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Abstract

In this paper, we investigate the global existence and long time behav-
ior of strong solutions for compressible nematic liquid crystal flows in three-
dimensional whole space. The global existence of strong solutions is obtained
by the standard energy method under the condition that the initial data are
close to the constant equilibrium state in H2-framework. If the initial datas
in L1-norm are finite additionally, the optimal time decay rates of strong so-
lutions are established. With the help of Fourier splitting method, one also
establishes optimal time decay rates for the higher order spatial derivatives of
director.
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1 Introduction

In this paper, we investigate the motion of compressible nematic liquid crystal

flows, which are governed by the following simplified version of the Ericksen-Leslie

equations
ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u)− µ∆u− (µ+ ν)∇divu+∇P (ρ) = −γ∇d ·∆d,

dt + u · ∇d = θ(∆d+ |∇d|2d),
(1.1)

where ρ, u and d stand for the density, velocity and macroscopic average of the

nematic liquid crystal orientation field respectively. The pressure P (ρ) is a smooth

∗Manuscript received August 6, 2016
†Corresponding author. E-mail: xixiaoyu1357@126.com

331



332 ANN. OF APPL. MATH. Vol.32

function in a neighborhood of 1 with P ′(1) = 1. The constants µ and ν are shear

viscosity and the bulk viscosity coefficients of the fluid respectively, that satisfy the

physical assumptions

µ > 0, 2µ+ 3ν ≥ 0.

The positive constants γ and θ present the competition between the kinetic energy

and the potential energy, and the microscopic elastic relaxation time for the molecu-

lar orientation field, respectively. For simplicity, we set the constants γ and θ to be 1.

The symbol ⊗ denotes the Kronecker tensor product such that u⊗u = (uiuj)1≤i,j≤3.

To complete system (1.1), the initial data are given by

(ρ, u, d)(x, t)|t=0 = (ρ0(x), u0(x), d0(x)). (1.2)

Furthermore, as the space variable tends to infinity, we assume

lim
|x|→∞

(ρ0 − 1, u0, d0 − w0)(x) = 0, (1.3)

where w0 is a fixed unit constant vector. The system is a coupling between the

compressible Navier-Stokes equations and a transported heat flow of harmonic maps

into S2. Generally speaking, we can obtain any better results for system (1.1) than

those for the compressible Navier-Stokes equations.

The hydrodynamic theory of liquid crystals in the nematic case has been estab-

lished by Ericksen [1] and Leslie [2] during the period of 1958 through 1968. Since

then, the mathematical theory is still progressing and the study of the full Ericksen-

Leslie model presents relevant mathematical difficulties. The pioneering work comes

from [3-6]. For example, Lin and Liu [5] obtained the global weak and smooth so-

lutions for the Ginzburg-Landau approximation to relax the nonlinear constraint

d ∈ S2. They also discussed the uniqueness and some stability properties of the

system. Later, the decay rates for this approximate system were given by Wu [7]

in a bounded domain. On the other hand, Dai et al. [8], Dai and Schonbek [9] es-

tablished the time decay rates for the Cauchy problem respectively. More precisely,

Dai and Schonbek [9] obtained the global existence of solutions in the Sobolev space

HN (R3)×HN+1(R3) (N ≥ 1) only requiring the smallness of ∥u0∥2H1 +∥d0−w0∥2H2 ,

where w0 is a fixed unit constant vector. If the initial data in L1-norm are finitely

additionally, they also established the following time decay rates

∥∇ku(t)∥L2 + ∥∇k(d− w0)(t)∥L2 ≤ C(1 + t)−
3+2k

4 ,

for k = 0, 1, 2, · · · , N . Recently, Liu and Zhang [10], for the density-dependent

model, obtained the global weak solutions in dimension three with the initial density

ρ0 ∈ L2, which was improved by Jiang and Tan [11] for the case ρ0 ∈ Lγ (γ > 3
2).

Under the constraint d ∈ S2, Wen and Ding [12] established the local existence of
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the strong solutions and obtained the global solutions under the assumptions of

small energy and positive initial density, which was improved by Li [13] to be

of vacuum. Later, Hong [14] and Lin, Lin and Wang [15] showed independently

the global existence of weak solutions in two-dimensional space. Recently, Wang

[16] established a global well-posedness theory for rough initial data provided that

∥u0∥BMO−1+[d0]BMO ≤ ε0 for some ε0 > 0. Under this condition, Du and Wang [17]

obtained arbitrary space-time regularity for the Koch and Tataru type solution

(u, d). As a corollary, they also got the decay rates. For more results, the read-

ers can refer to [18-22] and the references therein.

Considering the compressible nematic liquid crystal flows (1.1), Ding, Lin, Wang

and Wen [23] gained both the existence and uniqueness of global strong solutions for

one dimensional space. And this result about the classical solutions was improved by

Ding, Wang and Wen [24] by generalizing the fluids to be of vacuum. For the case of

multi-dimensional space, Jiang, Jiang and Wang [25] established the global existence

of weak solutions for the initial-boundary problem with large initial energy and

without any smallness condition on the initial density and velocity if some component

of initial direction field is small. Recently, Lin, Lai and Wang [26] established the

existence of global weak solutions in three-dimensional space, provided the initial

orientational director field d0 lies in the hemisphere S+
2 . Local existence of unique

strong solutions was proved provided that the initial datas were sufficiently regular

and satisfied a natural compatibility condition in a recent work [27]. Some blow-up

criterions that were derived for the possible breakdown of such local strong solutions

at finite time could be found in [28–30]. The local existence and uniqueness of

classical solutions to (1.1) were established by Ma in [31]. On one hand, Hu and

Wu [32] obtained the existence and uniqueness of global strong solutions in critical

Besov spaces provided that the initial data were close to an equilibrium state (1, 0, d̂)

with a constant vector d̂ ∈ S2; on the other hand, Gao et al. [30] attained the global

small classical solution in Sobolev spaces Hm (m ≥ 3) and established decay rates

for the compressible nematic liquid crystal flows (1.1). For more results, the readers

can refer to [34] for some recent developments of analysis for hydrodynamic flow of

nematic liquid crystal flows and references therein.

Recently, Wang and Tan [35] established the global existence of strong solutions

and built the time decay rates for the compressible Navier-Stokes equations in H2-

framework (See Matsumura and Nishida [36] in H3-framework). Precisely, if small

initial perturbation belongs to H2 and initial perturbation in L1-norm is finite, they

built optimal time decay rates as follows

∥(ρ− 1)(t)∥H2−k + ∥u(t)∥H2−k ≤ C(1 + t)−
3+2k

4 ,
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where k = 0, 1. This framework of time convergence rates for compressible flows has

been applied to other compressible models, refer to [37-39].

In this paper, motivated by the work [35], we hope to establish the global exis-

tence and time decay rates of strong solutions for the compressible nematic liquid

crystal flows under the H2-framework. First, we construct the global existence of

strong solutions by the standard energy method under the condition that the initial

data are close to the constant equilibrium state (1, 0, w0) (w0 is a fixed unit constant

vector) in H2-framework. Second, if the initial data in L1-norm are finite addition-

ally, the optimal time decay rates of strong solutions are established by the method

of Green function. Precisely, we obtain the following time decay rates for all t ≥ 0

∥(ρ− 1)(t)∥H2−k + ∥u(t)∥H2−k + ∥(d− w0)(t)∥H3−k ≤ C(1 + t)−
3+2k

4 ,

where k = 0, 1. Although angular momentum equations (1.1)3 are nonlinear parabol-

ic equations, we hope to establish optimal time decay rates for higher order spatial

derivatives of director under the condition of small initial perturbation. Motivated

by Lemma 3.2, we move the nonlinear terms to the right hand side of (1.1)3 and

deal with the nonlinear terms as external force with the property on fast time decay

rates. Then, the optimal time decay rates for higher order spatial derivatives of

director are built with the help of Fourier splitting method by Schonbek [40]. Final-

ly, we also study the decay rates for the time derivatives of velocity and the mixed

space-time derivatives of density and director.

Notation In this paper, we use Hs(R3) (s ∈ R) to denote the usual Sobolev

spaces with the norm ∥ · ∥Hs and Lp(R3) (1 ≤ p ≤ ∞) to denote the usual Lp spaces

with the norm ∥ · ∥Lp . The symbol ∇l with an integer l ≥ 0 stands for the usual

any spatial derivatives of order l. When l is not a positive integer, ∇l stands for Λl

defined by Λlf := F−1(|ξ|lFf), where F is the usual Fourier transform operator

(F (f) := f̂) and F−1 is its inverse. We will employ the notation a . b to mean that

a ≤ Cb for a universal constant C > 0 independent of time t. a ≈ b means a . b and

b . a. For simplicity, we write ∥(A,B)∥X := ∥A∥X + ∥B∥X and
∫
fdx :=

∫
R3 fdx.

Now, we establish the first result concerning the global existence of solutions for

the compressible nematic liquid crystal flows (1.1)-(1.3).

Theorem 1.1 Assume that the initial data (ρ0 − 1, u0,∇d0) ∈ H2, |d0(x)| = 1

in R3 and there exists a small constant δ0 > 0 such that

∥(ρ0 − 1, u0,∇d0)∥H2 ≤ δ0, (1.4)

then problem (1.1)-(1.3) admits a unique global solution (ρ, u, d) satisfying for all

t ≥ 0,
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∥(ρ− 1, u,∇d)∥2H2 +

∫ t

0
(∥∇ρ∥2H1 + ∥(∇u,∇2d)∥2H2)dτ ≤ C∥(ρ0 − 1, u0,∇d0)∥2H2 .

(1.5)

After obtaining the global existence of strong solutions at hand, we investigate

the long-time behavior for the density, velocity and direction field.

Theorem 1.2 Under the assumptions in Theorem 1.1, suppose the initial data

∥d0 − w0∥L2 and ∥(ρ0 − 1, u0, d0 − w0)∥L1 are finite additionally, then the solution

(ρ, u, d) obtained in Theorem 1.1 satisfies for all t ≥ 0,

∥∇k(ρ− 1)(t)∥H2−k + ∥∇ku(t)∥H2−k ≤ C(1 + t)−
3+2k

4 ,

∥∇l(d− w0)(t)∥L2 ≤ C(1 + t)−
3+2l
4 ,

(1.6)

where k = 0, 1, and l = 0, 1, 2, 3.

Remark 1.1 For any 2 ≤ p ≤ 6, by virtue of Theorem 1.2 and the Sobolev

interpolation inequality, we also obtain the following time decay rates:

∥(ρ− 1)(t)∥Lp + ∥u(t)∥Lp ≤ C(1 + t)
− 3

2

(
1− 1

p

)
,

∥∇k(d− w0)(t)∥Lp ≤ C(1 + t)
− 3

2

(
1− 1

p

)
− k

2 ,

where k = 0, 1, 2. Furthermore, in the same manner, we also have

∥(ρ− 1)(t)∥L∞ + ∥u(t)∥L∞ ≤ C(1 + t)−
5
4 ,

∥∇k(d− w0)(t)∥L∞ ≤ C(1 + t)−
3+k
2 ,

where k = 0, 1.

Remark 1.2 Under the assumption of finiteness of ∥d0 − w0∥L2 in Theorem

1.2, one can obtain the rate of director d(x, t) converging to the constant equilibrium

state w0 in L∞(R3)-norm.

Finally, we also study the convergence rates for time derivatives of velocity and

mixed space-time derivatives of density and director.

Theorem 1.3 Under the assumptions in Theorem 1.2, the global solution

(ρ, u, d) of problem (1.1)-(1.3) has the following time decay rates for all t ≥ 0,

∥ρt∥H1 + ∥ut∥L2 ≤ C(1 + t)−
5
4 ,

∥∇kdt∥L2 ≤ C(1 + t)−
7+2k

4 ,
(1.7)

where k = 0, 1.

This paper is organized as follows. In Section 2, we establish some energy es-

timates that will play an important role for us to construct the global existence of

strong solutions. Then, we close the estimates by the standard continuity argument

and the global existence of strong solutions follows immediately. In Section 3, we
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build the time decay rates by taking the method of Green function and establish

optimal time decay rates for the higher order spatial derivatives of director. Finally,

we also study the decay rates for the time derivatives of velocity and the mixed

space-time derivatives of density and director.

2 Proof of Theorem 1.1

In this section, we construct the global existence of strong solutions for the

compressible nematic liquid crystal flows (1.1)-(1.3). By a classical argument (see

[36]), the global existence of solutions are obtained by combining the local existence

result with a priori estimates. Since the local existence and uniqueness of strong

solutions were established by Huang et al. [27], the global solutions follow in a

standard continuity argument after we establish (1.5) a priori.

2.1 Energy estimates

Denoting ϱ = ρ− 1 and n = d−w0, we rewrite (1.1) in the perturbation form as
ϱt + divu = S1,

ut − µ∆u− (µ+ ν)∇divu+∇ϱ = S2,

nt −∆n = S3.

(2.1)

Here Si (i = 1, 2, 3) are defined as
S1 = −ϱdivu− u · ∇ϱ,

S2 = −u · ∇u− h(ϱ)[µ∆u+ (µ+ ν)∇divu]− f(ϱ)∇ϱ− g(ϱ)∇n ·∆n,

S3 = −u · ∇n+ |∇n|2(n+ w0),

(2.2)

where the three nonlinear functions of ϱ are defined by

h(ϱ) :=
ϱ

ϱ+ 1
, f(ϱ) :=

P ′(ϱ+ 1)

ϱ+ 1
− 1, g(ϱ) :=

1

ϱ+ 1
. (2.3)

The associated initial condition is given by

(ϱ, u, n)(x, t)|t=0 = (ϱ0, u0, n0)(x). (2.4)

Assume there exists a small positive constant δ satisfying the following estimate

∥(ϱ, u,∇n)(t)∥H2 ≤ δ, (2.5)

for all t ∈ [0, T ]. By virtue of (2.5) and Sobolev inequality, it is easy to get

1

2
≤ ϱ+ 1 ≤ 3

2
.

Hence, we immediately have
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|h(ϱ)|, |f(ϱ)| ≤ C|ϱ| and |g(k−1)(ϱ)|, |h(k)(ϱ)|, |f (k)(ϱ)| ≤ C for any k ≥ 1,

(2.6)

which can be used frequently to derive a priori estimates. The following analytic

tool has been proved in Wang and Tan [41]. For simplicity, we only state the results

here and omit the proof for brevity.

Lemma 2.1 Let 2 ≤ p ≤ ∞ and 0 ≤ m,α ≤ l ; when p = ∞ we require further

that m ≤ α+ 1 and l ≥ α+ 2. Then we have that for any f ∈ C∞
0 (R3),

∥∇αf∥Lp . ∥∇mf∥1−θ
L2 ∥∇lf∥θL2 ,

where 0 ≤ θ ≤ 1 and α satisfy

α+ 3

(
1

2
− 1

p

)
= m(1− θ) + lθ.

Remark 2.1 If ∥f∥H2 ≤ M , then according to Lemma 2.1 we obtain

∥∇αf∥L2 . ∥f∥1−
α
2

L2 ∥∇2f∥
α
2

L2 . M,

for any α ∈ [0, 2]. Hence, under assumption (2.5), it is easy to obtain

∥(∇αϱ,∇αu,∇α∇n)(t)∥L2 . δ,

for any α ∈ [0, 2].

First of all, we will derive the following energy estimates.

Lemma 2.2 Under condition (2.5), then for k = 0, 1, we have

d

dt
∥∇k(ϱ, u,∇n)∥2L2 + C∥∇k+1(u,∇n)∥2L2 . δ∥∇k+1ϱ∥2L2 . (2.7)

Proof Taking k-th spatial derivatives to (2.1)1 and (2.1)2 respectively, multi-

plying the resulting identities by ∇kϱ and ∇ku respectively and integrating over R3

(by parts), it is easy to obtain

1

2

d

dt

∫
(|∇kϱ|2 +∇ku|2)dx+

∫
(µ|∇k+1u|2 + (µ+ ν)|∇kdivu|2)dx

=

∫
∇kS1∇kϱdx+

∫
∇kS2∇kudx.

(2.8)

Taking (k + 1)-th spatial derivatives to (2.1)3, multiplying the resulting identities

∇k+1n and integrating over R3 (by parts), we have

1

2

d

dt

∫
|∇k+1n|2dx+

∫
|∇k+2n|2dx =

∫
∇k+1S3∇k+1ndx. (2.9)
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Ading (2.8) to (2.9), it follows immediately that

1

2

d

dt

∫
(|∇kϱ|2+|∇ku|2+|∇k+1n|2)dx+

∫
(µ|∇k+1u|2+(µ+ν)|∇kdivu|2+|∇k+2n|2)dx

=

∫
∇kS1∇kϱdx+

∫
∇kS2∇kudx+

∫
∇k+1S3∇k+1ndx.

(2.10)

For the case k = 0, the differential identity (2.10) has the following form

1

2

d

dt

∫
(|ϱ|2 + |u|2 + |∇n|2)dx+

∫
(µ|∇u|2 + (µ+ ν)|divu|2 + |∇2n|2)dx

=

∫
S1 · ϱdx+

∫
S2 · udx−

∫
S3 ·∆ndx = I1 + I2 + I3.

(2.11)

Applying the Hölder, Sobolev and Young inequalities, it is easy to obtain

I1 ≤ ∥ϱ∥L3∥divu∥L2∥ϱ∥L6 + ∥ϱ∥L3∥∇ϱ∥L2∥u∥L6

. ∥ϱ∥H1∥∇u∥L2∥∇ϱ∥L2 + ∥ϱ∥H1∥∇ϱ∥L2∥∇u∥L2

. δ(∥∇ϱ∥2L2 + ∥∇u∥2L2).

(2.12)

Integrating by parts and applying (2.6), Hölder, Sobolev and Young inequalities, it

arrives at directly

−
∫

h(ϱ)(µ∆u+ (µ+ λ)∇divu)udx

≈
∫

(h′(ϱ)∇ϱ · u+ h(ϱ)∇u)∇udx

. ∥∇ϱ∥L2∥u∥L6∥∇u∥L3 + ∥ϱ∥L∞∥∇u∥2L2

. (∥ϱ∥H2 + ∥∇u∥H1)(∥∇ϱ∥2L2 + ∥∇u∥2L2)

. δ(∥∇ϱ∥2L2 + ∥∇u∥2L2).

(2.13)

Hence, with the help of (2.6), Hölder, Sobolev and Young inequalities, we deduce

I2 . (∥u∥L3∥∇u∥L2+∥ϱ∥L3∥∇ϱ∥L2+∥∇n∥L3∥∆n∥L2)∥u∥L6+δ(∥∇ϱ∥2L2+∥∇u∥2L2)

. (∥u∥H1∥∇u∥L2+∥ϱ∥H1∥∇ϱ∥L2+∥∇n∥H1∥∇2n∥L2)∥∇u∥L2+δ(∥∇ϱ∥2L2+∥∇u∥2L2)

. δ(∥∇ϱ∥2L2+∥∇u∥2L2+∥∇2n∥2L2).
(2.14)

By virtue of |d| = 1 (that is, |n+ w0| = 1), it follows immediately from the Hölder

and Sobolev inequalities that

I3 ≤ (∥u∥L3∥∇n∥L6 + ∥∇n∥L3∥∇n∥L6)∥∇2n∥L2

. (∥u∥H1 + ∥∇n∥H1)∥∇2n∥2L2

. δ∥∇2n∥2L2 .

(2.15)
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Substituting (2.12), (2.14) and (2.15) into (2.11) completes the proof of (2.7) for the

case of k = 0. Now, we turn to give the proof of (2.7) for the case of k = 1. Indeed,

taking k = 1 in (2.10) and integrating by part yield

1

2

d

dt

∫
(|∇ϱ|2 + |∇u|2 + |∇2n|2)dx+

∫
(µ|∇2u|2 + (µ+ ν)|∇divu|2 + |∇3n|2)dx

=−
∫

S1∆ϱdx−
∫

S2∆udx−
∫

∇S3∇∆ndx = II1 + II2 + II3.

(2.16)

Applying Hölder, Sobolev and Young inequalities, we obtain

II1 ≤ (∥ϱ∥L3∥divu∥L6 + ∥u∥L3∥∇ϱ∥L6)∥∇2ϱ∥L2

. (∥ϱ∥H1 + ∥u∥H1)(∥∇2ϱ∥2L2 + ∥∇2u∥2L2)

. δ(∥∇2ϱ∥2L2 + ∥∇2u∥2L2).

(2.17)

Similarly, it is easy to deduce

II2 ≤ (∥u∥L3∥∇u∥L6 + ∥ϱ∥L∞∥∇2u∥L2)∥∇2u∥L2

+ (∥ϱ∥L3∥∇ϱ∥L6 + ∥∇n∥L3∥∆n∥L6)∥∇2u∥L2

. (∥ϱ∥H2 + ∥u∥H1 + ∥∇n∥H1)(∥∇2ϱ∥2L2 + ∥∇2u∥2L2 + ∥∇3n∥2L2)

.δ(∥∇2ϱ∥2L2 + ∥∇2u∥2L2 + ∥∇3n∥2L2),

(2.18)

and
II3 ≤ (∥∇u∥L6∥∇n∥L3 + ∥u∥L3∥∇2n∥L6)∥∇3n∥L2

+ (∥∇n∥L3∥∇2n∥L6 + ∥∇n∥3L6)∥∇3n∥L2

. (∥u∥H1 + ∥∇n∥H1 + ∥∇
3
2n∥2L2)(∥∇2u∥2L2 + ∥∇3n∥2L2)

.δ(∥∇2u∥2L2 + ∥∇3n∥2L2).

(2.19)

Substituting (2.17)-(2.19) into (2.16), then we complete the proof of (2.7) for the

case of k = 1. The proof is completed.

Next, we derive the second type of energy estimates involving the higher order

spatial derivatives of ϱ and u.

Lemma 2.3 Under condition (2.5), then we have

d

dt
∥∇2(ϱ, u,∇n)∥2L2 + C∥∇3(u,∇n)∥2L2 . δ∥∇2ϱ∥2L2 . (2.20)

Proof Taking 2-th spatial derivatives to (2.1)1 and (2.1)2 respectively, multi-

plying the resulting identities by ∇2ϱ and ∇2u respectively and integrating over R3

(by parts), we obtain

1

2

d

dt

∫
(|∇2ϱ|2 + |∇2u|2)dx+

∫
(µ|∇3u|2 + (µ+ ν)|∇2divu|2)dx

=

∫
∇2S1∇2ϱdx+

∫
∇2S2∇2udx.

(2.21)



340 ANN. OF APPL. MATH. Vol.32

Applying Hölder, Sobolev and Young inequalities, it is easy to obtain

−
∫

∇2(ϱdivu)∇2ϱdx

= −
∫

(∇2ϱdivu+ 2∇ϱ∇divu+ ϱ∇2divu)∇2ϱdx

. (∥∇u∥L∞∥∇2ϱ∥L2 + ∥∇ϱ∥L3∥∇2u∥L6 + ∥ϱ∥L∞∥∇3u∥L2)∥∇2ϱ∥L2

. (∥∇2u∥
1
2

L2∥∇3u∥
1
2

L2∥∇2ϱ∥L2 + ∥∇ϱ∥H1∥∇3u∥L2 + ∥ϱ∥H2∥∇3u∥L2)∥∇2ϱ∥L2

. (∥∇2u∥
1
2

L2∥∇2ϱ∥
1
2

L2 + ∥∇ϱ∥H1 + ∥ϱ∥H2)(∥∇2ϱ∥2L2 + ∥∇3u∥2L2)

. δ(∥∇2ϱ∥2L2 + ∥∇3u∥2L2).
(2.22)

Integrating by part and applying Hölder, Sobolev and Young inequalities, it arrives at

−
∫

∇2(u · ∇ϱ)∇2ϱdx =

∫ [
− (∇2u∇ϱ+ 2∇u∇2ϱ)∇2ϱ+

1

2
|∇2ϱ|2divu

]
dx

. (∥∇2u∥L6∥∇ϱ∥L3 + ∥∇u∥L∞∥∇2ϱ∥L2)∥∇2ϱ∥L2

. ∥∇ϱ∥H1∥∇2ϱ∥L2∥∇3u∥L2 + ∥∇2u∥
1
2

L2∥∇3u∥
1
2

L2∥∇2ϱ∥2L2

. (∥∇2u∥
1
2

L2∥∇2ϱ∥
1
2

L2 + ∥∇ϱ∥H1)(∥∇2ϱ∥2L2 + ∥∇3u∥2L2)

. δ(∥∇2ϱ∥2L2 + ∥∇3u∥2L2).
(2.23)

The combination of (2.22) and (2.23) gives rise to∫
∇2S1∇2ϱdx . δ(∥∇2ϱ∥2L2 + ∥∇3u∥2L2). (2.24)

Now, we turn to give the estimate for the second term on the right hand side of

(2.21). First of all, by virtue of Hölder and Sobolev inequalities, we have∫
∇(u · ∇u)∇∆udx =

∫
(∇u∇u+ u∇2u)∇∆udx

≤ ∥∇u∥L3∥∇u∥L6∥∇3u∥L2 + ∥u∥L3∥∇2u∥L6∥∇3u∥L2

. ∥u∥
1
2

L2∥∇3u∥
1
2

L2∥∇u∥
1
2

L2∥∇3u∥
1
2

L2∥∇3u∥L2 + ∥u∥H1∥∇3u∥2L2

. δ∥∇3u∥2L2 .
(2.25)

In view of (2.6), Hölder and Sobolev inequalities, we have∫
∇(h(ϱ)(µ∆+ (µ+ λ)∇divu))∇∆udx

.(∥∇ϱ∥L3∥∇2u∥L6 + ∥ϱ∥L∞∥∇3u∥L2)∥∇3u∥L2

.(∥∇ϱ∥H1∥∇3u∥L2 + ∥ϱ∥H2∥∇3u∥L2)∥∇3u∥L2

.δ∥∇3u∥2L2

(2.26)
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and∫
∇(f(ϱ)∇ϱ)∇∆udx . (∥∇ϱ∥2L4 + ∥ϱ∥L∞∥∇2ϱ∥L2)∥∇3u∥L2

. (∥∇
3
2 ϱ∥L2∥∇2ϱ∥L2 + ∥ϱ∥H2∥∇2ϱ∥L2)∥∇3u∥L2

. (∥∇
3
2 ϱ∥L2 + ∥ϱ∥H2)∥∇2ϱ∥L2∥∇3u∥L2

. δ(∥∇2ϱ∥2L2 + ∥∇3u∥2L2).

(2.27)

Similarly, it is easy to deduce∫
∇(g(ϱ)∇n ·∆n)∇∆udx

. (∥∇n∥L∞∥∇ϱ∥L3∥∆n∥L6 + ∥∇2n∥2L4 + ∥∇n∥L3∥∇3n∥L6)∥∇3u∥L2

. ∥∇n∥H2∥∇
5
4 ϱ∥

2
3

L2∥∇2ϱ∥
1
3

L2∥∇n∥
1
3

L2∥∇4n∥
2
3

L2∥∇3u∥L2

+ (∥∇
3
2n∥L2∥∇4n∥L2 + ∥∇n∥H1∥∇4n∥L2)∥∇3u∥L2

. (∥∇n∥H2∥∇
5
4ϱ∥

2
3

L2∥∇n∥
1
3

L2+∥∇
3
2n∥L2+∥∇n∥H1)(∥∇2ϱ∥2L2+∥∇3u∥2L2+∥∇4n∥2L2)

. δ(∥∇2ϱ∥2L2 + ∥∇3u∥2L2 + ∥∇4n∥2L2).
(2.28)

Combining (2.25)-(2.27) with (2.28), we deduce∫
∇2S2∇2udx . δ(∥∇2ϱ∥2L2 + ∥∇3u∥2L2 + ∥∇4n∥2L2). (2.29)

Inserting (2.24) and (2.29) into (2.21), it arrives at immediately

d

dt

∫
(|∇2ϱ|2 + |∇2u|2)dx+

∫
|∇3u|2dx . δ(∥∇2ϱ∥2L2 + ∥∇4n∥2L2). (2.30)

Taking 3-th spatial derivatives to (2.1)3, multiplying the resulting identities by ∇3n

and integrating over R3 (by parts), we obtain

1

2

d

dt

∫
|∇3n|2dx+

∫
|∇4n|2dx =

∫
∇3S3 · ∇3ndx. (2.31)

The application of Hölder, Sobolev and Young inequalities, it is easy to deduce∫
∇3S3 · ∇3ndx . (∥∇2u∥L6∥∇n∥L3 + ∥∇u∥L3∥∇2n∥L6 + ∥u∥L3∥∇3n∥L6

+ ∥∇2n∥2L4 + ∥∇n∥L3∥∇3n∥L6 + ∥∇n∥2L6∥∇2n∥L6)∥∇4n∥L2

. (∥∇n∥H1∥∇3u∥L2 + ∥∇
3
4u∥

2
3

L2∥∇2u∥
1
3

L2∥∇n∥
1
3

L2∥∇4n∥
2
3

L2

+ ∥u∥H1∥∇4n∥L2 + ∥∇
3
2n∥L2∥∇4n∥L2 + ∥∇n∥H1∥∇4n∥L2

+ ∥∇n∥
4
3

L2∥∇4n∥
2
3

L6∥∇
5
2n∥

2
3

L2∥∇4n∥
1
3

L2)∥∇4n∥L2

. δ(∥∇3u∥2L2 + ∥∇4n∥2L2).
(2.32)



342 ANN. OF APPL. MATH. Vol.32

Substituting (2.32) into (2.31), we have

1

2

d

dt

∫
|∇3n|2dx+

∫
|∇4n|2dx . δ∥∇3u∥2L2 . (2.33)

The combination of (2.30) and (2.33) completes the proof of lemma.

Finally, we will use equations (2.1) to recover the dissipation estimate for ϱ.

Lemma 2.4 Under condition (2.5), then for k = 0, 1, we have

d

dt

∫
∇ku·∇k+1ϱdx+C∥∇k+1ϱ∥2L2 . ∥∇k+1u∥2L2+∥∇k+2u∥2L2+∥∇k+3n∥2L2 . (2.34)

Proof Taking k-th spatial derivatives to the second equation of (2.1), multiply-

ing by ∇k+1ϱ and integrating over R3, then we obtain∫
∇kut · ∇k+1ϱdx+

∫
|∇k+1ϱ|2dx

=

∫
∇k[µ∆u+ (µ+ ν)∇divu]∇k+1ϱdx+

∫
∇kS2∇k+1ϱdx.

(2.35)

In order to deal with
∫
∇kut · ∇k+1ϱdx, following the idea in Guo and Wang [42],

we turn the time derivatives of velocity to the density. Then, applying the mass

equation (2.1)1, we can transform time derivatives to the spatial derivatives, that is,∫
∇kut · ∇k+1ϱdxd

=
d

dt

∫
∇ku · ∇k+1ϱdx−

∫
∇ku · ∇k+1ϱtdx

=
d

dt

∫
∇ku · ∇k+1ϱdx+

∫
∇ku · ∇k+1(divu+ div(ϱu))dx

=
d

dt

∫
∇ku · ∇k+1ϱdx−

∫
∇kdivu · ∇k(divu+ div(ϱu))dx

=
d

dt

∫
∇ku · ∇k+1ϱdx−

∫
|∇kdivu|2dx−

∫
∇kdivu · ∇kdiv(ϱu)dx.

(2.36)

Substituting (2.36) into (2.35), it is easy to deduce

d

dt

∫
∇ku · ∇k+1ϱdx+

∫
|∇k+1ϱ|2dx

=

∫
|∇kdivu|2dx+

∫
∇kdivu · ∇kdiv(ϱu)dx+

∫
∇kS2∇k+1ϱdx

+

∫
∇k[µ∆u+ (µ+ ν)∇divu]∇k+1ϱdx.

(2.37)

For the case k = 0, applying Hölder, Sobolev and Young inequalities, we obtain
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∫
divu · div(ϱu)dx . ∥ϱ∥L∞∥∇u∥2L2 + ∥u∥L3∥divu∥L6∥∇ϱ∥L2

. (∥ϱ∥H2 + ∥u∥H1)(∥∇ϱ∥2L2 + ∥∇2u∥2L2)

. δ(∥∇ϱ∥2L2 + ∥∇2u∥2L2).

(2.38)

By virtue of Hölder inequality and (2.5), it is easy to deduce∫
S2 ∇ϱdx . (∥u∥L3∥∇u∥L6 + ∥ϱ∥L∞∥∇2u∥L2)∥∇ϱ∥L2

+ (∥ϱ∥L∞∥∇ϱ∥L2 + ∥∇n∥L3∥∆n∥L6)∥∇ϱ∥L2

. δ(∥∇ϱ∥2L2 + ∥∇2u∥2L2 + ∥∇3n∥2L2)

(2.39)

and ∫
[µ∆u+ (µ+ ν)∇divu]∇ϱdx ≤ 1

2
∥∇ϱ∥2L2 +

1

2
∥∇2u∥2L2 . (2.40)

The combination of (2.38), (2.39) and (2.40) complete the proof of (2.34) for the case

of k = 0. As for the case k = 1, applying Hölder, Sobolev and Young inequalities,

we deduce∫
∇divu · ∇div(ϱu)dx . (∥∇ϱ∥L3∥divu∥L6 + ∥ϱ∥L∞∥∇divu∥L2)∥∇2u∥L2

+ (∥∇ϱ∥L3∥∇u∥L6 + ∥u∥L∞∥∇2ϱ∥L2)∥∇2u∥L2

. δ(∥∇2ϱ∥2L2 + ∥∇2u∥2L2).

(2.41)

With the help of Hölder inequality and Lemma 2.3, it arrives at∫
∇S2 ∇2ϱdx . δ(∥∇2ϱ∥2L2 + ∥∇3u∥2L2 + ∥∇4n∥2L2), (2.42)

and ∫
∇[µ∆u+ (µ+ ν)∇divu]∇2ϱdx ≤ 1

2
∥∇2ϱ∥2L2 +

1

2
∥∇3u∥2L2 . (2.43)

The combination of (2.41), (2.42) and (2.43) gives rise to the proof of (2.34) for the

case of k = 1. The proof is completed.

2.2 Global existence of solutions

In this subsection, we shall combine the energy estimates derived in the previous

section to prove the global existence of strong solutions in Theorem 1.1. Summing

up (2.7) from k = l (l = 0, 1) to k = 1, we obtain

d

dt
∥∇l(ϱ, u,∇n)∥2H1−l + C∥∇l(∇u,∇2n)∥2H1−l . δ∥∇l+1ϱ∥2H1−l ,

which, together with (2.20), arrives at

d

dt
∥∇l(ϱ, u,∇n)∥2H2−l + C∥∇l+1(u,∇n)∥2H2−l ≤ δC1∥∇l+1ϱ∥2H1−l . (2.44)
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On the other hand, summing (2.34) from k = l (l = 0, 1) to k = 1, we obtain

immediately

d

dt

∑
l≤k≤1

∫
∇ku · ∇k+1ϱdx+ C2∥∇l+1ϱ∥2H1−l ≤ C3

(
∥∇l+1u∥2H2−l + ∥∇l+3n∥2H1−l

)
.

(2.45)

Multiplying (2.45) by 2δC1/C2 and adding the resulting inequality to (2.44), it

arrives at
d

dt
E2
l (t) + C3

(
∥∇l+1ϱ∥2H1−l + ∥∇l+1(u,∇n)∥2H2−l

)
≤ 0, (2.46)

where E2
l (t) is defined as

E2
l (t) = ∥∇l(ϱ, u,∇n)∥2H2−l +

2δC1

C2

∑
l≤k≤1

∫
∇ku · ∇k+1ϱdx.

By virtue of the smallness of δ, it is easy to obtain

C−1
4 ∥∇l(ϱ, u,∇n)∥2H2−l ≤ E2

l (t) ≤ C4∥∇l(ϱ, u,∇n)∥2H2−l . (2.47)

Choosing l = 0 in (2.46) and integrating over [0, t] yield

∥(ϱ, u,∇n)(t)∥H2 ≤ C∥(ϱ0, u0,∇n0)∥H2 . (2.48)

Since ∥(ϱ, u,∇n)(t)∥H2 is a continuous function with respect to time (see [27]), there

exists a small and positive constant T0 such that

max
0≤t≤T0

∥(ϱ, u,∇n)(t)∥H2 ≤ 2∥(ϱ0, u0,∇n0)∥H2 . (2.49)

Choosing

∥(ϱ0, u0,∇n0)∥H2 ≤ min

{
δ

2
,
δ

2C

}
,

this, together with (2.49), gives directly

max
0≤t≤T0

∥(ϱ, u,∇n)(t)∥H2 ≤ δ.

Then, applying estimate (2.48), it is easy to deduce

max
0≤t≤T0

∥(ϱ, u,∇n)(t)∥H2 ≤ δ

2
.

Thus, problem (2.1)-(2.4) with the initial data (ϱ, u,∇n)(x, T0) admits a unique

solution on [T0, 2T0]× R3 satisfying the estimate

max
T0≤t≤2T0

∥(ϱ, u,∇n)(t)∥H2 ≤ 2∥(ϱ, u,∇n)(T0)∥H2 ≤ δ,
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which, together with (2.48), yields directly

max
0≤t≤2T0

∥(ϱ, u,∇n)(t)∥H2 ≤ δ

2
.

Thus, we can continue the same process for 0 ≤ t ≤ nT0 (n = 1, 2, · · · ) and finally

get a global solution on [0,∞) × R3. The uniqueness of global strong solutions

follows immediately from the uniqueness of local existence of solutions. Choosing

l = 0 in (2.46), integrating over [0, t] and applying the equivalent relation of (2.47),

we obtain

∥(ϱ, u,∇n)∥2H2 +

∫ t

0
(∥∇ϱ∥2H1 + ∥(∇u,∇2n)∥2H2)dτ ≤ C∥(ϱ0, u0,∇n0)∥2H2 ,

which completes the proof of Theorem 1.1.

3 Proof of Theorems 1.2 and 1.3

In this section, we will establish the time decay rates for the compressible nematic

liquid crystal flows (1.1)-(1.3). First of all, the decay rates are built by the method

of the Green function. Secondly, motivated by Lemma 3.2, we enhance the time

decay rates for the higher order derivatives of director. Finally, we also establish the

convergence rates for the time derivatives of density, velocity and director.

3.1 Decay rates for the nonlinear systems

First of all, let us to consider the following linearized systems
ϱt + divu = 0,

ut − µ∆u− (µ+ ν)∇divu+∇ϱ = 0,

nt −∆n = 0,

(3.1)

with the initial data

(ϱ, u, n)|t=0 = (ϱ0, u0, n0). (3.2)

Obviously, the solution (ϱ, u, n) for the linear problem (3.1)-(3.2) can be expressed

as

(ϱ, u, n)tr = G(t) ∗ (ϱ0, u0, n0)
tr, t ≥ 0. (3.3)

Here G(t) := G(x, t) is the Green matrix for system (3.1) and the exact expression

of the Fourier transform Ĝ(ξ, t) of Green function G(x, t) as

Ĝ(ξ, t) =


λ+e

λ−t − λ−e
λ+t

λ+ − λ−

−iξt(eλ+t − eλ−t)

λ+ − λ−
0

−iξ(eλ+t − eλ−t)

λ+ − λ−

λ+e
λ+t−λ−e

λ−t

λ+−λ−

ξξt

|ξ|2
+eλ0t

(
I3×3−

ξξt

|ξ|2

)
0

0 0 eλ1tI3×3

 ,
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where
λ0 = −µ|ξ|2, λ1 = −|ξ|2,

λ+ = −
(
µ+

1

2
ν
)
|ξ|2 + i

√
|ξ|2 −

(
µ+

1

2
ν
)2

|ξ|4,

λ− = −
(
µ+

1

2
ν
)
|ξ|2 − i

√
|ξ|2 −

(
µ+

1

2
ν
)2

|ξ|4.

Since systems (3.1) is an independent coupling of the classical linearized Navier-

Stokes equation and heat equation, the representation of Green function Ĝ(ξ, t) is

easy to be verified. Furthermore, we have the following decay rates for systems

(3.1)-(3.2), refer to [33,43].

Proposition 3.1 Assume that (ϱ, u, n) is a solution of the linearized com-

pressible nematic liquid crystal system (3.1)-(3.2) with the initial data (ϱ0, u0, n0) ∈
L1 ∩H2, then

∥∇kϱ∥2L2 ≤ C
(
∥(ϱ0, u0)∥2L1 + ∥∇k(ϱ0, u0)∥2L2

)
(1 + t)−

3
2
−k,

∥∇ku∥2L2 ≤ C
(
∥(ϱ0, u0)∥2L1 + ∥∇k(ϱ0, u0)∥2L2

)
(1 + t)−

3
2
−k,

∥∇kn∥2L2 ≤ C
(
∥n0∥2L1 + ∥∇kn0∥2L2

)
(1 + t)−

3
2
−k,

for 0 ≤ k ≤ 2.

In the sequel, we want to verify some simplified inequalities that play an impor-

tant role to derive the time decay rates for the compressible nematic liquid crystal

flows (2.1)-(2.4). More precisely, we have

∥(S1, S2, S3)∥L1 . δ(∥∇ϱ∥L2 + ∥∇u∥H1 + ∥∇n∥H1),

∥(S1, S2, S3)∥L2 . δ(∥∇ϱ∥L2 + ∥∇u∥H1 + ∥∇n∥H1),

∥∇(S1, S2, S3)∥L2 . δ(∥∇2ϱ∥L2 + ∥∇2u∥L2 + ∥∇2n∥H1) + ∥∇ϱ∥H1∥∇3u∥L2 .

(3.4)

Next, we establish decay rates for the compressible nematic liquid crystal flows

(2.1)-(2.4).

Lemma 3.1 Under the assumptions in Theorem 1.2, the global solution (ϱ, u, n)

of problem (2.1)-(2.4) satisfies

∥∇kϱ(t)∥2H2−k + ∥∇ku(t)∥2H2−k + ∥∇kn(t)∥2H3−k ≤ C(1 + t)−
3
2
−k (3.5)

for k = 0, 1.

Proof First of all, taking k = 0 in (2.9), which together with inequality (2.15),

we obtain the following inequality immediately

d

dt

∫
|∇n|2dx+

∫
|∇2n|2dx ≤ 0. (3.6)
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Taking l = 1 specially in (2.46), it arrives at directly

d

dt
E2
1 (t) + C3

(
∥∇2ϱ∥2L2 + ∥∇2u∥2H1 + ∥∇3n∥2H1

)
≤ 0,

which, together with (3.6), yields directly

d

dt
F2
1 (t) + C4

(
∥∇2ϱ∥2L2 + ∥∇2u∥2H1 + ∥∇2n∥2H2

)
≤ 0, (3.7)

where F2
1 (t) is defined as

F2
1 (t) = ∥∇(ϱ, u)∥2H1 + ∥∇n∥2H2 +

2C1δ

C2

∫
∇u · ∇2ϱdx.

With the help of Young inequality, it is easy to deduce

C−1
5

(
∥∇(ϱ, u)∥2H1 + ∥∇n∥2H2

)
≤ F2

1 (t) ≤ C5

(
∥∇(ϱ, u)∥2H1 + ∥∇n∥2H2

)
. (3.8)

Ading both hand sides of (3.7) by ∥∇(ϱ, u, n)∥2L2 and applying the equivalent relation

(3.8), we have
d

dt
F2
1 (t) + CF2

1 (t) ≤ ∥∇(ϱ, u, n)∥2L2 . (3.9)

In view of the Gronwall inequality, it follows immediately

F2
1 (t) ≤ F2

1 (0)e
−Ct +

∫ t

0
e−C(t−τ)∥∇(ϱ, u, n)∥2L2dτ. (3.10)

In order to derive the time decay rates for F2
1 (t), we need to control the term

∥∇(ϱ, u, n)∥2L2 . In fact, by Duhamel principle, we can represent the solution for

system (2.1)-(2.4) as

(ϱ, u, n)tr(t) = G(t) ∗ (ϱ0, u0, n0)
tr +

∫ t

0
G(t− s) ∗ (S1, S2, S3)

tr(s)ds. (3.11)

Denoting F (t) = sup
0≤τ≤t

(1 + τ)
5
2 (∥∇ϱ(τ)∥2H1 + ∥∇u(τ)∥2H1 + ∥∇n(τ)∥2H2), by virtue

of (3.4), (3.11) and Proposition 3.1, we have

∥∇(ϱ, u, n)∥L2 ≤C(1+t)−
5
4+C

∫ t

0
(∥(S1, S2, S3)∥L1+∥∇(S1, S2, S3)∥L2) (1+t−τ)−

5
4dτ

≤C(1+t)−
5
4+C

∫ t

0
δ (∥∇ϱ∥H1+∥∇u∥H1+∥∇n∥H2) (1+t−τ)−

5
4dτ

+ C

∫ t

0
∥∇ϱ∥H1∥∇3u∥L2(1 + t− τ)−

5
4dτ
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≤C(1 + t)−
5
4 + Cδ

√
F (t)

∫ t

0
(1 + t− τ)−

5
4 (1 + τ)−

5
4dτ

+ C
√

F (t)

[∫
(1 + t− τ)−

5
2 (1 + τ)−

5
2dτ

] 1
2
[∫ t

0
∥∇3u(τ)∥2L2dτ

] 1
2

≤C(1 + t)−
5
4 + Cδ

√
F (t)(1 + t)−

5
4

≤ (1 + t)−
5
4 (1 + δ

√
F (t)),

where we have used the fact∫ t

0
(1 + t− τ)−r(1 + τ)−rdτ

=

∫ t
2

0
+

∫ t

t
2

(1 + t− τ)−r(1 + τ)−rdτ

≤
(
1 +

t

2

)−r
∫ t

2

0
(1 + τ)−rdτ +

(
1 +

t

2

)−r
∫ t

t
2

(1 + t− τ)−rdτ

≤ (1 + t)−r ,

for r = 5
2 and r = 5

4 respectively. Thus, we have the estimate

∥∇(ϱ, u, n)∥2L2 ≤ C(1 + t)−
5
2 (1 + δF (t)). (3.12)

Inserting (3.12) into (3.10), it follows immediately

F2
1 (t) ≤ F2

1 (0)e
−Ct + C

∫ t

0
e−C(t−τ)(1 + τ)−

5
2 (1 + δF (τ))dτ

≤ F2
1 (0)e

−Ct + C(1 + δF (t))

∫ t

0
e−C(t−τ)(1 + τ)−

5
2dτ

≤ F2
1 (0)e

−Ct + C(1 + δF (t))(1 + t)−
5
2

≤ C(1 + δF (t))(1 + t)−
5
2 ,

(3.13)

where we have used the fact∫ t

0
e−C(t−τ)(1 + τ)−

5
2dτ =

∫ t
2

0
+

∫ t

t
2

e−C(t−τ)(1 + τ)−
5
2dτ

≤ e−
c
2
t

∫ t
2

0
(1 + τ)−

5
2dτ +

(
1 +

t

2

)− 5
2

∫ t

t
2

e−C(t−τ)dτ

≤ C (1 + t)−
5
2 .

Hence, by virtue of the definition of F (t) and (3.13), it follows immediately

F (t) ≤ C(1 + δF (t)),
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which, in view of the smallness of δ, gives

F (t) ≤ C.

Therefore, we have the following time decay rates

∥∇ϱ(t)∥2H1 + ∥∇u(t)∥2H1 + ∥∇n(t)∥2H2 ≤ C(1 + t)−
5
2 . (3.14)

On the other hand, by (3.4), (3.11), (3.14) and Proposition 3.1, it is easy to deduce

∥(ϱ, u, n)∥2L2 ≤ C(1+t)−
3
2 +C

∫ t

0

(
∥(S1, S2, S3)∥2L1+∥(S1, S2, S3)∥2L2

)
(1+t−τ)−

3
2dτ

≤ C(1+t)−
3
2 +C

∫ t

0
δ
(
∥∇ϱ∥2L2+∥∇u∥2H1+∥∇n∥2H1

)
(1+t−τ)−

3
2dτ

≤ C(1 + t)−
3
2 + C

∫ t

0
(1 + t− τ)−

5
2 (1 + τ)−

3
2dτ

≤ C(1 + t)−
3
2 ,

where we have used the fact∫ t

0
(1 + t− τ)−

5
2 (1 + τ)−

3
2dτ ≤ C(1 + t)−

3
2 .

Hence, we have the following decay rates

∥(ϱ, u, n)(t)∥2L2 ≤ C(1 + t)−
3
2 . (3.15)

Therefore, the combination of (3.14) and (3.15) completes the proof of the lemma.

3.2 Optimal decay rates for the higher order derivatives of director

In this subsection, we will enhance the time decay rates for the higher order

spatial derivatives of direction field. This improvement is motivated by the following

lemma.

Lemma 3.2 For some smooth function F (x, t), suppose the smooth function

v(x, t) is a solution of heat equation

vt(x, t)−∆v(x, t) = F (x, t), (3.16)

for (x, t) ∈ R3 × R+ with the smooth initial data v(x, 0) = v0(x). If the function

F (x, t) and the solution v(x, t) have the time decay rates

∥∇kv(t)∥2L2 ≤ C(1 + t)−( 3
2
+k), ∥∇kF (t)∥2L2 ≤ C(1 + t)−α, (3.17)

where α ≥ k + 7
2 . Then, we have the following time decay rate for the (k + 1)-th

order of spatial derivatives

∥∇k+1v(t)∥2L2 ≤ C(1 + t)−(k+ 5
2
).
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Proof Taking (k + 1)-th spatial derivatives on both hand sides of (3.16), mul-

tiplying by ∇k+1v and integrating over R3, we obtain

1

2

d

dt

∫
|∇k+1v|2dx+

∫
|∇k+2v|2dx ≤ 1

2

∫
|∇kF |2dx+

1

2

∫
|∇k+2v|2dx,

which implies

d

dt

∫
|∇k+1v|2dx+

∫
|∇k+2v|2dx ≤

∫
|∇kF |2dx. (3.18)

For some constant R defined below, denoting the time sphere (see [40])

S0 =
{
ξ ∈ R3

∣∣ |ξ| ≤ ( R

1 + t

) 1
2
}
,

it follows immediately∫
R3

|∇k+2v|2dx ≥
∫
R3/S0

|ξ|2(k+2)|v̂|2dξ

≥ R

1 + t

∫
R3/S0

|ξ|2(k+1)|v̂|2dξ

≥ R

1 + t

∫
R3

|ξ|2(k+1)|v̂|2dξ −
( R

1 + t

)2
∫
S0

|ξ|2k|v̂|2dξ,

or equivalently∫
R3

|∇k+2v|2dx ≥ R

1 + t

∫
R3

|∇k+1v|2dx−
( R

1 + t

)2
∫
R3

|∇kv|2dx. (3.19)

Choosing R = k + 3 and combining inequalities (3.18), (3.19) and the time decay

rates (3.17), it arrives at directly

d

dt

∫
|∇k+1v|2dx+

k + 3

1 + t

∫
|∇k+1v|2dx ≤

(k + 3

1 + t

)2
∫

|∇kv|2dx+

∫
|∇kF |2dx

≤ C(1 + t)−(k+ 7
2
).

(3.20)

Multiplying (3.20) by (1 + t)k+3 and integrating over [0, t], we have

∥∇k+1v(t)∥2L2 ≤ (1 + t)−k−3
[
∥∇k+1v0∥2L2 + C(1 + t)

1
2
]
,

which implies the time decay rates

∥∇k+1v(t)∥2L2 ≤ C(1 + t)−(k+ 5
2
).

Therefore, we complete the proof of the lemma.
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Motivated by Lemma 3.2, we will improve the time decay rates for the second

and third order derivatives of director.

Lemma 3.3 Under the assumptions in Theorem 1.2, the global solution (ϱ, u, n)

for problem (2.1)-(2.4) satisfies

∥∇kn(t)∥2L2 ≤ C(1 + t)−
3
2
−k (3.21)

where k = 2, 3.

Proof Taking k = 1 in (2.9), it follows immediately

1

2

d

dt

∫
|∇2n|2dx+

∫
|∇3n|2dx =

∫
∇[u · ∇n− |∇n|2(n+ w0)]∇3ndx. (3.22)

In view of (2.19), we have

−
∫

∇[|∇n|2(n+ w0)]∇3ndx . δ∥∇3n∥2L2 . (3.23)

By virtue of (3.5), Hölder, Sobolev and Young inequalities, it arrives at∫
∇(u · ∇n)∇3ndx . ∥∇u∥L3∥∇n∥L6∥∇3n∥L2 + ∥u∥L3∥∇2n∥L6∥∇3n∥L2

. ∥∇u∥2H1∥∇2n∥2L2 + (ε+ δ)∥∇3n∥2L2

. (1 + t)−
5
2 (1 + t)−

5
2 + (ε+ δ)∥∇3n∥2L2

. (1 + t)−5 + (ε+ δ)∥∇3n∥2L2 .

(3.24)

Inserting (3.23) and (3.24) into (3.22) and applying the smallness of ε and δ, we

have
d

dt

∫
|∇2n|2dx+

∫
|∇3n|2dx ≤ C(1 + t)−5. (3.25)

On the other hand, from inequality (2.31), we have

1

2

d

dt

∫
|∇3n|2dx+

∫
|∇4n|2dx =

∫
∇2[u · ∇n− |∇n|2(n+ w0)]∇4ndx. (3.26)

By virtue of Hölder, Sobolev and Young inequalities, we obtain∫
∇2(u · ∇n)∇4ndx

. ∥∇2u∥L2∥∇n∥L∞∥∇4n∥L2 + ∥∇u∥L3∥∇2n∥L6∥∇4n∥L2 + ∥u∥L3∥∇3n∥L6∥∇4n∥L2

. ∥∇2u∥2L2∥∇2n∥L2∥∇3n∥L2 + ∥∇u∥2H1∥∇3n∥2L2 + (ε+ δ)∥∇4n∥2L2

. ∥∇u∥2H1∥∇2n∥2H1 + (ε+ δ)∥∇4n∥2L2 .
(3.27)
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Following from the idea of inequality (2.32), we have

−
∫

∇2[|∇n|2(n+ w0)]∇4ndx . δ∥∇4n∥2L2 . (3.28)

Inserting (3.27) and (3.28) into (3.26) and applying the smallness of ε and δ, it

arrives at immediately

d

dt

∫
|∇3n|2dx+

∫
|∇4n|2dx . ∥∇u∥2H1∥∇2n∥2H1 . (3.29)

Combining (3.25) and (3.29) and applying the time decay rates (3.5), we get

d

dt

∫
(|∇2n|2 + |∇3n|2)dx+

∫
(|∇3n|2 + |∇4n|2)dx ≤ C(1 + t)−5. (3.30)

Similar to the analysis of inequality (3.19), it follows immediately∫
|∇3n|2dx ≥ 4

1 + t

∫
|∇2n|2dx−

(
4

1 + t

)2 ∫
|∇n|2dx, (3.31)

and ∫
|∇4n|2dx ≥ 5

1 + t

∫
|∇3n|2dx−

(
5

1 + t

)2 ∫
|∇2n|2dx. (3.32)

The combination of (3.30), (3.31) and (3.32) yields directly

d

dt

∫
(|∇2n|2 + |∇3n|2)dx+

4

1 + t

∫
(|∇2n|2 + |∇3n|2)dx

≤ 25

(1 + t)2

∫
(|∇n|2 + |∇2n|2)dx+ C(1 + t)−5

≤C(1 + t)−
9
2 ,

(3.33)

where have used the convergence rates (3.5). Multiplying (3.33) by (1 + t)4, we

obtain
d

dt

[
(1 + t)4(∥∇2n∥2L2 + ∥∇3n∥2L2)

]
≤ C(1 + t)−

1
2 . (3.34)

Integrating (3.34) over [0, t], we have the following decay rate

∥∇2n(t)∥2L2 + ∥∇3n(t)∥2L2 ≤ C(1 + t)−
7
2 . (3.35)

On the other hand, applying the convergence rates (3.5), (3.35) and inequality (3.29),

it arrives at

d

dt

∫
|∇3n|2dx+

∫
|∇4n|2dx . (1 + t)−

5
2 (1 + t)−

7
2 . (1 + t)−6,
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which, together with (3.32) and (3.35), yields

d

dt

∫
|∇3n|2dx+

5

1 + t

∫
|∇3n|2dx ≤ C(1 + t)−

11
2 . (3.36)

Multiplying (3.36) by (1 + t)5 and integrating over [0, t], it follows immediately

∥∇3n(t)∥2L2 ≤ C(1 + t)−
9
2 .

Therefore, we complete the proof of the lemma.

Proof of Theorem 1.2 With the help of Lemmas 3.1 and 3.3, we complete

the proof of Theorem 1.2.

Remark 3.1 In order to obtain the rate of d(x, t) converging to w0, we suppose

the finiteness of ∥d0 − w0∥L2 in Theorem 1.2 additionally. Then, the density and

velocity (ρ, u) enjoy the same decay rate with the director field d(x, t)−w0. However,

(ρ, u) will have the same decay rate with ∇(d(x, t)−w0) without the assumption of

finiteness of ∥d0 − w0∥L2 .

3.3 Decay rates for the mixed space-time derivatives of density and
velocity

In this subsection, we will establish the decay rates for the time derivatives of

velocity and the mixed space-time derivatives of density and director.

Lemma 3.4 Under the assumptions in Theorem 1.2, the global solution (ϱ, u, n)

of problem (2.1)-(2.4) satisfies

∥ϱt(t)∥H1 + ∥ut(t)∥L2 ≤ C(1 + t)−
5
4 ,

∥∇knt(t)∥L2 ≤ C(1 + t)−
7+2k

4 ,

for k = 0, 1.

Proof By virtue of equation (2.1)1 and the convergence rates (1.6), we have

∥ϱt∥L2 = ∥divu+ ϱdivu+ u · ∇ϱ∥L2

≤ ∥divu∥L2 + ∥ϱ∥L∞∥divu∥L2 + ∥∇ϱ∥L3∥u∥L6

≤ C(1 + t)−
5
4 .

Similarly, it follows immediately that

∥∇ϱt∥L2 = ∥∇divu+∇ϱdivu+ ϱ∇divu+∇u · ∇ϱ+ u · ∇2ϱ∥L2

. ∥∇divu∥L2 + ∥∇ϱ∥L3∥∇u∥L6 + ∥u∥L∞∥∇2ϱ∥L2

. ∥∇2u∥L2 + ∥∇2ϱ∥L2

≤ C(1 + t)−
5
4 ,

and
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∥ut∥L2 . ∥µ∆u+ (µ+ ν)∇divu∥L2 + ∥∇ϱ∥L2 + ∥u∥L3∥∇u∥L6 + ∥h(ϱ)∥L∞∥µ∆u

+ (µ+ ν)∇divu∥L2 + ∥f(ϱ)∥L∞∥∇ϱ∥L2 + ∥g(ϱ)∥L∞∥∇n∥L∞∥∇2n∥L2

. ∥∇2u∥L2 + ∥∇ϱ∥L2 + ∥∇2n∥L2

. (1 + t)−
5
4 + (1 + t)−

7
4

≤C(1 + t)−
5
4 .

By virtue of (2.1)3, (1.6), Hölder and Sobolev inequalities, we obtain

∥nt∥L2 = ∥ − u · ∇n+∆n+ |∇n|2(n+ w0)∥L2

. ∥u∥L3∥∇n∥L6 + ∥∆n∥L2 + ∥∇n∥L3∥∇n∥L6

. ∥u∥H1∥∇2n∥L2 + ∥∇2n∥L2 + ∥∇n∥H1∥∇2n∥L2

≤ C(1 + t)−
7
4 .

In the same manner, it arrives at directly

∥∇nt∥L2 = ∥∇(−u · ∇n+∆n+ |∇n|2(n+ w0))∥L2

. ∥∇u∥L3∥∇n∥L6+∥u∥L3∥∇2n∥L6+∥∇∆n∥L2+∥∇n∥L3∥∇2n∥L6+∥∇n∥3L6

. ∥∇u∥H1∥∇2n∥L2 + ∥∇3n∥L2 + ∥∇2n∥3L2

. (1 + t)−
5
4 (1 + t)−

7
4 + (1 + t)−

9
4 + (1 + t)−

21
4

≤ C(1 + t)−
9
4 .

Therefore, we complete the proof of the lemma.

Proof of Theorem 1.3 With the help of Lemma 3.4, we complete the proof

of Theorem 1.3.
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