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Abstract

In this paper, we consider a hydrodynamic flow of nematic liquid crys-
tal system. We prove the local well-posedness for the system in the critical
Lebesgue space, and study the space-time regularity of the local solution.
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1 Introduction

In this paper, we consider the following hydrodynamic flow of nematic liquid

crystal system:
ut + u · ∇u−∆u+∇P = −∇ · (∇d⊗∇d), in Rn × (0,+∞),

∇ · u = 0,

dt + u · ∇d = ∆d+ |∇d|2d, in Rn × (0,+∞),

(u(x, t), d(x, t))|t=0 = (u0(x), d0(x)), |d0(x)| = 1,

(1.1)

which was proposed by Lin and Liu [25,26], as a simplified system of Ericksen-Leslie

model. Here u is the velocity of the flow, d(·, t) : Rn → S2, the unit sphere in R3,

is the unit vector field to depict the macroscopic molecular orientation of nematic

liquid crystal material, P is pressure. We denote by ∇d⊗∇d the 3×3-matrix whose

(i, j)-entry is ∇id · ∇jd and 1 ≤ i, j ≤ 3.

The hydrodynamic theory of liquid crystal flow due to Ericksen and Leslie was

developed in 1960’s [5,6,21,22]. The model (1.1) is a simplified system of Ericksen-

Leslie model, and it is a macroscopic continuum description of the time evolution of
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material under the influence of both the flow field u(x, t) and the macroscopic de-

scription of the microscopic orientation configuration d(x, t) of rod-like liquid crystal.

Many efforts on rigorous mathematical analysis of system (1.1) have been made,

see [23,25-27,29] etc. Since the liquid crystal system (1.1) is a coupling system

between the incompressible Navier-Stokes equations and the heat flow of harmonic

maps, we shall first recall some results of Navier-Stokes equations as follows.

For the incompressible Navier-Stokes equations, in [19], Leray proved that for any

finite square-integrable initial data there exists a (possibly not unique) global-in-time

weak solution. Moreover, for two space dimensions case, [20] proved the uniqueness

of the weak solution. Although the problems of uniqueness and regularity for n ≥ 3

of Leray-Hopf weak solutions are still open, since the seminal work of Leray, there

is an extensive literature on conditional results under various criteria. The most

well-known condition is so-called Ladyzhenskaya-Prodi-Serrin condition, that is for

some T > 0, u ∈ Lp(0, T ;Lq(Rn)), where the pair (p, q) satisfies

2

p
+

n

q
≤ 1, q ∈ (n,+∞]. (1.2)

Under condition (1.2), the uniqueness of Leray-Hopf weak solutions was proved by

Prodi [33] and Serrin [34], and the smoothness was obtained by Ladyzhenskaya [15].

The borderline case (p, q) = (∞, n) is much more subtle.

Subsequently, [8] proved the well-posedness for the Navier-Stokes equations in

a scaling invariant space Ḣ
n
2
−1(Rn). The scaling invariant in the context of the

Navier-Stokes equations is defined as: if a pair of functions (u(x, t), P (x, t)) solves

the incompressible Navier-Stokes equations, then

(uλ, Pλ)(x, t) = (λu(λx, λ2t), λ2P (λx, λ2t)) (1.3)

is also the solution of the incompressible Navier-Stokes equations with initial data

(uλ(x, 0), Pλ(x, 0)) = (λu0(λx), λ
2P0(λx)). The spaces which are invariant under

such a scaling are also called critical spaces. Examples of critical spaces for the

Navier-Stokes in n dimensions are:

Ḣ
n
2
−1(Rn) ⊂ Ln(Rn) ⊂ Ḃ

−1+n
p
,p

p|p<∞ (Rn) ⊂ BMO−1(Rn) ⊂ B−1,∞
∞ (Rn). (1.4)

The study of the Navier-Stokes equations in critical spaces was initiated by Fujita-

Kato [8, 13], and continued by many authors, see [1, 7, 10,14,32] etc.

In 2003, Escauriaza, Seregin, and Sverak [7] obtained many perfect results, such

as the backward uniqueness of the parabolic system and the regularity results for

weak Leary-Hopf solutions u satisfying the additional condition u∈L∞(0, T ;L3(R3)),

as well as the local well-posedness in the critical Lebesgue space, which verified the

borderline case of (1.2) for n = 3. The results of [7] is the borderline case for the
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Ladyzhenskaya-Prodi-Serrin condition (1.2), which implied that the bound of weak

solution in L∞(0, T ;L3(R3)) plays a crucial role to the uniqueness of the weak so-

lutions to the Navier-Stokes equations. And for the borderline case of (1.2) with

n ≥ 4, the results were established by Du and Dong [3].

Subsequently, the space-time regularity for those local solutions in critical

Lebesgue space of the Navier-Stokes equations was presented by [2] and [10]. Simi-

larly the space-time analyticity results of the Navier-Stokes equations in other critical

spaces, please see [9, 11,16,30,31] etc.

Now, we turn to the liquid crystal system of (1.1). Recently, Lin, Lin, and

Wang [24] studied the Dirichlet initial boundary value problem of (1.1), and proved

the results that for any initial data (u0, d0) ∈ L2(R2) × H1(Ω, S2), there exists a

global Leray-Hopf weak solution (u, d) that is smooth away from at most finitely

many singularity times. Under the initial data (u0, d0) ∈ BMO−1 × BMO, the

local and global well-posedness were studied by Wang [35]. Very recently, in [12],

the authors were established some Serrin type (not in borderline case, see (1.2))

and Beal-Kato-Majida type regularity criterion for the weak solution to (1.1) in

R3. In [28], Lin and Wang proved the borderline case for the Serrin type criterion

which is more intrinsic and difficult. For classical solutions to the Cauchy problem

in the two-dimensional incompressible liquid crystal equation and the heat flows of

harmonic maps equation, under a natural geometric angle condition, in [17], Lei,

Li, and Zhang proved the global smooth solutions to a class of large initial data in

energy space. After that, the existence of a pair of exact strong solutions to the 2D

incompressible liquid crystal equations with finite energy was constructed by Dong

and Lei [4].

Define

(uλ, Pλ, dλ)(x, t) = (λu(λx, λ2t), λ2P (λx, λ2t), d(λx, λ2t)), (1.5)

then we can establish the critical space for the liquid crystal equations (1.1) as (1.4).

There are similar results for the liquid crystal system (1.1) in the so-called critical

spaces. For example in [29] and [35] the well-posedness to system (1.1) in critical

Sobolev space Ln × Ẇ1,n and in BMO ×BMO−1 were studied respectively.

Similar to the results of [7] of Navier-Stokes equations, the bound of the weak

solutions (u, d) in the space L∞([0, T );Ln(Rn))×L∞([0, T ); Ẇ1,n(Rn)) will be crucial

to determine the uniqueness of the weak solutions to the liquid crystal equations

(1.1), see [28]. In this paper, we shall present the well-posedness of the solutions to

system (1.1) in critical Lebesgue spaces L∞([0, T );Ln(Rn))×L∞([0, T ); Ẇ1,n(Rn)).

Furthermore, the space-time regularity of the solutions are also presented.

There are several ingredients in this paper. Firstly, we shall prove the local well-
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posedness for system (1.1) in the critical Sobolev spaces. This part have extended

the corresponding results of Navier-Stokes equations to the liquid crystal system.

Subsequently, we shall study the space-time regularity of the local solutions, which

implies not only the smoothness of the local solution, but also the decay rate about

time t. To prove our results, we need to verify the space-time regularity of the local

solution in the time interval [0, T0]. By the standard method, it is easy to prove our

results in [0, T1] with T1 ≪ T0, and then some iteration method to verity our results

always hold on [T1, T0].

Our results are stated as follows.

Theorem 1.1(Local well-posedness) Suppose that (u0, d0) is a pair of initial

data of (1.1) with (u0, d0) ∈ Ln(Rn)×Ẇ 1,n(Rn), then there exists a constant T > 0,

which depends on (u0, d0), such that system (1.1) admits a pair of unique solution

(u, d) with the following properties:

u,∇d ∈ C([0, T ];L2(Rn)) ∩ L2([0, T ]; Ḣ1(Rn)), (1.6)

u,∇d ∈ C([0, T ];Ln(Rn)) ∩ Ln+2(0, T,Rn) ∩ Ln+1(0, T,Rn). (1.7)

Moreover, if the initial data satisfying ∥u0∥Ln(Rn) + ∥∇d0∥Ln(Rn) is small enough,

then we can take T = +∞.

Remark 1.1 In [28], when u ∈ L∞(0, T ;L2(Rn)) ∩ C([0, T );Ln(Rn)) and d ∈
L2(0, T ; Ḣ1(Rn))∩C([0, T ); Ẇ 1,n(Rn)), the Leray-Hopf type weak solution is unique

on Rn × [0, T ], moreover, the local solution is smooth on [0, T ]× Rn.

Theorem 1.2 Let (u, d) be the local solution presented in Theorem 1.1 on

[0, T ], then for any positive integers k and m, by letting (p, q) ∈ [2,∞]× [n,∞] with
2
p + n

q = 1, we have

tm+ k
2 ∂m

t ∇ku, tm+ k
2 ∂m

t ∇k+1d ∈ Lp(0, T, Lq(Rn)). (1.8)

This paper is organized as follows: In Section 2, we shall present some well-

known results for the Leray Projector operator and some estimates for linear stokes

system. In Section 3, the local well-posedness of (1.1) in the critical Lebesgue spaces

is proved. The space-time regularity properties of the local solutions are proved in

Section 4. Throughout this paper, we sometimes use the notation A . B as an

equivalent to A ≤ CB with a uniform constant C. The notation A ≈ B means that

A . B and B . A.

2 Preliminaries

At the beginning, we recall some properties for the Leary projection operator P to

divergence free vector fields, which is defined by its matrix valued Fourier multiplier

P̂(ξ) = δij − ξiξj
|ξ|2 . For any multi-indices α, this symbol satisfies Mihlin-Hormander
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condition sup
|ξ|≠0

|ξ|α|∂α
ξ P̂(ξ)| ≤ C. Furthermore, we have the following pointwise bound

(see [18] Proposition 11.1).

Lemma 2.1 Denote et∆ as the heat operator, n as the space dimension and

P̃(x, t) as the kernel of ∇k+1Pet∆ respectively, then there holds

P̃(x, t) ≤ C(k)
1

(
√
t+ |x|)n+k+1

, (2.1)

where C(k) is a constant depending only on k.

Lemma 2.2 Let K(x, t) = 1√
t
n e−

|x|2
4t , then there exists a polynomial Jk+2m( |x|√

t
)

with degree k + 2m, such that

∂m
t ∇kK(x, t) =

1

tm+ k
2

K(x, t)Jk+2m
( |x|√

t

)
. (2.2)

Proof It can be proved by induction.

We also need the following properties of the solution to the heat equation:

Lemma 2.3 Denote ϕ to be the solution to the linear heat equation ∂tϕ−∆ϕ = 0

with the initial data ϕ|t=0 = ϕ0. Then for n ≥ 2 there hold:

(1) For s ≥ s1 ≥ 1, denote 1
l =

n
2 (

1
s1

− 1
s ),

∥ϕ(·, t)∥Ls(Rn) ≤ C(s, l)t−1/l∥ϕ0∥Ls1 (Rn), (2.3)

moreover, if s > s1 ≥ max{2, s(n−2)
n } then

∥ϕ(·, t)∥Ll([0,T ],Ls(Rn)) ≤ C(s, l)∥ϕ0∥Ls1 . (2.4)

Particularly, for the case n = s1 ≥ 2, s = l = n+ 2, we have

∥ϕ∥Ln+2(0,T,Rn) ≤ ∥ϕ0∥Ln(Rn). (2.5)

(2) When the initial data ϕ0 ∈ Ln(Rn), for any positive integers M and K we

have
M∑

m=0

K∑
k=0

lim
t→0

tm+ k+1
2 ∥∂m

t ∇kϕ∥L∞(Rn) = 0. (2.6)

(3) For any positive integers m,n and p ∈ [n+ 2,+∞], q ∈ [n, n+ 2] satisfying

the condition 2
p + n

q = 1, we have

∥tm+ k
2 ∂m

t ∇kϕ∥Lp(0,∞;Lq(Rn)) ≤ C(m, k, n)∥ϕ0∥Ln(Rn), (2.7)

where C(m, k, n) is a constant depending on m, k and n.

Proof The case (3) was proved by Dong-Du [2]. For the case (1), when n = 3,

it was proved by Lemma 7.1 of [7]. In fact (2.3) can easily be proved by using Young
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inequality. For the case n = s1 = 3, s = l = 5, (2.4) is proved by [7] (see Lemma

7.1). We shall prove (2.4) for arbitrary dimensions n ≥ 2 for completeness.

Multiplying |ϕ|s1−2ϕ to the heat equation and integrating on Rn, we have

sup
0≤t≤T

∥ϕ(·, t)∥s1Ls1 (Rn) +

∫ t

0

∫
Rn

[∇(|ϕ|s1/2)]2dxdt . ∥ϕ0∥s1Ls1 (Rn). (2.8)

Let g = |ϕ|
s1
2 , then by Hölder inequality and (2.8), we get

∥ϕ(·, t)∥lLl([0,T ],Ls(Rn)) =

∫ T

0

(∫
Rn

|g|
2s
s1 dx

) l
s

dt

.
∫ T

0

(∫
Rn

|g|2dx
) s1n−s(n−2)

n(s−s1)
(∫

Rn

|g|
2n
n−2dx

)n−2
n

dt (2.9)

. sup
0≤t≤T

∥ϕ(·, t)∥
s21n−ss1(n−2)

n(s−s1)

Ls1 (Rn) ∥∇g∥2L2(0,T,Rn) . ∥ϕ0∥lLs1 (Rn).

Now, we are going to prove (2.6). Let ωϵ be the smoother kernel and

ϕ0ϵ = ωϵ ∗ ϕ0, (2.10)

then

ϕϵ = et∆ϕ0ϵ = ωϵ ∗ et∆u0 = ωϵ ∗ ϕ. (2.11)

For any positive integers m and k, by Lemma 2.2, we have

tm+ k+1
2 ∥∂m

t ∇kϕ∥L∞(Rn) ≤ tm+ k+1
2 (∥∂m

t ∇kϕϵ∥L∞(Rn)+∥∂m
t ∇k(ϕϵ−ϕ)∥L∞(Rn))

≤ tm+ k+1
2 (∥∇k+2mϕϵ∥L∞(Rn) + ∥∇k+2m(ϕϵ − ϕ)∥L∞(Rn))

≤ t
1
2 ∥ϕ0ϵ(x, t)∥L∞(Rn) + ∥ϕ0ϵ(x, t)− ϕ0∥Ln(Rn). (2.12)

Recalling that ϕ0 ∈ Ln(Rn) and (2.10), let ϵ → 0 and t → 0, we get

tm+ k+1
2 ∥∂m

t ∇kϕ∥L∞(Rn)
t→0−→ 0. (2.13)

The proof is completed.

Remark 2.1 Particularly, for given positive constants m and k, we can prove

the following estimate just similar to (2.3):

tm+ k+1
2 ∥∂m

t ∇kϕ∥L∞(Rn) . ∥ϕ0∥Ln(Rn). (2.14)

We also recall some results for the following linear Stokes system:{
ut −∆u = divf, (t, x) ∈ R+ × Rn,

divu = 0.
(2.15)
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For given initial data u0 ∈ Ln(Rn), we have:

Proposition 2.1 For any T > 0, suppose that f ∈ L
n+2
2 (0, T ;Rn)∩L2(0, T ;Rn)

and the initial data u0 ∈ Ln(Rn), then for the linear equation (2.15), there exists a

uniform constant C0, such that the solution u satisfies:

u ∈ C([0, T ];L2(Rn)) ∩ L2(0, T ; Ḣ1(Rn)); (2.16)

u ∈ C([0, T ];Ln(Rn)) ∩ Ln+2(0, T ;Rn) ∩ Ln+1(0, T ;Rn); (2.17)

∥u(·, t)∥Ln(Rn) + ∥u∥Ln+2(0,T ;Rn) ≤ C0(∥f∥
L

n+2
2 (0,T ;Rn)

+ ∥u0∥Ln(Rn)); (2.18)

∥u∥Ln+1(0,T ;Rn) ≤ C0(∥f∥
L

n+2
2 (0,T ;Rn)

+ ∥u0∥Ln(Rn)). (2.19)

Proof This Proposition comes from [7], where the authors proved it for the

case n = 3. For completeness, we shall give a brief proof of (2.18)-(2.19) for the

general case n ≥ 2.

Write g = |u|n/2, we have(∫
Rn

|u|n+2dx

) n−2
2(n+2)

=

(∫
Rn

|g|
2(n+2)

n dx

) n−2
2(n+2)

.
(∫

Rn

|g|2dx
) n−2

n(n+2)
(∫

Rn

|g|
2n
n−2dx

) (n−2)2

2n(n+2)

.
(∫

Rn

|u|ndx
) n−2

n(n+2)
(∫

Rn

|g|
2n
n−2dx

) (n−2)2

2n(n+2)

. ∥u∥
n−2
n+2

Ln(Rn)∥∇g∥
n−2
n+2

L2(Rn)
. (2.20)

By multiplying |u|n−2u to (2.15) and integrating by parts, we have

∂t∥u∥nLn(Rn) +

∫
Rn

|u|n−2|∇u|2dx+

∫
Rn

|∇g|2dx

.
(∫

Rn

|f |2|u|n−2dx

)1/2(∫
Rn

|u|n−2|∇u|2dx
)1/2

. ∥f∥
L

n+2
2 (Rn)

(∫
Rn

|u|n+2dx

) n−2
2(n+2)

(∫
Rn

|u|n−2|∇u|2dx
)1/2

. ∥f∥2
L

n+2
2 (Rn)

(∫
Rn

|u|n+2dx

)n−2
n+2

. ∥f∥2
L

n+2
2 (Rn)

(∫
Rn

|u|ndx
) 2(n−2)

n(n+2)
(∫

Rn

|g|
2n
n−2dx

) (n−2)2

n(n+2)

. ∥f∥2
L

n+2
2 (Rn)

(∫
Rn

|u|ndx
) 2(n−2)

n(n+2)
(∫

Rn

|∇g|2dx
)n−2

n+2

. ∥f∥
n+2
2

L
n+2
2 (Rn)

∥u∥
n−2
2

Ln(Rn). (2.21)
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Then by Gronwall inequality, we get

∥u∥L∞(0,T ;Ln(Rn)) . ∥f∥
L

n+2
2 (0,T ;Rn)

+ ∥u0∥Ln(Rn), (2.22)

and

∥∇g∥L2(0,T ;Rn) . ∥f∥n/2
L

n+2
2 (0,T ;Rn)

+ ∥u0∥n/2Ln(Rn). (2.23)

By (2.22) and (2.23), we verify (2.18) as follows:

∥u∥Ln+2(0,T ;Rn) . ∥u∥
2

n+2

Ln(Rn)∥∇g∥
2

n+2

L2(0,T ;Rn)
. ∥f∥

L
n+2
2 (0,T ;Rn)

+ ∥u0∥Ln(Rn). (2.24)

Similarly, (2.19) can be proved as

∥u∥Ln+1(0,T ;Rn) =

(∫ t

0

∫
Rn

|u|n+1dxdt

) 1
n+1

.
[ ∫ t

0

(∫
Rn

g2dx

) 1
n
(∫

Rn

g
2n
n−1dx

)n−1
n

dt

] 1
n+1

. ∥u∥
1

n+1

Ln(Rn)

(∫ t

0

∫
Rn

|∇g|2dxdt
) 1

n+1

. ∥f∥
L

n+2
2 (0,T ;Rn)

+ ∥u0∥Ln(Rn). (2.25)

The proof is complete.

Lemma 2.4 For any constant k0 > 0 and d0(x) ∈ S2, there exists a constant

C(k0) such that

dist(et∆d0(x), S2) ≤ k0 + (Cn + 1)1/n∥∇d0∥Ln(Rn), (2.26)

where dist(·, ·) is the distance.

Proof This Lemma follows directly from Lemma 2.1 of [35].

3 Local Existence

We prove Theorem 1.1 by using the fixed point argument. Given any T > 0, we

write

κ(T ) = ∥et∆u0∥Ln+1(0,T ;Rn) + ∥et∆u0∥Ln+2(0,T ;Rn)

+∥et∆∇d0∥Ln+1(0,T ;Rn) + ∥et∆∇d0∥Ln+2(0,T ;Rn) < +∞. (3.1)

At the beginning, we set a suitable space as follows (for more details of the suitable

space see [18]):

Definition 3.1 For the functions (f(x, t), g(x, t)) defined on Rn × [0, T ] (0 <

T ≤ ∞), we say that (f(x, t), g(x, t)) ∈ ET if there hold:

lim
t→0

√
t(∥f∥L∞(Rn) + ∥∇g∥L∞(Rn)) = 0, (3.2)
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and

∥|(f, g)|∥ET , ∥g∥L∞(Rn) + ∥(f, g)∥ET < ∞, (3.3)

where

∥(f, g)∥ET , sup
0≤t≤T

√
t∥f∥L∞(Rn) + ∥f∥Ln+1(0,T ;Rn) + ∥f∥Ln+2(0,T ;Rn)

+ sup
0≤t≤T

√
t∥∇g∥L∞(Rn) + ∥∇g∥Ln+1(0,T ;Rn) + ∥∇g∥Ln+2(0,T ;Rn). (3.4)

Furthermore, we say that (f(x, t), g(x, t)) ∈ ET
κ(T ) if (f(x, t), g(x, t)) ∈ ET and

∥(f, g)∥ET ≤ 2κ(T ). (3.5)

It is easy to check that both ET and ET
κ(T ) are non-empty Banach spaces.

Let u(1) and d(1) be solutions to the following equations respectively,{
u
(1)
t −∆u(1) = 0,

u(1)(x, t)|t=0 = u0.
(3.6)

and {
d
(1)
t −∆d(1) = 0,

d(1)(x, t)|t=0 = d0.
(3.7)

We set a map T(ũ, d̃) = (T1(ũ, d̃),T2(ũ, d̃)) as

u(2) = T1(ũ, d̃) = −
∫ t

0
S(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃](·, τ)dτ,

d(2) = T2(ũ, d̃) =

∫ t

0
S(t− τ)

(
|∇d̃|2d̃− ũ · ∇d̃

)
dτ,

u(2)|t=0 = 0, d(2)|t=0 = 0.

(3.8)

Here and hereafter, we denote S(t) as the heat operator and P is the Leary projection

operator.

By Lemma 2.3, to prove Theorem 1.1, it is sufficient to estimate (u(2), d(2)).

Proposition 3.1 There exists a constant t1, when 0 < t ≤ t1 we have

T(ũ, d̃) : Et
κ(t) → Et

κ(t). (3.9)

Proof We need to prove

∥d(2)∥L∞(Rn) < ∞, (3.10)

and

lim
t→0

√
t(∥u(2)∥L∞(Rn) + ∥∇d(2)∥L∞(Rn)) = 0, (3.11)

as well as
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∥(u(2), d(2))∥Et1 ≤ 2κ(t). (3.12)

We shall prove (3.10)-(3.12) term by term.

∥d(2)∥L∞ ≤
∥∥∥∥ ∫ t

0
S(t− τ)

(
|∇d̃|2d̃− ũ · ∇d̃

)
dτ

∥∥∥∥
L∞(Rn)

. (3.13)

When 0 < τ < t/2, by Hölder inequality we have∥∥∥∥ ∫ t/2

0
S(t− τ)

(
|∇d̃|2d̃− ũ · ∇d̃

)
dτ

∥∥∥∥
L∞(Rn)

.
(∫ t/2

0

∫
Rn

e
− (n+2)|y−ỹ|2

2n(t−τ)

√
t− τ

n+2 dỹdτ

) n
n+2

(∥ũ∥2Ln+2(0,T ;Rn) + ∥∇d̃∥2Ln+2(0,T ;Rn))

. κ2(t) < ∞. (3.14)

For the case t/2 < τ < t, we get∥∥∥∥ ∫ t

t/2
S(t− τ)

(
|∇d̃|2d̃− ũ · ∇d̃

)
dτ

∥∥∥∥
L∞(Rn)

.
∥∥∥∥ ∫ t

t/2

1

τ

∫
Rn

e
− |y−ỹ|2

2(t−τ)

√
t− τ

ndỹ(t∥u∥2L∞(Rn) + t∥∇d∥2L∞(Rn))dτ

∥∥∥∥
L∞(Rn)

. κ2(t) < ∞. (3.15)

Then (3.10) comes from (3.13)-(3.15).

To verify (3.11), we begin with the term u(2) and we have

t
1
2 ∥u(2)∥L∞(Rn) = t

1
2

∥∥∥∥ ∫ t

0
S(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]dτ

∥∥∥∥
L∞(Rn)

. t
1
2

∥∥∥∥(∫ t/2

0
+

∫ t

t/2

)
S(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]dτ

∥∥∥∥
L∞(Rn)

, I11 + I12. (3.16)

By Lemma 2.1 we have

I11 = t
1
2

∥∥∥∥ ∫ t/2

0
S(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]dτ

∥∥∥∥
L∞(Rn)

.
∥∥∥∥ ∫ t/2

0

∫
Rn

1√
t− τ

n
1

(1 + |y−ỹ|√
t−τ

)n+1
(|ũ|2 + |∇d̃|2)dỹdτ

∥∥∥∥
L∞(Rn)
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.
(∫ t/2

0

∫
Rn

1
√
t− τ

n+2

1

(1 + |y−ỹ|√
t−τ

)
(n+1)(n+2)

n

dỹdτ

) n
n+2

·(∥ũ∥2
Ln+2(0, t

2
;Rn)

+ ∥∇d̃∥2
Ln+2(0, t

2
;Rn)

)

. ∥ũ∥2
Ln+2(0, t

2
;Rn)

+ ∥∇d̃∥2
Ln+2(0, t

2
;Rn)

. (3.17)

When t
2 ≤ τ ≤ t, by Lemma 2.1 we get

|S(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]|

.
∣∣∣∣ ∫

Rn

1

(
√
t− τ + |y − ỹ|)n+1

dỹ

∣∣∣∣∥(ũ⊗ ũ+∇d̃⊗∇d̃
)
∥L∞(Rn)

. 1√
t− τ

∥
(
ũ⊗ ũ+∇d̃⊗∇d̃

)
∥L∞(Rn), (3.18)

therefore we have

I12 . t
1
2

∫ t

t/2

1√
t− τ · τ

dτ
(√

t∥ũ∥L∞(Rn) +
√
t∥∇d̃∥L∞(Rn)

)2
.

(√
t∥ũ∥L∞(Rn) +

√
t∥∇d̃∥L∞(Rn)

)2
. (3.19)

Recalling that (ũ, d̃) ∈ Et, from (3.16)-(3.19), we get

lim
t→0

√
t∥u(2)∥L∞(Rn) = 0. (3.20)

Furthermore, for a uniform constant C1, from (3.16)-(3.19) we have

sup
0≤t≤T

√
t∥u(2)∥L∞(Rn) ≤ C1κ

2(t). (3.21)

Similarly to the process of (3.16)-(3.21), we can get

√
t∥∇d(2)∥L∞(Rn)

=
√
t

∥∥∥∥(∫ t/2

0
+

∫ t

t/2

)
S(t− τ)

(
|∇d̃|2d̃− ũ · ∇d̃

)
dτ

∥∥∥∥
L∞(Rn)

.
(∫ t/2

0

∫
Rn

1
√
t− τ

n+2

1

(1 + |y−ỹ|√
t−τ

)
(n+1)(n+2)

n

dỹdτ

) n
n+2

·(∥ũ∥2
Ln+2(0, t

2
;Rn)

+ ∥∇d̃∥2
Ln+2(0, t

2
;Rn)

∥d̃∥L∞(Rn))

+t
1
2

∫ t

t/2

1√
t− τ · τ

dτ
(√

t∥ũ∥L∞(Rn) +
√
t∥∇d̃∥L∞(Rn)∥d̃∥L∞(Rn)

)2
. ∥ũ∥2

Ln+2(0, t
2
;Rn)

+ ∥∇d̃∥2
Ln+2(0, t

2
;Rn)

+ t∥ũ∥2L∞(Rn) + t∥∇d̃∥2L∞(Rn)
t→0−→ 0. (3.22)
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For a uniform constant C2, from (3.22) we have

sup
0≤t≤T

√
t∥∇d(2)∥L∞(Rn) ≤ C2κ

2(t). (3.23)

Then (3.11) follows from (3.20) and (3.22).

By Proposition 2.1, we have

∥u(2)∥Ln+1(0,T ∗;Rn) + ∥u(2)∥Ln+2(0,T ∗;Rn)

. ∥ũ∥2Ln+2(0,T ;Rn) + ∥∇d̃∥2Ln+2(0,T ;Rn) ≤ C3κ
2(t), (3.24)

and

∥∇d(2)∥Ln+1(0,T ∗;Rn) + ∥∇d(2)∥Ln+2(0,T ∗;Rn)

. ∥ũ∥2Ln+2(0,T ;Rn) + ∥∇d̃∥2Ln+2(0,T ;Rn) ≤ C4κ
2(t), (3.25)

where C3 and C4 are uniform constants.

Claim There exists a constant t1, for 0 < t < t1 there holds

(C1 + C2 + C3 + C4)κ(t) ≤ 1. (3.26)

Then from (3.21), (3.23) and (3.24)-(3.25), (3.12) follows immediately.

In the following, we shall verify Claim (3.26). Denote

uϵ0 = ωϵ ∗ u0, dϵ0 = ωϵ ∗ d0, (3.27)

where ωϵ is the usual smoother kernel.

Write u
(1)
ϵ = et∆uϵ0 and d

(1)
ϵ = et∆dϵ0, by Lemma 2.3 and Proposition 2.1, we get

κ(t) . ∥et∆uϵ0∥Ln+1(0,T ;Rn) + ∥et∆uϵ0∥Ln+2(0,T ;Rn) + ∥et∆∇dϵ0∥Ln+1(0,T ;Rn)

+∥et∆∇dϵ0∥Ln+2(0,T ∗;Rn) + ∥uϵ0 − u0∥Ln(Rn) + ∥∇dϵ0 −∇d0∥Ln(Rn)

. t
1

2(n+1) (∥uϵ0∥Ln(Rn) + ∥uϵ0∥Ln+1(Rn) + ∥∇dϵ0∥Ln(Rn) + ∥∇dϵ0∥Ln+1(Rn))

+(∥uϵ0 − u0∥Ln(Rn) + ∥∇dϵ0 −∇d0∥Ln(Rn))

≤ C5t
1

2(n+1) + C6(∥uϵ0 − u0∥Ln(Rn) + ∥∇dϵ0 −∇d0∥Ln(Rn)). (3.28)

Taking t1 small enough, such that for 0 < t ≤ t1, we have

(C1 + C2 + C3 + C4)C5t
1

2(n+1)

1 ≤ 1

3
. (3.29)

Recalling that ωϵ is the smoother kernel, we can choose the parameter ϵ such that

(C1 + C2 + C3 + C4)C6(∥uϵ0 − u0∥Ln(Rn) + ∥∇dϵ0 −∇d0∥Ln(Rn)) ≤
1

3
. (3.30)

Then (3.26) follows from (3.28)-(3.30). The proof is completed.
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Proposition 3.2 There exists a constant t2 > 0, when 0 < t ≤ t2, such that

T(ũ, d̃) : Et
κ(t) → Et

κ(t) (3.31)

is a contraction map. More precisely, let (ũ, d̃), (u, d) ∈ Et with (ũ, d̃)|t=0 = (u, d)|t=0

= (u0, d0), then there exists a constant t2 > 0, such that for 0 < t ≤ t2 there holds:

∥|
(
T1(ũ, d̃)− T1(u, d),T2(ũ, d̃)− T2(u, d)

)
|∥Et ≤ 1

2
∥|(ũ− u, d̃− d)|∥Et . (3.32)

Proof For simplicity, we write u∗ = ũ− u and d∗ = d̃− d. Recalling (3.8), we

obtain

|T1(ũ, d̃)−T1(u, d)| =
∣∣∣∣ ∫ t

0
S(t− τ)P∇ ·

(
ũ⊗ ũ+∇d̃⊗∇d̃− u⊗ u−∇d⊗∇d)dτ

∣∣∣∣
=

∣∣∣∣ ∫ t

0
S(t−τ)P∇ ·

(
ũ⊗ u∗+∇d̃⊗∇d∗+u∗ ⊗ u+∇d∗ ⊗∇d

)
dτ

∣∣∣∣,
(3.33)

and

|T2(ũ, d̃)−T2(u, d)|=
∣∣∣∣ ∫ t

0
S(t− τ)

(
|∇d̃|2d̃− ũ · ∇d̃− |∇d|2d+ u · ∇d

)
dτ

∣∣∣∣
=

∣∣∣∣ ∫ t

0
S(t−τ)

(
|∇d̃|2d∗−ũ · ∇d∗−u∗ · ∇d+(∇d̃+∇d) : ∇d∗d

)
dτ

∣∣∣∣.
(3.34)

Repeating the proof as in Proposition 3.1, we have

∥
(
T1(ũ, d̃)− T1(u, d),T2(ũ, d̃)− T2(u, d)

)
∥Et (3.35)

. ∥d∗∥L∞(Rn)∥∇d̃∥2Ln+2(0,t;Rn) + (∥(u, d)∥Et + ∥(ũ, d̃)∥Et)∥(u∗, d∗)∥Et

≤ C7

(
∥d∗∥L∞(Rn) + ∥(u∗, d∗)∥Et

)
· κ(t),

and

∥T2(ũ, d̃)− T2(u, d)∥L∞(Rn) (3.36)

. ∥d∗∥L∞(Rn)∥∇d̃∥2Ln+2(0,t;Rn) + (∥(u, d)∥Et + ∥(ũ, d̃)∥Et)∥(u∗, d∗)∥Et

≤ C8

(
∥d∗∥L∞(Rn) + ∥(u∗, d∗)∥Et

)
· κ(t).

As the proof in (3.28)-(3.30), we can take t2 > 0, such that for 0 < t ≤ t2, we have

(C7 + C8)κ(t) ≤
1

2
. (3.37)

Then (3.32) follows from (3.35)-(3.37). The proof is completed.
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Proof of Theorem 1.1 By taking

T = min{t1, t2}, (3.38)

combing Lemma 2.3, Proposition 3.1 and Proposition 3.2, there exists a pair of

unique solution (u, d) satisfying (1.6)-(1.7) in the time interval [0, T ]. To finish the

proof of Theorem 1.1, we still need to verify that |d(x, t)| = 1.

Following the line of [35], by Lemma 2.4 and (3.13)-(3.15), we have

dist(d, S2)≤dist(d, d(1))+dist(d(1), S2).κ2(t)+δ+(Kn+1)1/n∥∇d0∥Ln(Rn), (3.39)

where we used the fact that dist(d, d(1)) . ∥d(2)∥L∞(Rn). Recalling that ∇d0 ∈
Ln(Rn), for any 0 ≤ t ≤ T , we have

dist(d, S2) ≤ C(T ) < ∞. (3.40)

Furthermore, we take the vector Π(d) ∈ S2 with

dist(d,Π(d)) = min{d, S2}. (3.41)

Write Q(d) = d−Π(d) and ρ(d) = 1
2 |Q(d)|2, we have

ρt + u · ∇ρ−∆ρ = (d−Π(d)) · ∇dQ(d) · (dt + u · ∇d−∆d)

−|∇Q(d)|2 +Q(d) · ∇2Q(d) = −|∇Q(d)|2 ≤ 0, (3.42)

where we used ∇Q,∇2Q ∈ the tangent plate of S2 and

d−Π(d) ⊥ the tangent plate of S2. (3.43)

Meanwhile, d|t=0 = d0 = Π(d0) ∈ S2 implies that ρ(d)|t=0 = 0. Due to the maximum

principle, we conclude ρ = 0 from (3.42), which implies that d ∈ S2.
Then we finish the proof of Theorem 1.1.

4 Space-time Regularity of the Local Solution

In the following, we shall prove Theorem 1.2. For any positive integers M,K

and (p, q) ∈ [2 + n,∞]× [n, n+ 2] satisfying

2

p
+

n

q
= 1, (4.1)

it is sufficient to prove that the local solution (u, d) of (1.1) satisfies

M∑
m=0

K∑
k=0

(
∥tm+ k

2 ∂m
t ∇ku∥Lp(0,T ;Lq(Rn)) + ∥tm+ k

2 ∂m
t ∇k+1d∥Lp(0,T ;Lq(Rn))

)
< +∞.

(4.2)

To prove (4.2), it is sufficient to verify the special case m = 0. Since when m ≥ 1,

by using the linear heat equation ∂tΦ−∆Φ = F, we have
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∂m
t Φ = ∆mΦ+

m−1∑
l=0

∆m−1−l∂l
tF, (4.3)

with a small modification of the following proof, and the general case m ≥ 1 can be

proved by induction.

We write

∥(f, g)∥
E

[0,T ]
K

,
K∑
k=0

(
sup

0≤t≤T
t
k+1
2 (∥∇kf∥L∞(Rn) + ∥∇k+1g∥L∞(Rn)) (4.4)

+∥t
k
2∇kf∥Lp(0,T ;Lq(Rn)) + ∥t

k
2∇k+1g∥Lp(0,T ;Lq(Rn))

)
.

Therefore, we verify (4.2), it is sufficient to prove

∥(u, d)∥
E

[0,T ]
K

< ∞. (4.5)

To prove (4.5), we firstly give the following proposition.

Proposition 4.1 Let (u, d) be a local solution on t ∈ [0, T ] to (1.1) with

the initial data u0 and ∇d0 ∈ Ln(Rn), for any positive integers M,Kand (p, q) ∈
[2 + n,∞]× [n, n+ 2] satisfying (4.1), then there exists a constant 0 < δ < T , such

that

K∑
k=0

(
sup

0<t<δ
t
k+1
2 (∥∇ku∥L∞(Rn) + ∥∇k+1d∥L∞(Rn))

+∥t
k
2∇ku∥Lp(0,δ;Lq(Rn)) + ∥t

k
2∇k+1d∥Lp(0,δ;Lq(Rn))

)
< +∞. (4.6)

Proof We prove this proposition by fixed point argument.

Recalling Lemma 2.3, it is sufficient to estimate (u(2), d(2)) with (u(2), d(2)) sat-

isfying 
u(2) = −

∫ t

0
S(t− τ)P∇ · [u⊗ u+∇d⊗∇d](·, τ)dτ,

d(2) =

∫ t

0
S(t− τ)

(
|∇d|2d− u · ∇d

)
dτ.

(4.7)

And we define the map T = (T1,T2) as in (3.8).

Write

θ(t) , ∥et∆u0∥Ln+2(0,t;Rn) + ∥et∆∇d0∥Ln+2(0,t;Rn), (4.8)

we define the following space

E
[0,t]
K = {(f, g)| ∥|(f, g)|∥

E
[0,t]
K

, ∥g∥L∞(Rn) + ∥(f, g)∥
E

[0,t]
K

< ∞}, (4.9)

with
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∥(f, g)∥
E

[0,t]
K

≤ 2θ(t). (4.10)

It is obvious that E
[0,t]
K is a non-empty Banach spaces.

We shall prove the map T = (T1,T2) is a contracting map in the space E
[0.t]
K

when t is small enough.

Firstly, the estimates ∥d∥L∞(Rn) < ∞ were verified in (3.13)-(3.15). It is sufficient

to proceed the proof in two steps.

Step 1 There exists a constant δ0 > 0 such that T : E
[0,δ0]
K → E

[0,δ0]
K .

We begin the estimates with the term u(2). Taking the positive integers k ≤ K,

we have

t
k+1
2 ∥∇ku(2)∥L∞(Rn).t

k+1
2

∥∥∥∥∇k

∫ t

0
S(t−τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]dτ

∥∥∥∥
L∞(Rn)

, (4.11)

By Remark 2.1, when 0 < τ < t
2 , we have

t
k+1
2

∥∥∥∥∇k

∫ t/2

0
S(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]dτ

∥∥∥∥
L∞(Rn)

.
∥∥∥∥ ∫ t/2

0

∫
Rn

1√
t− τ

n
|ũ|2 + |∇d̃|2

(1 + |y−ỹ|√
t−τ

)n+k+1
dỹdτ

∥∥∥∥
L∞(Rn)

.
(∫ t/2

0

1
√
t− τ

2n
q

p
p−2

dτ

) p−2
p (

∥ũ∥2
Lp(0, t

2
;Lq(Rn))

+ ∥∇d̃∥2
Lp(0, t

2
;Lq(Rn))

)
. θ2(t). (4.12)

When t
2 ≤ τ ≤ t, we have

|∇kS(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]|

.
∣∣∣∣ ∫

Rn

1

(
√
t− τ + |y − ỹ|)n+1

dỹ

∣∣∣∣∥∇k
(
ũ⊗ ũ+∇d̃⊗∇d̃

)
∥L∞(Rn)

.

k∑
l=0

(∥∇k−lũ∥L∞(Rn)∥∇lũ∥L∞(Rn) + ∥∇k−l+1d̃∥L∞(Rn)∥∇l+1d̃∥L∞(Rn))

√
t− τ

, (4.13)

therefore we have

t
k+1
2

∥∥∥∥ ∫ t

t/2
∇kS(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]dτ

∥∥∥∥
L∞(Rn)

.
∫ t

t/2

1√
t− τ ·

√
τ
dτθ2(t) . θ2(t). (4.14)

Similarly to the process of (4.11)-(4.14), we get



No.4 C.C. Guo, Regularity of The Solutions to the Liquid Crystal Eqs. 373

t
k+1
2 ∥∇k+1d(2)∥L∞(Rn) . θ2(t). (4.15)

Next, we give an estimate for ∥t
k
2∇ku(2)∥L∞(0,t;Ln(Rn)). Due to Minkovski in-

equality, we have

∥t
k
2∇ku(2)∥L∞(0,t;Ln(Rn))≤t

k
2

(∫ t/2

0
+

∫ t

t/2

)
∥∇kS(t−τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]∥Ln(Rn)dτ

,II1 + II2. (4.16)

From Lemma 2.2 and Young inequality

II1 = t
k
2

∫ t/2

0
∥∇kS(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]∥Ln(Rn)dτ

. t
k
2

∫ t/2

0

∥∥∥∥ 1
√
t− τ

n+k+1

1

(1 + |y|√
t−τ

)n+k+1
∗ (|ũ|2 + |∇d̃|2)

∥∥∥∥
Ln(Rn)

dτ

.
∫ t/2

0

∥∥∥∥ 1
√
t− τ

n+1

1

(1 + |y|√
t−τ

)n+k+1

∥∥∥∥
L

nq
(n+1)q−2n (Rn)

(∥ũ∥2Lq(Rn) + ∥∇d̃∥2Lq(Rn))dτ

.
(∫ t/2

0

1
√
t− τ

2n
q

p
p−2

dτ

) p−2
p

(∥ũ∥2
Lp(0, t

2
;Lq(Rn))

+ ∥∇d̃∥2
Lp(0, t

2
;Lq(Rn))

)

. θ2(t). (4.17)

Similarly to (4.13), we have

II2 = t
k
2

∫ t

t/2
∥∇kS(t− τ)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]∥Ln(Rn)dτ

. t
k+2
2

k∑
l=0

(∥∇k−lũ∥L∞(Rn)∥∇lũ∥L∞(Rn) + ∥∇k−l+1d̃∥L∞(Rn)∥∇l+1d̃∥L∞(Rn))

·
∫ t

t/2

1√
t− τ

√
τ
dτ . θ2(t). (4.18)

From (4.16)-(4.18), we have

∥t
k
2∇ku(2)∥L∞(0,t;Ln(Rn)) . θ2(t). (4.19)

Similarly to (4.16)-(4.18), we also have

∥t
k
2∇k+1d(2)∥L∞(0,t;Ln(Rn)) . θ2(t). (4.20)

Now, we are going to estimate ∥τ
k
2∇ku(2)∥Lp(0,t;Lq(Rn)).

∥τ
k
2∇ku(2)∥Lq(Rn)

= τ
k
2

(∫ τ/2

0
+

∫ τ

τ/2

)
∥∇kS(τ − s)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]∥Lq(Rn)ds. (4.21)
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From Lemma 2.2 and Young inequality

τ
k
2

∫ τ/2

0
∥∇kS(τ − s)P∇ · [ũ⊗ ũ+∇d̃⊗∇d̃]∥Lq(Rn)ds

. τ
k
2

∫ τ/2

0

∥∥∥∥ 1
√
τ − s

n+k+1

1

(1 + |y|√
τ−s

)n+k+1
∗ (|ũ|2 + |∇d̃|2)

∥∥∥∥
Lq(Rn)

ds

.
∫ τ/2

0

∥∥∥∥ 1
√
τ − s

n+1

1

(1 + |y|√
τ−s

)n+k+1

∥∥∥∥
L

q
q−1 (Rn)

(∥ũ∥2Lq(Rn) + ∥∇d̃∥2Lq(Rn))ds

.
∫ τ/2

0
(τ − s)

− q+n
2q · (∥ũ(·, s)∥2Lq(Rn) + ∥∇d̃(·, s)∥2Lq(Rn))ds. (4.22)

Similarly to (4.13), we have

τ
k
2

∫ τ

τ/2
∥∇S(τ − s)P∇k · [ũ⊗ ũ+∇d̃⊗∇d̃]∥Lq(Rn)ds

.
∫ τ

τ/2
s

k
2

k∑
l=0

(∥∇k−lũ(·, s)∇lũ(·, s)∥
L

q
2 (Rn)

+∥∇k−l+1d̃(·, s)∇l+1d̃(·, s)∥
L

q
2 (Rn)

) · (τ − s)
− q+n

2q ds

.
∫ τ

τ/2

k∑
l=0

(∥sl/2∇lũ(·, s)∥2Lq(Rn) + ∥sl/2∇l+1d̃(·, s)∥2Lq(Rn)) · (τ − s)
− q+n

2q ds. (4.23)

From (4.21)-(4.23) and Young inequality, we have

∥τ
k
2∇ku(2)∥Lp(0,t;Lq(Rn))

.
∥∥∥∥ ∫ τ/2

0
(τ − s)

− q+n
2q · (∥ũ(·, s)∥2Lq(Rn) + ∥∇d̃(·, s)∥2Lq(Rn))ds

∥∥∥∥
Lp(0,t)

+

∥∥∥∥∫ τ

τ/2

k∑
l=0

(∥sl/2∇lũ(·, s)∥2Lq(Rn) + ∥sl/2∇l+1d̃(·, s)∥2Lq(Rn))(τ − s)
− q+n

2q ds

∥∥∥∥
Lp(0,t)

. ∥τ−
q+n
2q ∥L1(0,t)

(∥∥∥ũ(·, s)∥2Lq(Rn) + ∥∇d̃(·, s)∥2Lq(Rn)

∥∥
Lp(0,t)

+

k∑
l=0

∥∥∥sl/2∇lũ(·, s)∥2Lq(Rn) + ∥sl/2∇l+1d̃(·, s)∥2Lq(Rn)

∥∥
Lp(0,t)

)
. t

1
p ∥ũ∥

q−n
q

L∞(0,t;Rn)∥ũ∥
n
q

L∞(0,t;Ln(Rn))∥ũ∥Lp(0,t;Lq(Rn))

+t
1
p ∥∇d̃∥

q−n
q

L∞(0,t;Rn)∥∇d̃∥
n
q

L∞(0,t;Ln(Rn))∥∇d̃∥Lp(0,t;Lq(Rn))

+t
1
p

k∑
l=0

∥tl/2∇lũ∥
q−n
q

L∞(0,t;Rn)∥s
l/2∇lũ∥

n
q

L∞(0,t;Lq(Rn))∥s
l/2∇lũ∥Lp(0,t;Lq(Rn))
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+t
1
p

k∑
l=0

∥sl/2∇l+1d̃∥
q−n
q

L∞(0,t;Rn)∥s
l/2∇l+1d̃∥

n
q

Lp(0,t;Lq(Rn))∥s
l/2∇l+1d̃∥Lp(0,t;Lq(Rn)),

(4.24)

where we used the fact that − q+n
2q = 1

p − 1. Recalling (4.19), (4.20) and q−n
q = 2

p ,

we have

∥τ
k
2∇ku(2)∥Lp(0,t;Lq(Rn)) . θ4(t). (4.25)

Similarly to (4.21)-(4.25), we get

∥t
k
2∇k+1d(2)∥Lp(0,t;Lq(Rn)) . θ4(t). (4.26)

From (4.11)-(4.15) and (4.25)-(4.26), applying the summation
K∑
k=0

, we get

∥(u, d)∥
E

[0,t]
K

≤ C7θ
2(t)(1 + θ2(t)). (4.27)

Repeat the progress as in (3.26)-(3.30), we can choose a δ0 > 0 small enough,

such that for any t ∈ [0, δ0], there holds

C7θ(t)(1 + θ2(t)) ≤ 3

4
, (4.28)

then we finish the proof of Step 1.

Step 2 There exists a δ1 > 0 such that T is a contraction map on E[0,δ1]
K .

Let (ũ, d̃) and (u, d) be two pairs of functions in E
[0,δ1]
K , and we write u∗ = ũ−u

and d∗ = d̃− d. Similarly to the proof in (3.33)-(3.37), we have

∥|(T1(ũ, d̃)− T1(u, d),T2(ũ, d̃)− T2(u, d))∥E[0,t]
K

≤ C8θ(t)
(
∥d∗∥L∞(Rn) + ∥(u∗, d∗)∥E[0,t]

K

)
. (4.29)

We choose a δ1 > 0 small enough, such that for any t ∈ [0, δ1], there holds

C8θ(t) ≤
3

4
. (4.30)

Then we finish the proof of Step 2.

Taking δ = min{δ0, δ1}, we conclude that there exists a unique pair of solution

(u∗, d∗) ∈ E[0,δ]
K . By the uniqueness of the solution, for (u, d), the local solution to

(1.1), we have (u, d) = (u∗, d∗) in the time interval [0, δ].

We finish the proof of Proposition 4.1.

Remark 4.1 If we take the initial data ∥u0∥Ln(Rn) and ∥∇d0∥Ln(Rn) small

enough, which implies the global existence, then after a slight modification of Propo-

sition 4.1, we can prove the results of Proposition 4.1 on t ∈ (0,+∞). For this

situation, we can get the following decay estimates immediately:
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∥∇ku∥L∞(Rn) + ∥∇k∇d∥L∞(Rn) ≤ Ct−
k+1
2 , (4.31)

for any t > 0 and integer k ≥ 0.

Proof of (4.5) By Proposition 4.1, it is sufficient to prove Theorem 1.2 on

[δ, T ] with T < ∞ and δ ≤ T .

Denote U(x, t) = u(x, t+ δ
2),

D(x, t) = d(x, t+ δ
2),

(x, t) ∈ Rn ×
[
0, T − δ

2

]
. (4.32)

By the local existence in Theorem 1.1, (U,D) is the solution to (1.1) on [δ/2, T ] with

the initial data (U0, D0) = (u, d)|t= δ
2
. Due to the results of Lin-Lin-Wang [24], we

have

(U(x, t), D(x, t)) ∈ C∞
([

0, T − δ

2

]
,Rn

)
. (4.33)

We can write (U,D) as
U = S(t)u

(
x,

δ

2

)
−

∫ t

0
S(t− τ)P∇ · [U ⊗ U +∇D ⊗∇D](·, τ)dτ,

D = S(t)d
(
x,

δ

2

)
+

∫ t

0
S(t− τ)

(
|∇D|2D − U · ∇D

)
(·, τ)dτ.

(4.34)

Similarly to (4.16), by using Hölder inequality and (4.25), we have

∥t
k
2∇kU∥p

Lp(0,T− δ
2
;Lq(Rn))

.
(
T − δ

2

) pk
2 ∥∇kU∥p−(n+2)

L∞(0,T− δ
2
;Ln(Rn))

· ∥∇kU∥n+2

Ln+2(0,T− δ
2
;Rn)

(4.35)

and

∥t
k
2∇k+1D∥p

Lp(0,T− δ
2
;Lq(Rn))

.
(
T − δ

2

) pk
2 ∥∇k+1D∥p−(n+2)

L∞(0,T− δ
2
;Ln(Rn))

∥∇k+1D∥n+2

Ln+2(0,T− δ
2
;Rn)

. (4.36)

From (4.34), (4.33) and Proposition 4.1, for any integer j ≥ 0, we have

∥∇jU∥L∞(0,T− δ
2
;Ln(Rn))

. ∥∇ju(x, δ/2)∥Ln(Rn) +
∥∥∥ ∫ t

0
S(t− τ)P∇j+1 · [U ⊗ U +∇D ⊗∇D]dτ

∥∥∥
Ln(Rn)

. ∥u0∥Ln(Rn) +

j∑
l=0

∫ t

0
(∥∇lU∥Ln(Rn) + ∥∇l+1D∥Ln(Rn))dτ. (4.37)

Applying the summation
K∑
k=0

, we get
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K∑
k=0

∥∇k+2mU∥L∞(0,T− δ
2
;Ln(Rn))

. ∥u0∥Ln(Rn) +

K∑
k=0

∫ t

0
(∥∇kU∥Ln(Rn) + ∥∇k+1D∥Ln(Rn))dτ. (4.38)

Similarly to (4.37)-(4.38), we have

K∑
k=0

∥∇k+1D∥L∞(0,T− δ
2
;Ln(Rn))

. ∥∇d0∥Ln(Rn) +

K∑
k=0

∫ t

0
(∥∇k+1U∥Ln(Rn) + ∥∇k+1D∥Ln(Rn))dτ. (4.39)

By adding (4.38) and (4.39), and using Gronwall inequality, we get

K∑
k=0

(∥∇kU∥L∞(0,T− δ
2
;Ln(Rn)) + ∥∇k+1D∥L∞(0,T− δ

2
;Ln(Rn))) < ∞. (4.40)

By Proposition 2.1, we have

∥tk/2∇kU∥Ln+2(0,T− δ
2
;Rn) . ∥∇kU∥Ln+2(0,T− δ

2
;Rn)

.
∥∥∥∇ku

(
x,

δ

2

)∥∥∥
Ln(Rn)

+ ∥∇k(U ⊗ U +∇D ⊗∇D)∥
L

n+2
2 (0,T− δ

2
;Rn)

. ∥u0∥Ln(Rn) +

k∑
l=0

(∥∇lU∥2
Ln+2(0,T− δ

2
;Rn)

+ ∥∇l+1D∥2
Ln+2(0,T− δ

2
;Rn)

)

≤ C(k, T, δ)

(
∥u0∥Ln(Rn) +

k∑
l=0

∥∇lU∥
2n
n+2

L∞(0,T− δ
2
;Ln(Rn))

∥∇lU∥
2

n+2

L∞(0,T− δ
2
;Rn)

+

k∑
l=0

∥∇l+1D∥
2n
n+2

L∞(0,T− δ
2
;Ln(Rn))

∥∇l+1D∥
2

n+2

L∞(0,T− δ
2
;Rn)

)
. (4.41)

From (4.41), recalling that (4.33) and (4.40), we have

K∑
k=0

∥tk/2∇kU∥Ln+2(0,T− δ
2
;Rn) < ∞. (4.42)

From (4.35), (4.40) and (4.42), we have

K∑
k=0

∥tk/2∇kU∥Lp(0,T− δ
2
;Lq(Rn)) < ∞. (4.43)

Similarly, we can also get
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K∑
k=0

∥tk/2∇k+1D∥Lp(0,T− δ
2
;Lq(Rn)) < ∞. (4.44)

Combining Proposition 4.1 and the estimates (4.40), (4.42) and (4.44), we finish

the proof of (4.5).

For the complete proof of Theorem 1.2, we use the induction as the explanation

at the beginning of this Section.
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