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Abstract

Based on the range space property (RSP), the equivalent conditions be-
tween nonnegative solutions to the partial sparse and the corresponding weight-
ed l1-norm minimization problem are studied in this paper. Different from
other conditions based on the spark property, the mutual coherence, the null
space property (NSP) and the restricted isometry property (RIP), the RSP-
based conditions are easier to be verified. Moreover, the proposed conditions
guarantee not only the strong equivalence, but also the equivalence between
the two problems. First, according to the foundation of the strict complemen-
tarity theorem of linear programming, a sufficient and necessary condition,
satisfying the RSP of the sensing matrix and the full column rank property of
the corresponding sub-matrix, is presented for the unique nonnegative solution
to the weighted l1-norm minimization problem. Then, based on this condition,
the equivalence conditions between the two problems are proposed. Finally,
this paper shows that the matrix with the RSP of order k can guarantee the
strong equivalence of the two problems.
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1 Introduction

In this paper, we consider the following partial sparse minimization problem

min
x,y

n1∑
i=1

wi|xi|0 + aTy s.t. Ax+By = b, x ≥ 0, y ≥ 0, (1)

where x = (x1, x2, · · · , xn1)
T ∈ Rn1 , y ∈ Rn2 . |xi|0 = 0 if xi = 0; otherwise |xi|0 = 1.
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wi ∈ R is the weight on |xi|0, i = 1, 2, · · · , n1. a ∈ Rn2 , A ∈ Rm×n1 , B ∈ Rm×n2 ,

and b ∈ Rm (m < n1 + n2) are the problem datas. Let ∥x∥0 be the number of

nonzero components of x, that is, ∥x∥0 =
n1∑
i=1

|xi|0. Although ∥x∥0 is not a norm, we

still call it l0-norm for simplicity.

By relaxing |xi|0 as |xi|, and taking into account x ≥ 0,
n1∑
i=1

wi|xi| = wTx, we get

the following linear program

min
x,y

wTx+ aTy s.t. Ax+By = b, (x, y) ≥ 0, (2)

where w = (w1, w2, · · · , wn1)
T. We are interested in what conditions can ensure the

equivalence of problems (1) and (2).

In recent years, l0-norm minimization problems have been widely researched,

and have been successfully applied to signal processing [1], pattern recognition [2],

machine learning [3], computational biology [4], medical imaging [5], and other fields

[6-9]. Recent research indicates that l1-norm relaxation can promote sparsity [11].

This is based on equivalence between the l0-norm and l1-norm minimization prob-

lems.

Up to now, the study of the equivalence between l0-norm and l1-norm minimiza-

tion problems is mainly for the following two problems:

min
x

∥x∥0 s.t. Ax = b, (3)

and
min
x

∥x∥1 s.t. Ax = b. (4)

It has been proved that, all k-sparse solutions to problem (3) can be found by solving

problem (4), if the spark of the sensing matrix A is greater than 2k [19], or the order

of the null space property (NSP) [21] or the restricted isometry property (RIP) of

A is 2k or above [25]. However, these conditions remain restrictive and are hard to

be verified. From geometric perspective, Donoho and Tanner [30] showed that the

outward k-neighborliness of A could also guarantee the equivalence of problems (3)

and (4). Donoho and Romberg [11] also analysed the equivalence from probabilistic

perspective.

Based on the RSP, Zhao [26,27] presented equivalent conditions for problems (3)

and (4), no matter whether the nonnegative constraints exist or not. The conditions

guarantee not only the strong equivalence but also the equivalence between the l0-

norm and l1-norm minimization problems. Moreover, Zhao presented an RSP which

could be verified easily, by solving a linear programming problem [26].

In this paper, we consider the equivalence between problems (1) and (2). The

definition of equivalence is similar to that in [26], which is as follows.
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Definition 1.1[26] (i) Problems (1) and (2) are said to be equivalent if there

exists a solution to problem (1) that coincides with the unique solution to problem

(2);

(ii) problems (1) and (2) are said to be strongly equivalent if the unique solution

to problem (1) coincides with the unique solution to problem (2).

We consider only nonnegative solution throughout this paper. The case without

nonnegative constrains can be reduced to that one, by replacing (x, y) with (x+ −
x−, y+ − y−), where x+, x− ∈ Rn1

+ , and y+, y− ∈ Rn2
+ . Moreover, when there exist

inequality constraints, by introducing slack variables, they can be written as the

form of (1). Some more details can refer to Section 5.

The rest of this paper is organized as follows. Section 2 shows the existence of

the unique nonnegative solution to the weighted l1-norm minimization problem (2).

The equivalent and strongly equivalent conditions are described in Sections 3 and 4

respectively. In Section 5, we present several variants of problem (1). Conclusions

are given in Section 6.

2 Uniqueness of Weighted l1-norm Minimization
From Definition 1.1, the existence of a unique solution to the weighted l1-norm

minimization problem (2) is necessary for the equivalence between the partial sparse

and the weighted l1-norm minimizations. Hence, we first consider some properties

of the unique solution to problem (2) in this section.

2.1 Range space property

In this subsection, we first reformulate problem (2) as a linear program. Then

based on the duality theory, we present a necessary condition for a unique solution

to problem (2).

Suppose that problem (2) admits a unique solution (x∗, y∗). Then for its any

feasible solution (x, y) ̸=(x∗, y∗), there is wTx+ aTy>wTx∗+ aTy∗. In other words,

{(x, y) : Ax+By = b, wTx+ aTy ≤ wTx∗ + aTy∗, (x, y) ≥ 0} = {(x∗, y∗)}.

Now consider the following linear optimization problem:

min
x,y

0Tx+ 0Ty,

s.t. Ax+By = Ax∗ +By∗,

wTx+ aTy ≤ wTx∗ + aTy∗,

(x, y) ≥ 0.

(5)

It is easy to verify that problem (5) has a feasible solution (x∗, y∗), and its optimal

value is finite (always equals zero). By introducing slack variable t ≥ 0, the above
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problem (5) is equivalent to:

min
x,y,t

0Tx+ 0Ty,

s.t. Ax+By = Ax∗ +By∗,

wTx+ aTy + t = wTx∗ + aTy∗,

(x, y, t) ≥ 0.

(6)

Before proceeding, we can obviously obtain the following lemma, which will be

used below.

Lemma 2.1 The following three statements are equivalent:

(i) (x∗, y∗) is the unique solution to the weighted l1-norm minimization problem

(2).

(ii) (x∗, y∗) is the unique solution to problem (5).

(iii) (x, y, t) = (x∗, y∗, 0) is the unique solution to problem (6).

The dual of problem (6) is given by:

max
z,c

(Ax∗ +By∗)Tz + (wTx∗ + aTy∗)c,

s.t. ATz + cw ≤ 0,

BTz + ca ≤ 0,

c ≤ 0,

(7)

where z ∈ Rm, c ∈ R are the dual variables. Assume that α, β ∈ Rm, γ ∈ R+ are

slack variables of problem (7), then we have

α = −ATz − cw, β = −BTz − ca, γ = −c.

Next, if problem (2) admits a unique solution, then (A,B)T satisfies the range

space property at this point, which is given by the following lemma.

Lemma 2.2 If (x∗, y∗) is the unique solution to problem (2), then there exists

a z ∈ Rm satisfying{
(ATz)i = wi, i ∈ J+,

(ATz)i < wi, i ∈ J0,

{
(BTz)i = ai, i ∈ S+,

(BTz)i < ai, i ∈ S0,
(8)

where J+ = {i : x∗i > 0}, J0 = {i : x∗i = 0}, S+ = {i : y∗i > 0}, S0 = {i : y∗i = 0}.
Proof First, it is easy to check that problem (6) and its duality (7) have feasible

solutions. Then by the complementary slackness theory [31], there exists a pair of

strictly complementary optimal solution ((x, y, t), (z1, c1)) to problems (6) and (7).

Let (α, β, γ) = (−ATz1 − c1w,−BTz1 − c1a,−c1). Then we have

xTα = 0, yTβ = 0, tγ = 0, (9)
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and

x+ α > 0, y + β > 0, t+ γ > 0. (10)

Since (x∗, y∗) is the unique solution, by Lemma 2.1, (x∗, y∗, 0) is the unique solution

to problem (6). Then we obtain

(x, y, t) = (x∗, y∗, 0),

which together with x∗ ≥ 0, y∗ ≥ 0 implies that{
xi > 0, i ∈ J+,

xi = 0, i ∈ J0,

{
yi > 0, i ∈ S+,

yi = 0, i ∈ S0,
t = 0. (11)

From (9)-(11), we have{
αi = 0, i ∈ J+,

αi > 0, i ∈ J0,

{
βi = 0, i ∈ S+,

βi > 0, i ∈ S0,
γ > 0.

By the definitions of these slack variables, we obtain{
(ATz1 + c1w)i = 0, i ∈ J+,

(ATz1 + c1w)i < 0, i ∈ J0,

{
(BTz1 + c1a)i = 0, i ∈ S+,

(BTz1 + c1a)i < 0, i ∈ S0,
c1 < 0,

which is{
(AT( z1

−c1
)− w)i = 0, i ∈ J+,

(AT( z1

−c1
)− w)i < 0, i ∈ J0,

{
(BT( z1

−c1
)− a)i = 0, i ∈ S+,

(BT( z1

−c1
)− a)i < 0, i ∈ S0.

If denote z = z1

−c1
, the above formula can be rewritten as{
(ATz)i = wi, i ∈ J+,

(ATz)i < wi, i ∈ J0,

{
(BTz)i = ai, i ∈ S+,

(BTz)i < ai, i ∈ S0.

This completes the proof of Lemma 2.2.

Hence, the inequality system (8) is necessary for (x∗, y∗) to be the unique solution

to the weighted l1-norm minimization problem (2). And throughout this paper, the

inequality system (8) is called the range space property (RSP) of (A,B)T at (x∗, y∗).

2.2 Full column rank condition

In this subsection, we present another necessary condition for the existence of a

unique solution to the weighted l1-norm minimization problem (2), which is given

by the following lemma.
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Lemma 2.3 Let (x∗, y∗) be the unique solution to problem (2), then the matrix

M =

(
AJ+ BS+

wT
J+ aTS+

)
(12)

is of full column rank, where J+ = {i : x∗i > 0}, S+ = {i : y∗i > 0}.
Proof Suppose that the columns of M are linear dependent. Then there exists

a vector µ =

(
µ1

µ2

)
̸= 0 satisfying

Mµ =

(
AJ+ BS+

wT
J+

aTS+

)(
µ1

µ2

)
= 0. (13)

Let us define a vector (x, y, t) as

x = (xJ+ , xJ0) = (x∗J+ , 0), y = (yS+ , yS0) = (y∗S+
, 0), t = 0,

where J0 = {i : x∗i = 0}, S0 = {i : y∗i = 0}. By Lemma 2.1, (x, y, t) is an optimal

solution to problem (6). Next, we define another vector (x̃, ỹ, t̃) as:

x̃ = (x̃J+ , x̃J0) = (x∗J+ + λµ1, 0), ỹ = (ỹS+ , ỹS0) = (y∗S+
+ λµ2, 0), t̃ = 0.

Since x∗J+ > 0 and y∗S+
> 0, there exists a λ ̸= 0 such that

x̃J+ = x∗J+ + λµ1 ≥ 0, ỹS+ = y∗S+
+ λµ2 ≥ 0.

Therefore, (x̃, ỹ, t̃) ≥ 0. In addition, taking (13) into consideration, it is easy to

verify that (x̃, ỹ, t̃) is a feasible solution to problem (6). And it is also an optimal

solution. Moreover, combing λµ ̸= 0 with the definitions of (x, y, t) and (x̃, ỹ, t̃), we

have

(x, y, t) ̸= (x̃, ỹ, t̃).

Hence, problem (6) has at least two solutions, which contradicts the assumption of

Lemma 2.3. We have thus proved the lemma.

2.3 Sufficient condition

Combing the above two necessary conditions, we obtain the following sufficient

condition for the existence of a unique solution to problem (2).

Lemma 2.4 Let (x∗, y∗) be a feasible solution to problem (2). If the RSP

of (A,B)T holds at (x∗, y∗), and the matrix M =

(
AJ+ BS+

wT
J+ aTS+

)
is of full column

rank, then (x∗, y∗) is the unique solution to problem (2), where J+ = {i : x∗i > 0},
S+ = {i : y∗i > 0}.
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Proof According to Lemma 2.1, it suffices to prove that (x∗, y∗, 0) is the unique

solution to problem (6). Since (A,B)T satisfies the RSP at (x∗, y∗), there exists a

z ∈ Rm satisfying{
(ATz)i = wi, i ∈ J+,

(ATy)i < wi, i ∈ J0,

{
(BTz)i = ai, i ∈ S+,

(BTz)i < ai, i ∈ S0,

where J0 = {i : x∗i = 0}, S0 = {i : y∗i = 0}. Let c = −1. The above formula can be

rewritten as{
(ATz)i + cwi = 0, i ∈ J+,

(ATz)i + cwi < 0, i ∈ J0,

{
(BTz)i + cai = 0, i ∈ S+,

(BTz)i + cai < 0, i ∈ S0.
(14)

Combing (14) with c = −1, it is easy to verify that, if (z, c) satisfies (14) then it is a

feasible solution to problem (7). Now we prove that (z, c) is also an optimal solution

to problem (7). Substituting such (z, c) into the objective function of (7), we have

(Ax∗ +By∗)Tz + (wTx∗ + aTy∗)c

= x∗T (ATz) + y∗T (BTz) + c(wTx∗) + caTy∗

=
∑
i∈J+

x∗i (A
Tz)i +

∑
i∈S+

y∗i (B
Tz)i + c

∑
i∈J+

wix
∗
i + c

∑
i∈S+

aiy
∗
i

= −c
∑
i∈J+

wix
∗
i − c

∑
i∈S+

aiy
∗
i + c

∑
i∈J+

wix
∗
i + c

∑
i∈S+

aiy
∗
i

= 0.

On the other hand, the optimal value of its primal problem (6) is 0, which together

with the strong duality theorem implies that problem (7) has an optimal value 0

and (z, c) is its optimal solution.

Next, we prove that such (x∗, y∗, 0) is the unique solution to problem (6). Let

(x′, y′, t′) be its any optimal solution. Since (z, c) satisfying (14) is an optimal

solution to problem (7), ((x′, y′, t′), (z, c)) is a pair of optimal solutions to problems

(6) and (7). Assume that α, β, γ are slack variables of (7) and defined by
α = −(ATz + cw),

β = −(BTz + ca),

γ = −c.

According to (14), we have
αi = −(ATz + cw)i > 0, i ∈ J0,

βi = −(BTz + ca)i > 0, i ∈ S0,

γ = −c = 1 > 0.

(15)
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On the other hand, by the complementary slackness conditions, (x′, y′, t′) and (α, β, γ)

satisfy

αTx′ = 0, βTy′ = 0, γt′ = 0, (16)

which together with (15) implies that
x′i = 0, i ∈ J0,

y′i = 0, i ∈ S0,

t′ = 0.

(17)

Substituting (17) into the constraints of (6), we get

Ax′ +By′ = AJ+x
′
J+ +BS+y

′
S+

= AJ+x
∗
J+ +BS+y

∗
S+

,

wTx′ + aTy′ + t′ = wT
J+x

′
J+ + aTS+

y′S+
= wT

J+x
∗
J+ + aTS+

y∗S+
,

which is (
AJ+ BS+

wT
J+

aTS+

)(
x′J+
y′S+

)
=

(
AJ+ BS+

wT
J+

aTS+

)(
x∗J+
y∗S+

)
.

Since M =

(
AJ+ BS+

wT
J+

aTS+

)
is of full column rank, (x′J+ , y

′
S+

) = (x∗J+ , y
∗
S+

). Taking

(17) into consideration, we get (x′, y′, t′) = (x∗, y∗, 0). This completes the proof.

2.4 Sufficient and necessary condition

In this subsection, we present a sufficient and necessary condition for the unique

solution to problem (2). This condition is the foundation of the equivalence between

the partial sparse and the weighted l1-norm minimization problems with nonnegative

constrains in this paper.

Theorem 2.1 Let (x∗, y∗) be a feasible solution to problem (2). Then (x∗, y∗)

is the unique solution if and only if the RSP of (A,B)T holds at (x∗, y∗), and the

matrix M =

(
AJ+ BS+

wT
J+

aTS+

)
is of full column rank, where J+ = {i : x∗i > 0},

S+ = {i : y∗i > 0}.
The proof of Theorem 2.1 is evident from Lemmas 2.2, 2.3 and 2.4. Furthermore,

if (AJ+ , BS+) is of full column rank, then so is the matrix

M =

(
AJ+ BS+

wT
J+

aTS+

)
.

Unfortunately, its converse does not hold. For example, for

AJ+ =

(
−1 0
0 1

)
, BS+ =

(
0
−1

)
, wT

J+ = (1, 1), aTS+
= 0,

it is obvious that
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M =

(
AJ+ BS+

wT
J+

aTS+

)
=

−1 0 0
0 1 −1
1 1 0


is of full column rank, but the columns of

(AJ+ , BS+) =

(
−1 0 0
0 1 −1

)
are linear dependent.

However, if the RSP of (A,B)T holds at (x∗, y∗), then (AJ+ , BS+) is of full

column rank if and only if M =

(
AJ+ BS+

wT
J+

aTS+

)
is of full column rank, which directly

produces the following theorem from Theorem 2.1.

Theorem 2.2 Let (x∗, y∗) be a feasible solution to problem (2). Then (x∗, y∗)

is the unique solution if and only if the RSP of (A,B)T holds at (x∗, y∗), and the

submatrix (AJ+ , BS+) is of full column rank, where J+ = {i : xi > 0}, S+ = {i :
yi > 0}.

Theorems 2.1 and 2.2 adequately characterize the condition for the existence of

a unique solution to problem (2). Next we present an example to show that it is

easy to verify the sufficient and necessary condition.

Example 2.1 Consider the following linear system Ax+By = b, where

A =

1 0 0
0 −1 0
0 0 1

 , B =

 1 −1
1 −6
−1 1

 , b =

 1
1
−1

2

 .

If let w=(1, 1, 1)T, a=(0, 0)T, it is easy to verify that (x∗, y∗)=
(
(0, 0, 12), (1, 0)

)T
is a feasible solution to problem (2). Denote

J+ = {i : x∗i > 0} = {3}, S+ = {i : y∗i > 0} = {1}.

Then the submatrix

(AJ+ , BS+) =

0 1
0 1
1 −1


corresponding to (x∗, y∗) is of full column rank. Moreover, there exists a z =

(27 ,
5
7 , 1)

T such that ATz = (27 ,−
5
7 , 1)

T, BTz = (0,−25
7 )

T. Then the RSP of the

matrix (A,B)T holds at (x∗, y∗). According to Theorem 2.2, we know that (x∗, y∗)

is the unique solution to the weighted l1-norm minimization problem.

If a = (12 , 1), then there exists a z = (12 , 1, 1)
T such that ATz = (12 ,−1, 1)T,

BTz = (12 ,−
11
2 )

T. In this case we also find out that the RSP of the matrix (A,B)T

holds at (x∗, y∗), and (x∗, y∗) is the unique solution to the weighted l1-norm mini-

mization problem.
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3 Equivalent Condition
In this section, we study the equivalence between problems (1) and (2). From

the sufficient and necessary conditions given by Theorems 2.1 and 2.2, if (x∗, y∗) is

the unique solution to problem (2), then (AJ+ , BS+) must be of full column rank.

Hence,

∥(x∗, y∗)∥0 = rank(AJ+ , BS+) = |J+|+ |S+| ≤ m,

which shows that, if (x∗, y∗) is the unique solution, it must be m-sparse, and that

any nonnegative vector (x, y), whose sparsity is greater than m, must not be an

optimal solution to problem (2).

As we know, Gaussian elimination can easily obtain an m-sparse solution. How-

ever, it cannot guarantee that the obtained solution is the sparsest. In fact, problem

(1) is an NP-hard combinatorial optimization problem. And many relaxation meth-

ods have been proposed, such as relaxing the problem to the weighted l1-norm mini-

mization problem. Hence, we must find out that, under what condition problems (1)

and (2) have the same sparse solutions. The following theorem provides somewhat

an answer according to the sufficient and necessary conditions in Theorems 2.1 and

2.2.

Theorem 3.1 Let (x∗, y∗) be an optimal solution to the l0-norm minimization

problem (1). Then it also is a solution to the weighted l1-norm minimization problem

(2) if and only if the RSP of the matrix (A,B)T holds at (x∗, y∗), and (AJ+ , BS+)

is of full column rank, where J+ = {x∗i > 0}, S+ = {y∗i > 0}.
Proof If problems (1) and (2) are equivalent, then there exists an optimal

solution (x∗, y∗) to problem (1), which is also the unique optimal solution to problem

(2). Let J+ = {x∗i > 0}, S+ = {y∗i > 0}. Due to Theorem 2.2, the RSP of the matrix

(A,B)T holds at (x∗, y∗), and (AJ+ , BS+) is of full column rank.

On the other hand, if the RSP of the matrix (A,B)T holds at (x∗, y∗), and

(AJ+ , BS+) is of full column rank, then by Theorem 2.2, (x∗, y∗) is also a solution

to problem (2). The proof is completed.

Next, we present an example to show that, when the l0-norm minimization

problem has several sparsest solutions, the weighted l1-minimization problem could

still has one of the sparsest solutions.

Example 3.1 Consider the linear system Ax+By = b, where

A =

1 0
1 1
1 1

 , B =

1 1
1 0
0 1

 , b =

1
1
1

 .

Let w = (34 , 1)
T, a = (0, 0)T. It is easy to verify that (x1, y1) =

(
(0, 12), (

1
2 ,

1
2)
)T

,

(x2, y2) =
(
(1, 0), (0, 0)

)T
are the sparsest solutions to problem (1). Since wTx2 +
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aTy2 > wTx1+aTy1, (x2, y2) is not the optimal solution to problem (2), and the RSP

of (A,B)T does not hold at (x2, y2). Next, we consider (x1, y1). Denote J+ = {2},

S+ = {1, 2}. Then (AJ+ , BS+) =

0 1 1
1 1 0
1 0 1

 is of full column rank. There exists a

z = (−1
2 ,

1
2 ,

1
2)

T such that ATz = (12 , 1)
T, BTz = (0, 0)T. Hence, the RSP of (A,B)T

holds at (x1, y1). Due to Theorem 2.2, (x1, y1) is the unique solution to the weighted

l1-norm minimization problem.

If let w = (34 ,−1)T, a = (14 , 0)
T, then there exists a z = (58 ,−

3
8 ,−

5
8)

T satisfying

the RSP at (x1, y1), since ATz = (−3
8 ,−1)T, BTz = (14 , 0)

T. Hence, in this case,

(x1, y1) is also the unique solution to the weighted l1-norm minimization problem.

It is easy to verify that if w = (−3
4 , 1)

T, then a = (14 , 0)
T, (x2, y2) is the unique

solution to the weighted l1-norm minimization problem.

Theorem 2.1 and Example 3.1 show that the existence of a unique solution to

l0-norm minimization is not necessary for the equivalence between the l0-norm and

weighted l1-norm minimization problems.

4 Strongly Equivalent Condition
In practice, the matrices A and B should be suitable such that we can find

all k-sparse solutions. In this section, we will discuss the RSP of order k, which

guarantees finding all k-sparse vectors. First, we present the definition of the RSP

of order k as follows.

Definition 4.1 Let A ∈ Rm×n1 , B ∈ Rm×n2 with m < n1 + n2. The matrix

(A,B)T is said to satisfy the RSP of order k, if for any subset S1 of {1, 2, · · · , n1}
and subset S2 of {1, 2, · · · , n2} with |S1| ≤ k and |S1| + |S2| ≤ m, (AS1 , AS2) is of

full column rank, and there exists a z ∈ Rm satisfying{
(ATz)i = wi, i ∈ S1,

(ATz)i < wi, i ∈ Sc
1,

{
(BTz)i = ai, i ∈ S2,

(BTz)i < ai, i ∈ Sc
2,

(18)

where w ∈ Rn1 , a ∈ Rn2 , Sc
1 = {1, 2, · · · , n1} \ S1, S

c
2 = {1, 2, · · · , n2} \ S2.

Now we give an example to show the existence of the matrix satisfying the RSP

of order k. Let A =

(
−1
−2

)
, B =

(
1 0
0 1

)
, w = 1, a =

(
0
0

)
. It is easy to verify that:

If S1 = ∅, S2 = {1}, then there exists a z = (0,−1
4)

T satisfying ATz = 1
2 , B

Tz =

(0,−1
4);

if S1 = ∅, S2 = {2}, then there exists a z = (−1
2 , 0)

T satisfying ATz = 1
2 ,

BTz = (−1
2 , 0);

if S1 = ∅, S2 = {1, 2}, then there exists a z = (0, 0)T satisfying ATz = 0,

BTz = (0, 0);



No.4 X.Q. Tian, etc., Equivalence Between Solutions and Minimizations 391

if S1 = {1}, S2 = ∅, then there exists a z = (−1
2 ,−

1
4)

T satisfying ATz = 1,

BTz = (−1
2 ,−

1
4);

if S1 = {1}, S2 = {1}, then there exists a z = (0,−1
2)

T satisfying ATz = 1,

BTz = (0,−1
2);

if S1 = {1}, S2 = {2}, then there exists a z = (−1, 0)T satisfying ATz = 1,

BTz = (−1, 0).

Hence, for any S1, S2 with |S1| ≤ 1, |S1|+ |S2| ≤ 2, there exists a z ∈ R2 such that

(A,B)T satisfies the RSP, that is, the matrix (A,B)T satisfies the RSP of order k.

Next, we claim that if the matrix (A,B)T satisfies the RSP of order k, then we

can find all k-sparse solutions, which is presented as follows.

Theorem 4.1 Weighted l1-norm minimization could find any nonnegative so-

lution (x, y) with ∥x∥0 ≤ k, ∥(x, y)∥0 ≤ m if and only if the matrix (A,B)T satisfies

the RSP of order k.

Proof Assume that any vector (x, y) with ∥x∥0 ≤ k, ∥(x, y)∥0 ≤ m can be found

by weighted l1-norm minimization. Then (x, y) is the unique solution to

min
(x̃,ỹ)

wTx̃+ aTỹ Ax̃+Bỹ = b = Ax+By, (x̃, ỹ) ≥ 0.

Denote S1 = {i : xi > 0}, S2 = {i : yi > 0}. By Theorem 2.2, the matrix (AS1 , BS2)

is of full column rank, and there exists a z ∈ Rm satisfying{
(ATz)i = wi, i ∈ S1,

(ATz)i < wi, i ∈ Sc
1,

{
(BTz)i = ai, i ∈ S2,

(BTz)i < ai, i ∈ Sc
2.

Since (x, y) is arbitrary and satisfies ∥x∥0 ≤ k, ∥(x, y)∥0 ≤ m, the corresponding

sets S1, S2 are also arbitrary subsets of {1, 2, · · · , n1}, {1, 2, · · · , n2} respectively and

satisfy |S1| ≤ k, |S1|+ |S2| ≤ m, and there exists a z ∈ Rm satisfying (18). Hence,

the matrix (A,B)T satisfies the RSP of order k.

On the contrary, assume the matrix (A,B)T satisfies the RSP of order k. Then

for any vector (x, y) with ∥x∥0 ≤ k, ∥(x, y)∥0 ≤ m, the corresponding submatrix

(AS1 , BS2) is of full column rank satisfying the RSP at (x, y), where S1 = {i : xi > 0},
S2 = {i : yi > 0}. According to Theorem 2.2, we claim that (x, y) is the unique

solution to the weighted l1-norm minimization problem. The proof is completed.

Theorem 4.2 Assume that (A,B)T satisfies the RSP of order k. Then any

nonnegative vector (x, y) with ∥x∥0 ≤ k and ∥(x, y)∥0 ≤ m is the unique solution to

both the l0-norm and weighted l1-norm minimization problems.

Proof By Theorem 4.1, any nonnegative vector (x, y) with ∥x∥0 ≤ k, ∥(x, y)∥0 ≤
m can be found by weighted l1-norm minimization. Hence, such (x, y) is the unique

solution to the weighted l1-norm minimization problem. Now we prove that it is also
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the unique solution to the l0-norm minimization problem. Suppose (x1, y1) is an

optimal solution to the l0-norm minimization problem and satisfies ∥x1∥0 ≤ ∥x∥0.
Denote S1 = {i : x1i > 0}, S2 = {i : y1i > 0}. Then |S1| = ∥x1∥0 ≤ ∥x∥0 ≤ k,

|S1| + |S2| ≤ m, which together with the RSP of order k of (A,B)T imply that

(AS1 , BS2) is of full column rank and satisfies the RSP at (x1, y1). By Theorem 2.4,

(x1, y1) is the unique solution to the weighted l1-norm minimization problem. Hence,

(x, y) = (x1, y1). Then by arbitrariness of (x1, y1), (x, y) is the unique solution to

the l0-norm minimization problem. The proof is completed.

Theorem 4.2 shows that if the matrix (A,B)T satisfies the RSP of order k, then

the l0-norm and weighted l1-norm minimization problems are strongly equivalent.

However, Theorem 3.1 states that, when the RSP of the matrix (A,B)T holds at one

sparsest solution to the l0-norm minimization problem, the l0-norm and weighted l1-

norm minimization problems are equivalent. Hence, the RSP of order k is stronger

then the RSP at a solution. This may be also explained that the RSP is a local

property, which only requires to be satisfied at one special solution, while the RSP of

order k is a global property, which requires to be satisfied for all (x, y) with ∥x∥0 ≤ k,

∥(x, y)∥0 ≤ m.

5 Several Variants
In this section, we discuss several variants of problem (1). Fortunately, all these

variants can be rewritten as the form of (1).

No nonnegative constraints In this case, the variables x ∈ Rn1 , y ∈ Rn2 are

not nonnegative. The problem is

min
x,y

∥x∥0 + aTy s.t. Ax+By = b. (19)

To obtain the form of (1), for a given (x, y), we define{
x+i = xi, if xi > 0,

x+i = 0, if xi ≤ 0,

{
x−i = 0, if xi > 0,

x−i = −xi, if xi ≤ 0,
(20)

and {
y+i = yi, if yi > 0,

y+i = 0, if yi ≤ 0,

{
y−i = 0, if yi > 0,

y−i = −yi, if yi ≤ 0.
(21)

Then x = x+ − x−, y = y+ − y−. And the equality constraint can be rewritten as

(A,−A)

(
x+

x−

)
+ (B,−B)

(
y+

y−

)
= b,

and ∥x∥0 = ∥x+ − x−∥0 = ∥x+∥0 + ∥x−∥0. Therefore, problem (19) can be reformu-

lated as
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min
x̃,ỹ

∥x̃∥0 + ãTỹ s.t. Ãx̃+ B̃ỹ = b, (x̃, ỹ) ≥ 0, (22)

where ã =

(
a
−a

)
, Ã = (A,−A), B̃ = (B,−B), x̃ =

(
x+

x−

)
, ỹ =

(
y+

y−

)
. It is easy to

verify that problems (19) and (22) have the same solutions.

Inequality constraints When the constraints are inequalities, the problem is

min
x,y

∥x∥0 + aTy s.t. Ax+By ≥ b, (x, y) ≥ 0.

By introducing slack variables z ∈ Rm
+ , the above problem can be rewritten as

min
x,y,z

∥x∥0 +
(
a
0

)T(
y
z

)
s.t. Ax+ (B,−I)

(
y
z

)
= b, (x, y, z) ≥ 0,

where I is the identity matrix of m-dimensions.

Noisy case In many practical problems, the measurement data b always is

noisy. Then the optimization problem is

min
x,y

∥x∥0 + aTy s.t. ∥Ax+By − b∥∞ ≤ σ, (x, y) ≥ 0,

where σ ≥ 0 controls the error between Ax+By and b. In this case, the constraint

can be written as

Ax+By ≥ b− σ, −Ax−By ≥ −b− σ,

which is (
A
−A

)
x+

(
B
−B

)
≥
(

b− σ
−b− σ

)
.

Then this case can be reduced to the second case.

6 Conclusions
In this paper, we have considered the equivalence conditions between the partial

sparse optimization problem and its relaxation, that is, the weighted l1-norm min-

imization problem. The proposed conditions are based on the RSP, and guarantee

not only the strong equivalence, but also the equivalence between the two problems.

The considered problem is more general than the problems considered in literatures.
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