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Abstract

In this paper, by using the Guo-Krasnoselskii’s fixed-point theorem, we
establish the existence and multiplicity of positive solutions for a fourth-order
nonlinear eigenvalue problem. The corresponding examples are also included
to demonstrate the results we obtained.
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1 Introduction

In the past decades, an increasing interest in the existence and multiplicity of

positive solutions for boundary value problems has been evolved by using some fixed-

point theorems, for example, by the Krasnoselskii’s fixed-point theorem, Ma [1] and

Li [2] respectively established the existence and multiplicity of positive solutions for

some fourth-order boundary value problems. Zhong [3] established the existence of

at least one positive solution for the following four-point boundary value problem
y(4)(t)− f(t, y(t), y′′(t)) = 0, 0 ≤ t ≤ 1,

y(0) = y(1) = 0,

ay′′(ξ1)− by′′′(ξ1) = 0, cy′′(ξ2) + dy′′′(ξ2) = 0.

In 2015, Wu [4] obtained some new results on the existence of at least one positive

solution for the following fourth-order three-point nonlinear eigenvalue problem
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
u(4)(t) = λh(t)f(t, u(t)), 0 ≤ t ≤ 1,

u(0) = u(1) = 0,

au′′(η)− bu′′′(η) = 0, cu′′(1) + du′′′(1) = 0.

Bai [5] obtained the existence of triple positive solutions via the Leggett-Williams

fixed-point theorem [6]. There are other meaningful investigated results on the exis-

tence of positive solutions for some types of nonlinear differential equations, one can

be referred to [1-4,7,8]. But to the best of our knowledge, there are not many results

on the existence of multiple positive solutions for fourth-order nonlinear eigenvalue

problems with multi-points boundary value condition.

Based on the fact, our purpose in this paper is to investigate the existence and

multiplicity of positive solutions for the following fourth-order three-point eigenvalue

problem 
u(4)(t) = λh(t)f(t, u(t), u′′(t)), 0 ≤ t ≤ 1,

u(0) = u(1) = 0,

au′′(ξ)− bu′′′(ξ) = 0, cu′′(1) + du′′′(1) = 0,

(1.1)

where λ is a positive parameter, 0< 1
4<ξ< 2

3<1, a, b, c, d are nonnegative constants sa-

tisfying ad+bc+ac>0, b−aξ≥0, h(t)∈C[0, 1], f∈C([0, 1]×[0,+∞)×(−∞, 0], [0,+∞)).

This paper is organized as follows. In Section 2, we introduce some preliminaries.

In Section 3, we state and prove our main results on the existence and multiplicity

of positive solutions for (1.1). At the same time, the corresponding examples are

also included to demonstrate the results we obtained.

2 Preliminaries
For convenience, we first state some definitions and preliminary results which we

need. Throughout this paper, we make the following assumptions:

(H1) f ∈ C([0, 1]× [0,+∞)× (−∞, 0], [0,+∞)) is continuous;

(H2) h(t) ∈ C([0, 1]), h(t) ≤ 0 for all t ∈ [0, ξ], h(t) ≥ 0 for all t ∈ [ξ, 1], where

0 < 1
4 < ξ < 2

3 < 1; and h(t) ̸≡ 0 for any subinterval of [0, 1].

Denote

f0 = lim sup
|u|+|v|→0+

max
t∈[0,1]

f(t, u, v)

|u|+ |v|
, f∞ = lim sup

|u|+|v|→∞
max
t∈[0,1]

f(t, u, v)

|u|+ |v|
, (2.1)

f0 = lim inf
|u|+|v|→0+

max
t∈[0,1]

f(t, u, v)

|u|+ |v|
, f∞ = lim inf

|u|+|v|→∞
max
t∈[0,1]

f(t, u, v)

|u|+ |v|
, (2.2)

and

A=

∫ 1

ξ
G2(s, s)h(s)ds, B=min

{a

∆

(1
4
+
3ξ

4

)( c
2
+d

)∫ 3
4

1
4
+ 3ξ

4

h(s)ds,
a

2∆

( c
4
+d

)∫ 3
4

1
4
+ 3ξ

4

h(s)ds
}
,
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where ∆ = ad+ bc+ ac(1− ξ) > 0.

Our main results in this paper mainly depend on the following Guo-Krasnoselskii’s

fixed-point theorem.

Theorem 2.1[9] Let E be a Banach space, K ⊂ E be a cone in E. Assume

that Ω1 and Ω2 are bounded open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2, and

T : K ∩ (Ω2\Ω1) −→ K is a completely continuous operator such that either

(i) ∥Tu∥ ≥ ∥u∥, u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ω2; or

(ii) ∥Tu∥ ≤ ∥u∥, u ∈ K ∩ ∂Ω1 and ∥Tu∥ ≥ ∥u∥, u ∈ K ∩ ∂Ω2

holds, then T has a fixed point in K ∩ (Ω2\Ω1).

Let C[0, 1] be endowed with the maximum norm

∥u∥ = max
t∈[0,1]

|u(t)|,

and C2[0, 1] be endowed with the norm

∥u∥2 = ∥u∥+ ∥u′′∥ = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|u′′(t)|.

Let G1(t, s) and G2(t, s) be the Green’s functions of the following boundary value

problems {
−u′′ = 0, t ∈ (0, 1),

u(0) = u(1) = 0,

and {
−v′′ = 0, t ∈ (0, 1),

av(ξ)− bv′(ξ) = 0, cv(1) + dv′(1) = 0,

respectively. In particular,

G1(t, s) =

{
(1− s)t, 0 ≤ t ≤ s ≤ 1,

(1− t)s, 0 ≤ s ≤ t ≤ 1;

G2(t, s) =


1

∆
(a(t− ξ) + b)(c(1− s) + d), 0 ≤ t ≤ s ≤ 1, ξ ≤ s ≤ 1,

1

∆
(a(s− ξ) + b)(c(1− t) + d), 0 ≤ s ≤ t ≤ 1, ξ ≤ s ≤ 1.

It is easy to check that

0 ≤ G1(t, s) ≤ G1(s, s), 0 ≤ t ≤ s ≤ 1, (2.3)

G1(t, s) ≥
1

4
G1(s, s), s ∈ [0, 1], t ∈

[1
4
,
3

4

]
, (2.4)

0 ≤ G2(t, s) ≤ G2(s, s), (t, s) ∈ [0, 1]× [ξ, 1], (2.5)

G2(t, s) ≥
1

4
G2(s, s), s ∈ [ξ, 1], t ∈

[1
4
+

3ξ

4
,
3

4
+

ξ

4

]
. (2.6)

Define a cone K in C2[0, 1] by
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K=
{
u∈C2[0, 1] : u≥0, u′′≤0, min

t∈[ 1
4
, 3
4
]
u(t)≥ 1

4
∥u∥, min

t∈[ 1
4
+ 3ξ

4
, 3
4
+ ξ

4
]
[−u′′(t)]≥ 1

4
∥u′′∥

}
.

(2.7)

Define an integral operator T : K → C2[0, 1] by

(Tu)(t) =

∫ 1

0

[ ∫ 1

ξ
G1(t, s)G2(s, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ
]
ds. (2.8)

Therefore,

(Tu)′′(t) = −
∫ 1

ξ
G2(t, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ ≤ 0, (2.9)

and

|(Tu)′′(t)| =
∫ 1

ξ
G2(t, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ.

It is easy to check that

|u(t)|+ |u′′(t)| ≥ 1

4
∥u∥2, u ∈ K, t ∈

[1
4
+

3ξ

4
,
3

4

]
. (2.10)

Obviously, u(t) is a solution for the BVP (1.1) if and only if u(t) is a fixed point of

the operator T .

Lemma 2.1 Assume that (H1) and (H2) hold. If b ≥ aξ, then T : K −→ K is

completely continuous.

Proof Denote

(Tu)(t) =

∫ 1

0

[ ∫ 1

ξ
G1(t, s)G2(s, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ
]
ds

=

∫ 1

0
G1(t, s)

[ ∫ s

ξ
(τ − s)λh(τ)f(τ, u(τ), u′′(τ))dτ

+
1

∆

∫ 1

ξ
(b− a(ξ − s))(c(1− τ) + d)λh(τ)f(τ, u(τ), u′′(τ))dτ

]
ds

=

∫ 1

0
G1(t, s)(Qu)(s)ds, (2.11)

where

(Qu)(s) =

∫ s

ξ
(τ − s)λh(τ)f(τ, u(τ), u′′(τ))dτ

+
1

∆

∫ 1

ξ
(b− a(ξ − s))(c(1− τ) + d)λh(τ)f(τ, u(τ), u′′(τ))dτ. (2.12)

Next, for each t ∈ [0, 1], we consider the following two cases:

Case 1 When t∈ [0, ξ], for any u∈K, from (2.12), (H1), (H2) and b≥ aξ, we

have
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(Qu)(t) =

∫ ξ

t
(t− τ)λh(τ)f(τ, u(τ), u′′(τ))dτ

+
1

∆

∫ 1

ξ
(b− a(ξ − t))(c(1− τ) + d)λh(τ)f(τ, u(τ), u′′(τ))dτ ≥ 0. (2.13)

Case 2 When t ∈ [ξ, 1], for any u ∈ K, from (2.12), (H1), (H2) and b ≥ aξ, we

have

(Qu)(t) =

∫ t

ξ
(τ − t)λh(τ)f(τ, u(τ), u′′(τ))dτ

+
1

∆

∫ t

ξ
(b− a(ξ − t))(c(1− τ) + d)λh(τ)f(τ, u(τ), u′′(τ))dτ

+
1

∆

∫ 1

t
(b− a(ξ − t))(c(1− τ) + d)λh(τ)f(τ, u(τ), u′′(τ))dτ

=
1

∆

∫ t

ξ
(b+ a(τ − ξ))(c(1− t) + d)λh(τ)f(τ, u(τ), u′′(τ))dτ

+
1

∆

∫ 1

t
(b+ a(t− ξ))(c(1− τ) + d)λh(τ)f(τ, u(τ), u′′(τ))dτ ≥ 0. (2.14)

From (2.13) and (2.14), we get

(Qu)(t) ≥ 0 and (Tu)′′(t) = −(Qu)(t) ≤ 0, t ∈ [0, 1].

Moreover, for any u ∈ K, from (2.13), (2.14), (H1), (H2), and b ≥ aξ, we have

∥Tu∥ = max
t∈[0,1]

|(Tu)(t)|

= max
t∈[0,1]

∣∣∣ ∫ 1

0

[ ∫ 1

ξ
G1(t, s)G2(s, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ
]
ds

∣∣∣
≤

∫ 1

0

[ ∫ 1

ξ
G1(s, s)G2(s, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ
]
ds,

and

∥(Tu)′′∥ ≤
∫ 1

ξ
G2(τ, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ.

On the other hand,

min
t∈[ 1

4
, 3
4
]
(Tu)(t) = min

t∈[ 1
4
, 3
4
]

∫ 1

0

[ ∫ 1

ξ
G1(t, s)G2(s, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ
]
ds

≥ 1

4

∫ 1

0

[ ∫ 1

ξ
G1(s, s)G2(s, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ
]
ds ≥ 1

4
∥Tu∥,
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min
t∈[ 1

4
+ 3ξ

4
, 3
4
+ ξ

4
]
[−(Tu)′′(t)] = min

t∈[ 1
4
+ 3ξ

4
, 3
4
+ ξ

4
]
(Qu)(t)

= min
t∈[ 1

4
+ 3ξ

4
, 3
4
+ ξ

4
]

∫ 1

ξ
G2(t, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ

≥ 1

4

∫ 1

ξ
G2(τ, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ ≥ 1

4
∥(Tu)′′∥.

Consequently T : K −→ K. Furthermore, it is not difficult to check that the operator

T is completely continuous by Arzela-Ascoli theorem. This completes the proof.

Lemma 2.2 Suppose that (H1) and (H2) hold. If b ≥ aξ, then for the operator

T : K −→ K, the following conclusions hold:

(i) If f0 < 6
7λA , r > 0 is small enough, then ∥Tu∥2 ≤ ∥u∥2 for any u ∈ K with

∥u∥2 = r;

(ii) if f0 > 4
λB , r > 0 is small enough, then ∥Tu∥2 ≥ ∥u∥2 for any u ∈ K with

∥u∥2 = r;

(iii) if f∞ < 6
7λA , R > 0 is sufficiently large, then ∥Tu∥2 ≤ ∥u∥2 for any u ∈ K

with ∥u∥2 = R;

(iv) if f∞ > 4
λB , R > 0 is sufficiently large, then ∥Tu∥2 ≥ ∥u∥2 for any u ∈ K

with ∥u∥2 = R.

Proof We only prove (iii) and (iv), since the proofs of (i) and (ii) are similar to

those of (iii) and (iv) respectively.

(iii) If f∞ < 6
7λA , we obtain from (2.1) that there exists a number R0 > 0

satisfying |u| + |v| ≥ R0, such that f(t, u, v) ≤ 6
7λA(|u| + |v|). Let R1 ≫ R0, then

max{f(t, u, v) : |u|+ |v| ≤ R0} ≤ 6
7λAR1. Choose a R > R1 satisfying |u|+ |v| ≤ R

such that f(t, u, v) ≤ 6
7λAR.

For any t ∈ [ξ, 1], u ∈ K, ∥u∥2 = R, we get f(t, u, v) ≤ 6
7λAR = 6

7λA∥u∥2. By
(2.3), (2.5) and (2.8), we have

∥Tu∥ ≤
∫ 1

0

[ ∫ 1

ξ
G1(s, s)G2(s, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ
]
ds

≤ 6

7λA
λ∥u∥2

∫ 1

0

[ ∫ 1

ξ
G1(s, s)G2(s, τ)h(τ)dτ

]
ds

≤ 6

7λA
λ∥u∥2

∫ 1

0

[ ∫ 1

ξ
G1(s, s)G2(τ, τ)h(τ)dτ

]
ds

=
6

7λAλ∥u∥2
6

∫ 1

ξ
G2(τ, τ)h(τ)dτ =

1

7
∥u∥2.

By (2.5) and (2.9), we get
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∥(Tu)′′∥ ≤
∫ 1

ξ
G2(s, s)λh(s)f(s, u(s), u

′′(s))ds

≤ 6

7λA
λ∥u∥2

∫ 1

ξ
G2(s, s)h(s)ds ≤

6

7
∥u∥2.

Therefore, ∥Tu∥2 = ∥Tu∥+ ∥(Tu)′′∥ ≤ 1
7∥u∥2 +

6
7∥u∥2 = ∥u∥2.

(iv) If f∞ > 4
λB , we obtain from (2.2) that there exists a number R0 > 0, such

that f(t, u, v) ≥ 4
λB (|u| + |v|) for any t ∈ [0, 1] and |u| + |v| ≥ R0. For any t ∈

[14 +
3ξ
4 ,

3
4 ], u ∈ K, R ≥ 4R0, and ∥u∥2 = R, we have |u(t)|+ |u′′(t)| ≥ 1

4∥u∥2 ≥ R0.

Thus, f(t, u(t), u′′(t)) ≥ 4
λB (|u(t)| + |u′′(t)|) ≥ 1

λB∥u∥2 for t ∈ [14 + 3ξ
4 ,

3
4 ]. Thus, we

consider the following two cases:

Case 1 For 0 ≤ s ≤ t ≤ 1, we have∣∣∣(Tu)′′(1
2

)∣∣∣ = ∫ 1

ξ
G2

(1
2
, s
)
λh(s)f(s, u(s), u′′(s))ds

≥
∫ 3

4

1
4
+ 3ξ

4

G2

(1
2
, s
)
λh(s)f(s, u(s), u′′(s))ds

≥ 1

λB

∫ 3
4

1
4
+ 3ξ

4

G2

(1
2
, s
)
λh(s)ds · ∥u∥2

≥ λ

λB

1

∆
a
(1
4
+

3ξ

4

)( c
2
+ d

)∫ 3
4

1
4
+ 3ξ

4

h(s)ds · ∥u∥2 ≥ ∥u∥2.

Case 2 For 0 ≤ t ≤ s ≤ 1, we have∣∣∣(Tu)′′(1
2

)∣∣∣ = ∫ 1

ξ
G2

(1
2
, s
)
λh(s)f(s, u(s), u′′(s))ds

≥
∫ 3

4

1
4
+ 3ξ

4

G2

(1
2
, s
)
λh(s)f(s, u(s), u′′(s))ds

≥ 1

λB

∫ 3
4

1
4
+ 3ξ

4

G2

(1
2
, s
)
λh(s)ds · ∥u∥2

≥ 1

B

1

∆

( c
4
+ d

)a
2

∫ 3
4

1
4
+ 3ξ

4

h(s)ds · ∥u∥2 ≥ ∥u∥2.

Therefore, ∥Tu∥2 ≥ |(Tu)′′(12)| ≥ ∥u∥2. The proof is completed.

3 Main Results
Theorem 3.1 Suppose (H1) and (H2) hold. Furthermore, f satisfies either

(i) f0 <
6

7λA , f∞ > 4
λB , for any λ ∈

(
4

Bf∞
, 6
7Af0

)
; or
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(ii) f0 >
4
λB , f∞ < 6

7λA , for any λ ∈
(

4
Bf0

, 6
7Af∞

)
,

then the BVP (1.1) has at least one positive solution u = u(t).

Proof Let E = C2[0, 1], Ω1 = {u ∈ E : ∥u∥2 < r}, Ω2 = {u ∈ E : ∥u∥2 < R},
where 0 < r < R. By Lemma 2.1, we know that the operator T : K∩(Ω2\Ω1) −→ K

is completely continuous, then the condition (i) or (ii) of Lemma 2.2 is satisfied.

Applying Theorem 2.1, it follows that T has a fixed point u0 ∈ K ∩ (Ω2\Ω1). Thus

u0 is the solution for the BVP (1.1) and satisfies

u0 ≥ 0, u′′0 ≤ 0, r ≤ ∥u∥2 ≤ R.

For any t ∈ (0, 1), take ε ∈ (0, 12), such that when t ∈ [ε, 1− ε],

G1(t, s) ≥

{
(1− s)ε, t ≤ s ≤ 1,

εs, 0 ≤ s ≤ t.

Therefore, G1(t, s) ≥ εs(1− s) for any s ∈ [0, 1].

By (2.8), we have

u0(t) = (Tu0)(t) =

∫ 1

0

[ ∫ 1

ξ
G1(t, s)G2(s, τ)λh(τ)f(τ, u0(τ), u

′′
0(τ))dτ

]
ds

≥ ε

∫ 1

0

[ ∫ 1

ξ
G1(s, s)G2(s, τ)λh(τ)f(τ, u0(τ), u

′′
0(τ))dτ

]
ds

≥ ε∥Tu0∥ = ε∥u0∥ > 0.

That is u0(t) > 0. This completes the proof.

If

f0 = lim
|u|+|v|→0

max
t∈[0,1]

f(t, u, v)

|u|+ |v|
and f∞ = lim

|u|+|v|→∞
max
t∈[0,1]

f(t, u, v)

|u|+ |v|

exist, then f0 = f0 = f0, f∞ = f∞ = f∞.

Corollary 3.1 Suppose (H1) and (H2) hold. Suppose further that f satisfies

either

(i) f0 = 0, f∞ = ∞ (superlinear); or (ii) f0 = ∞, f∞ = 0 (sublinear),

then the BVP (1.1) has at least one positive solution.

Example 3.1 Consider the following boundary value problem
u(4)(t) = λh(t)f(t, u(t), u′′(t)), t ∈ (0, 1),

u(0) = u(1) = 0,

u′′
(1
2

)
− 2u′′′

(1
2

)
= 0, 2u′′(1) + u′′′(1) = 0,

(3.1)

where h(t) = t− 1
2 , f = [1000(|u|+|v|)+1](|u|+|v|)

1+|u|+|v| , a = 1, b = 2, c = 2, d = 1, ξ = 1
2 , then

f0 = 1, f∞ = 1000 and ∆ = 6, A = 37
576 , B = min{ 3

1024 ,
5

1024} = 3
1024 . Therefore, if
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512
375 < λ < 3456

259 , then Theorem 3.1 (i) guarantees the existence of one positive

solution for the BVP (3.1).

In order to discuss the multiplicity of positive solutions for the BVP (1.1), we

further assume

(H3) f(t, u, v) > 0, for any t ∈ [0, 1] and |u|+ |v| > 0.

Theorem 3.2 Suppose (H1) and (H2) hold. If one of the following two condi-

tions holds:

(i) (H3) holds, f0, f∞ < 6
7λA and there exists a positive constant R0 > 0 satisfying

r ≪ R0 ≪ R such that λ ≥ R0
m(R0)B

, where r > 0 is small enough, R > 0 is large

enough and m(R) = min{f(t, u, v) : R
4 ≤ |u|+ |v| ≤ R, t ∈ [14 + 3ξ

4 ,
3
4 ]};

(ii) f0, f∞ > 4
λB and there exists a positive constant R0 > 0 satisfying r ≪ R0 ≪

R such that λ ≤ 6R0
7M(R0)A

, where r > 0 is small enough, R > 0 is large enough and

M(R) = max{f(t, u, v) : |u|+ |v| ≤ R, t ∈ [ξ, 1]},
then the BVP (1.1) has at least two positive solutions.

Proof (i) Let E = C2[0, 1], Ω1 = {u ∈ E : ∥u∥2 < r}, Ω2 = {u ∈ E :

∥u∥2 < R}. By the condition (i) or (iii) of Lemma 2.2, we get ∥Tu∥2 ≤ ∥u∥2 when

u ∈ K ∩∂Ω1 or u ∈ K ∩∂Ω2. Choose Ω3 = {u ∈ E : ∥u∥2 < R0} such that Ω1 ⊂ Ω3,

Ω3 ⊂ Ω2. By (2.10), we know that R0
4 ≤ |u(t)|+ |u′′(t)| ≤ R0 for any t ∈ [14 + 3ξ

4 ,
3
4 ]

and u ∈ K ∩ ∂Ω3. Thus, it follows the following two cases:

Case 1 For 0 ≤ s ≤ t ≤ 1, we have

∥Tu∥2 ≥
∣∣∣(Tu)′′(1

2

)∣∣∣ = ∫ 1

ξ
G2

(1
2
, s
)
λh(s)f(s, u(s), u′′(s))ds

≥
∫ 3

4

1
4
+ 3ξ

4

G2

(1
2
, s
)
λh(s)f(s, u(s), u′′(s))ds≥ 1

λB

∫ 3
4

1
4
+ 3ξ

4

G2

(1
2
, s
)
λh(s)ds · ∥u∥2

≥ λ

λB

1

∆
a
(1
4
+

3ξ

4

)( c
2
+ d

)∫ 3
4

1
4
+ 3ξ

4

h(s)ds · ∥u∥2 = λm(R0)B ≥ R0 = ∥u∥2.

Case 2 For 0 ≤ t ≤ s ≤ 1, we have

∥Tu∥2 ≥
∣∣∣(Tu)′′(1

2

)∣∣∣ = ∫ 1

ξ
G2

(1
2
, s
)
λh(s)f(s, u(s), u′′(s))ds

≥
∫ 3

4

1
4
+ 3ξ

4

G2

(1
2
, s
)
λh(s)f(s, u(s), u′′(s))ds≥ 1

λB

∫ 3
4

1
4
+ 3ξ

4

G2

(1
2
, s
)
λh(s)ds · ∥u∥2

≥ 1

B

1

∆

( c
4
+ d

)a
2

∫ 3
4

1
4
+ 3ξ

4

h(s)ds · ∥u∥2 = λm(R0)B ≥ R0 = ∥u∥2.

Therefore, ∥Tu∥2 > ∥u∥2, u ∈ K ∩ ∂Ω3. By Theorem 2.1, the BVP (1.1) has

two positive solutions u1 ∈ K ∩ (Ω3 \ Ω1), u2 ∈ K ∩ (Ω2 \ Ω3). Therefore
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r ≤ ∥u1∥2 < R0 < ∥u2∥2 ≤ R, u1, u2 /∈ ∂Ω3. (3.2)

Together with Theorem 3.1, it follows that the BVP (1.1) has two distinct positive

solutions u1 and u2.

(ii) Let E = C2[0, 1], Ω1 = {u ∈ E : ∥u∥2 < r}, Ω2 = {u ∈ E : ∥u∥2 < R}. By
the condition (ii) or (iv) of Lemma 2.2, we get ∥Tu∥2 ≥ ∥u∥2 when u ∈ K ∩ ∂Ω1

or u ∈ K ∩ ∂Ω2. Choose Ω3 = {u ∈ E : ∥u∥2 < R0} such that Ω1 ⊂ Ω3, Ω3 ⊂ Ω2.

For any t ∈ [ξ, 1], u ∈ K ∩ ∂Ω3, then |u(t)|+ |u′′(t)| ≤ R0. By combining (2.5) with

(2.8) and (2.9), we have

∥Tu∥ =

∫ 1

0

[ ∫ 1

ξ
G1(t, s)G2(s, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ
]
ds

≤
∫ 1

0

[ ∫ 1

ξ
G1(s, s)G2(s, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ
]
ds

≤ λM(R0)

∫ 1

0

[ ∫ 1

ξ
s(1− s)G2(τ, τ)h(τ)dτ

]
ds

<
1

6
λM(R0)

∫ 1

ξ
G2(τ, τ)h(τ)dτ ≤ 1

7
R0,

∥(Tu)′′∥ =

∫ 1

ξ
G2(τ, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ

≤
∫ 1

ξ
G2(τ, τ)λh(τ)f(τ, u(τ), u

′′(τ))dτ

≤ λM(R0)

∫ 1

ξ
G2(τ, τ)h(τ)dτ ≤ 6

7
R0.

Hence, we get ∥Tu∥2 = ∥Tu∥+ ∥(Tu)′′∥ < 1
7R0 +

6
7R0 = R0 = ∥u∥2.

Applying the Theorem 3.1 again, the operator T has two fixed points u1 ∈
K ∩ (Ω3\Ω1) and u2 ∈ K ∩ (Ω2\Ω3) satisfying (3.2), which are the two different

positive solutions for the BVP (1.1). The proof is completed.

Corollary 3.2 Suppose (H1)-(H3) hold. Suppose further that f and λ satisfies

either

(i) f0 = f∞ = 0, 0 < λ ≤ 1
Bm(1) ; or (ii) f0 = f∞ = ∞, λ ≥ 6

7AM(1) ,

then BVP (1.1) has at least two positive solutions.

Example 3.2 Consider the following boundary value problem
u(4)(t) = λh(t)f(t, u(t), u′′(t)), t ∈ (0, 1),

u(0) = u(1) = 0,

u′′
(1
2

)
− 6u′′′

(1
2

)
= 0, u′′′(1) = 0,

(3.3)
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where h(t) = t− 1
2 , f = (|u|+|v|)

1
2

10 + (|u|+|v|)3
60 , a = 1, b = 6, c = 0, d = 1, ξ = 1

2 , then

we get f0 = ∞, f∞ = ∞, ∆ = 1, A = 19
24 , B = min{ 15

1024 ,
3

256} = 3
256 . Moreover,

f =
(|u|+ |v|)

1
2

10
+

(|u|+ |v|)3

60
≤ (|u|+ |v|)

1
2

10
+

(|u|+ |v|)
1
2

60
= 7

(|u|+ |v|)
1
2

60
, t∈

[1
2
, 1
]
.

Let R0 = 1 such that |u| + |v| ≤ 1, then M(R0) = max
t∈[ 1

2
,1]
f(t, u, v) = 7

60 . Hence, if

0 < λ ≤ 6R0
7M(R0)A

= 8640
931 , then Theorem 3.2 (ii) guarantees the existence of two

positive solutions for the BVP (3.3).

References

[1] R. Ma, Multiple positive solutions for a semipositone fourth-order boundary value prob-
lem, J. Math. Anal. Appl., 33(2003),217-227.

[2] Y. Li, Existence and multiplicity of positive solutions for fourth-order three-point
boundary value problem, Comput. Math. Appl., 26(2003),109-116.

[3] Y.L. Zhong, S.H. Chen and C.P. Wang, Existence results for a fourth-order differential
equation with a four-point boundary condition, Appl. Math. Lett., 21(2008),465-470.

[4] H. Wu, Positive solutions to fourth-order three-point nonlinear eigenvalue problem,
Ann. Math. Anal. Appl., 31(2015),96-104.

[5] Ch. Bai, Triple positive solutions of three-point boundary value problems of fourth-
order differential equations, Comput. Math. Appl., 56(2008),1364-1371.

[6] R.I. Leggett and L.R. Williams, Multiple positive fixed points of nonlinear operators
on ordered Banach spaces, Indiana Univ. Math.J. , 28(1979),673-688.

[7] B. Liu, Positive solutions of fourth-order three-point boundary value problem Comput.
Math. Appl., 148(2001),313-322.

[8] B. Liu, Positive solutions of fourth-order two-point boundary value problems, Appl.
Math. Comput., 148(2004),407-420.

[9] D. Guo and V. Lskshmikanthan, Nonlinear Problems in Abstract Cones, Academic
Press, San Diego, 1988.

(edited by Mengxin He)


