e

σ(s))∆s

= γλTe ≤ γλLTee(t) ≤ γλγ1−λe(t) = v0(t).

Since u0 ≤ v0 and T is nondecreasing, by induction, (27) holds.

Let c0 =
δ
γ , then 0 < c0 < 1. It follows from

T (cu) ≥ cλTu, if 0 < c < 1, u ∈ P,

that for any natural number n,

un = Tun−1 = Tnu0 = Tn(δe(t)) = Tn(c0γe(t)) ≥ cλ
n

0 Tn(γe(t)) = cλ
n

0 vn.

Thus, for each natural numbers n and p∗, we have

0 ≤ un+p∗ − un ≤ vn − un ≤ (1− cλ
n

0 )vn ≤ cλ
n

0 γe(t),

which implies that there exists a u∗ ∈ P such that (30) holds, and Claim 2 holds.

Let n → ∞ in (28), we obtain u∗(t) = Tu∗(t), which is a symmetric positive

solution of BVP (1). Thus, the proof of Theorem 3.1 is complete.

4 Example

Example 4.1 Consider{
(−1)nu∆

2n
(t) = (σ(t))α(σ(1)− σ(t))αuβ(σ(t)), t ∈ [0, σ(1)],

u∆
2i
(0) = u∆

2i
(σ(1)) = 0, 0 ≤ i ≤ n− 1,

(31)

where α ∈ R, 0 < β < 1. Let f(σ(t), uσ(t)) = (σ(t))α(σ(1) − σ(t))αuβ(σ(t)),

(t, u) ∈ [0, σ(1)] × [0,∞), then, for α > −β − 1, there is at least one symmetric

positive solution of BVP (31).
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Note that the function f satisfies assumptions (A1) and (A2). In fact, for (t, u) ∈
[0, σ(1)] × [0,∞), f(σ(1) − σ(t), uσ(t)) = f(σ(t), uσ(t)), f is non-decreasing with

respect to u and if σ ∈ (0, 1], there exists a constant λ with 0 < β ≤ λ < 1, such

that f(σ(t), σuσ(t)) ≥ σλf(σ(t), uσ(t)).

Thus, from Theorem 3.1, there is at least one symmetric positive solution of

BVP (31) if and only if

0 <

∫ σ(1)

0
(σ(t))α(σ(1)− σ(t))α

( σ(t)

σ(1)
(σ(1)− σ(t))

)β
∆t < ∞. (32)

In fact, the integration∫ σ(1)

0

( 1

σ(1)

)β
(σ(t))α+β(σ(1)− σ(t))α+β∆t

converges if and only if α > −β− 1, then (32) holds. That is, for α > −β− 1, there

is at least one symmetric positive solution of BVP (31).

5 Discussion

If T∗ = {0}∪
{

1
n

}
∪
{
1− 1

n

}
∪{1}, from (16), we can obtain the following result.

Theorem 5.1 Assume that (A1) and (A2) hold. Then BVP (1) has at least

one symmetric positive solution if and only if

0<
∑

t∈[0, 1
2
)∩T∗

t2

(1−2t)(1−t)
f(σ(t), eσ(t)) +

∑
t∈[ 1

2
,1)∩T∗

(1− t)2

(3−2t)(2−t)
f(σ(t), eσ(t))<∞.

In particular, letting

f(σ(t), uσ(t)) = σ(t)(σ(1)− σ(t)), (t, u) ∈ T∗ × [0,∞),

it is easy to see that f satisfies assumptions (A1) and (A2), and there is

0 <
∞∑
n=2

( 1

(n− 1)3
+

n

(n+ 2)(n+ 1)3

)
< ∞.

Thus, from Theorem 5.1, BVP (1) has at least one symmetric positive solution.
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Applications, Birkhäuser, Boston, 2001.

(edited by Liangwei Huang)


