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Abstract

We present some conditions for the existence and uniqueness of almost
automorphic solutions of third order neutral delay-differential equations with
piecewise constant of the form

(x(t) + px(t− 1))′′′ = a0x([t]) + a1x([t− 1]) + f(t),

where [·] is the greatest integer function, p, a0 and a1 are nonzero constants,
and f(t) is almost automorphic.
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1 Introduction

In this paper we study certain functional differential equations of neutral delay

type with piecewise constant argument of the form

(x(t) + px(t− 1))′′′ = a0x([t]) + a1x([t− 1]) + f(t), (1)

here [·] is the greatest integer function, p, a0 and a1 are nonzero constants, and f(t)

is almost automorphic.
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By a solution x(t) of (1) on R we mean a function continuous on R, satisfying
(1) for all t ∈ R, t ̸= n ∈ Z, and such that the one sided third derivatives of

x(t) + px(t− 1) exist at n ∈ Z.
The concept of almost automorphic functions is more general than that of almost

periodic functions, which were introduced by S. Bochner [1,2], for more details about

this topics we refer to [3,4,6-9] and references therein.

Differential equations with piecewise constant argument (EPCA), which were

firstly considered by Cooke and Wiener [11], and Shah and Wiener [12], describe the

hybrid of continuous and discrete dynamical systems, which combine the proper-

ties of both differential equations and difference equations and have applications in

certain biomedical models in the works of Busenberg and Cooke in [13]. Therefore,

there are many papers concerning the differential equations with piecewise constant

argument (see e.g. [14-20] and references therein). However, there are only a few

works on the almost automorphy of solutions of EPCAs. To the best of our knowl-

edge, only Minh et al [21] in 2006, Dimbour [22] in 2011 and Li [23] in 2013 studied

in this line. They give sufficient conditions for the almost automorphy of bounded

solutions of differential equation EPCAs.

Motivated by the above works, in this paper we investigate the existence of

almost automorphy solutions of equation (1). The paper is organized as follows. In

Section 2, some notation, preliminary definitions and lemmas are presented. The

man result and its proofs is put in Sections 3.

2 Preliminary Definitions and Lemmas

Throughout this paper, N, Z, R and C denote the sets of natural numbers,

integers, real and complex numbers, respectively. l∞(R) denotes the space of all

bounded (two-sided) sequences x : Z → R with sup-norm. We always denote by | · |
the Euclidean norm in Rk or Ck, and by BC(R,R) the space of bounded continuous

functions u : R → R.
Definition 2.1 A continuous function f : R → R is called almost automorphic

if for every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N
such that

g(t) = lim
n→∞

f(t+ sn)

is well defined for each t ∈ R and

f(t) = lim
n→∞

g(t− sn)

for each t ∈ R. The collection of such functions is denoted by AA(R).
It is clear that the function g in Definition 2.1 is bounded and measurable.
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Remark 2.1 A classical example of an automorphic function given by [10] is

defined as follows

f(t) = sin
1

2 + cos
√
2t+ cos t

, t ∈ R,

but f(t) is not almost periodic as it is not uniformly continuous.

Some properties of the almost automorphic functions are listed below.

Proposition 2.1[3,4] Let f, f1, f2 ∈ AA(R). Then the following statements

hold:

(i) αf1 + βf2 ∈ AA(R) for α, β ∈ R.
(ii) fτ := f(·+ τ) ∈ AA(R) for every fixed τ ∈ R.
(iii) f̆ = f(−·) ∈ AA(R).
(iv) The range Rf of f is precompact, so f is bounded.

(v) If {fn} ⊂ AA(R) such that fn → f uniformly on R, then f ∈ AA(R).
By (v) in Proposition 2.1, AA(R) is a Banach space equipped with the sup norm

∥f∥ = sup
t∈R

|f(t)|.

Definition 2.2[5] A sequence x ∈ l∞(R) is said to be almost automorphic if for

any sequence of integers {k′n}, there exists a subsequence {kn} such that

lim
m→∞

lim
n→∞

xp+kn−km = xp,

for any p ∈ Z. Denote by AAS(R) the set of all such sequences.

This limit means that

yp = lim
n→∞

xp+kn

is well defined for each p ∈ Z and

xp = lim
n→∞

yp−kn

for each p ∈ Z.
It is obvious that AAS(R) is a closed subspace of l∞(R), and the range of an

almost automorphic sequence is precompact.

Proposition 2.2 {x(n)} = {(xn1, xn2, · · ·, xnk)} ∈ AAS(Rk) (resp. AAS(Ck))

if and only if {xni} ∈ AAS(R) (resp. AAS(C)), i = 1, 2, · · · , k.
Lemma 2.1[10] Let B be a bounded linear operator in Rn with σΓ(B) (the part of

the spectrum of B on the unit circle of the complex plane) being countable, and let Rn

not contain any subspace isomorphic to c0. Assume further that x = {xn} ∈ l∞(R)
satisfies

xn+1 = Bxn + yn, n ∈ Z,

where {yn} ∈ AAS(R). Then x ∈ AAS(R).



432 ANN. OF APPL. MATH. Vol.32

3 Main Results

We first rewrite equation (1) to the following equivalent system

(x(t) + px(t− 1))′ = y(t), (2)

y′(t) = z(t), (3)

z′(t) = a0x([t]) + a1x([t− 1]) + f(t). (4)

Let (x(t), y(t), z(t)) be a solution of (2)-(4) on R , for n ≤ t < n + 1, n ∈ Z.
Using (4) we obtain

z(t) = z(n) + a0x(n)(t− n) + a1x(n− 1)(t− n) +

∫ t

n
f(v)dv.

From this with (3) we obtain

y(t) = y(n)+ z(n)(t−n)+
1

2
a0x(n)(t−n)2+

1

2
a1x(n− 1)(t−n)2+

∫ t

n

∫ s

n
f(v)dvds.

This together with (2) we obtain

x(t)+px(t−1) = x(n)+px(n−1)+y(n)(t−n)+
1

2!
z(n)(t−n)2+

1

6
a0x(n)(t−n)3

+
1

6
a1x(n− 1)(t− n)3 +

∫ t

n

∫ s

n

∫ σ

n
f(v)dvdσds.

Since x(t) must be continuous at n+1, using the above equations we get for n ∈ Z,
x(n+ 1) =

(
1− p+

a0
3!

)
x(n) + y(n) +

1

2!
z(n) +

(
p+

a1
3!

)
x(n− 1) + f (1)

n ,

y(n+ 1) =
a0
2!
x(n) + y(n) + z(n) +

a1
2!
x(n− 1) + f (2)

n ,

z(n+ 1) = a0x(n) + z(n) + a1x(n− 1) + f
(3)
n ,

(5)

where

f (1)
n =

∫ n+1

n

∫ s

n

∫ σ

n
f(v)dvdσds, f (2)

n =

∫ n+1

n

∫ s

n
f(v)dvds, f (3)

n =

∫ n+1

n
f(v)dv.

(6)

Next we express system (5) in terms of an equivalent system in R4 given by

vn+1 = Avn + hn, (7)

where
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A =


1− p+

a0
3!

1
1

2!
p+

a1
3!a0

2!
1 1

a1
2!

a0 0 1 a1
1 0 0 0

 , (8)

vn = (x(n), y(n), z(n), x(n− 1))T, hn = (f
(1)
n , f

(2)
n , f

(3)
n , 0)T.

Lemma 3.1 If f ∈ AA(R), then the sequences {f (i)
n }n∈Z ∈ AAS(R), i = 1, 2, 3.

Proof We typically consider {f (1)
n }. Since f(t) is almost automorphic, for any

sequence {n′
k}, there exist a subsequence {nk} and a measurable function g(t) such

that

lim
k→∞

f(t+ nk) = g(t), lim
k→∞

g(t− nk) = f(t), t ∈ R.

Consequently, it follows from the Lebesgue dominated convergence theorem that,

for each n ∈ Z,

f
(1)
n+nk

=

∫ n+1+nk

n+nk

∫ s

n+nk

∫ σ

n+nk

f(v)dvdσds =

∫ n+1

n

∫ s

n

∫ σ

n
f(v + nk)dvdσds

→
∫ n+1

n

∫ s

n

∫ σ

n
g(v)dvdσds , gn,

gn−nk
=

∫ n+1−nk

n−nk

∫ s

n−nk

∫ σ

n−nk

g(v)dvdσds =

∫ n+1

n

∫ s

n

∫ σ

n
g(v − nk)dvdσds

→
∫ n+1

n

∫ s

n

∫ σ

n
f(v)dvdσds = f (1)

n ,

as k → ∞. So {f (1)
n } ∈ AAS(R). In a manner similar to the above proof, we know

that {f (2)
n }, {f (3)

n } ∈ AAS(R). This completes the proof of Lemma 3.1.

Lemma 3.2 Suppose that all eigenvalues of A are simple (denoted by λ1, λ2, λ3,

λ4) and |λi| ̸= 1, 1 ≤ i ≤ 4. Then there exists a unique almost automorphic solution

vn : Z → C4 of (7).

Proof By Lemma 3.1 we have that {hn} = {(f (1)
n , f

(2)
n , f

(3)
n , 0)T} ∈ AAS(R4).

It is clear that R4 does not contain any subspace isomorphic to c0, and the bounded

linear operator A on R4 has finite spectrum. So Lemma 2.1 implies that {vn} ∈
AA(R4).

From our hypotheses, there exists a 4× 4 nonsingular matrix P with in general

complex entries such that PAP−1 = Λ where Λ = diag(λ1, λ2, λ3, λ4). Define vn =

Pvn; then (7) becomes

vn+1 = Λvn + hn, (9)

where hn = Phn.
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Suppose ṽn is another almost automorphic solution of (7) distinct from {vn},
then vn − ṽn solves the equation vn+1 = Avn, and Pvn − P ṽn solves the equation

vn+1 = Λvn. Moreover, Pvn − P ṽn would also be almost automorphic, but by

our condition on Λ, it follows that each component of un must become unbounded

either as n → ∞ or as n → −∞, and that is impossible, since it must be almost

automorphic (bounded). This proves the lemma.

Lemma 3.3 For any solution vn = (x(n), y(n), z(n), x(n − 1))T, n ∈ Z, of
(7) there exists a solution (x(t), y(t), z(t)), t ∈ R, of (2)-(4) such that x(n) = cn,

y(n) = dn, z(n) = en, n ∈ Z.
Proof Define

w(t) = cn + pcn−1 + dn(t− n) +
1

2!
en(t− n)2 +

a0
3!
(t− n)3

+
a1
3!
cn−1(t− n)3 +

∫ t

n

∫ s

n

∫ σ

n
f(v)dvdσds, (10)

for t ∈ [n, n+ 1), n ∈ Z. It can easily be verified that w(t) is continuous on R. The
rest proof is similar to that of Lemma 2 in [19], we omit the details.

Lemma 3.4 Let {cn}, {dn}, {en} ∈ AAS(R), f ∈ AA(R) and w(t) define as in

(10) for t ∈ [n, n+ 1), n ∈ Z, then w ∈ AA(R).
Proof The proof is divided into the following two steps.

Step 1 For any {n′
k} ⊂ Z, there exist a subsequence {nk} of {n′

k}, three se-

quences {c̃n}, {d̃n}, {ẽn} and a function f̃ : R → R such that

lim
k→∞

cn+nk
= c̃n, lim

k→∞
c̃n−nk

= cn, n ∈ Z,

lim
k→∞

dn+nk
= d̃n, lim

k→∞
d̃n−nk

= dn, n ∈ Z,

lim
k→∞

en+nk
= ẽn, lim

k→∞
ẽn−nk

= en, n ∈ Z, (11)

lim
k→∞

f(t+ nk) = f̃(t), lim
k→∞

f̃(t− nk) = f(t), t ∈ R.

Let

w̃(t) = c̃n + pc̃n−1 + d̃n(t− n) +
1

2!
ẽn(t− n)2 +

1

3!
a0c̃n(t− n)3

+
1

3!
a1c̃n−1(t− n)3 +

∫ t

n

∫ s

n

∫ σ

n
f̃(v)dvdσds (12)

for t ∈ [n, n + 1), n ∈ Z. Noticing that f and f̃ are bounded measurable, by (11)

and (12),
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|w(t+ nk)− w̃(t)|

≤ |cn+nk
− c̃n|+ |p||cn+nk−1 − c̃n−1|+ |dn+nk

− d̃n|(t− n) +
1

2!
|en+nk

− ẽn|(t−n)2

+
1

3!
|a0||cn+nk

− c̃n|(t− n)3 +
1

3!
|a1||cn+nk−1 − c̃n−1|(t− n)3

+
∣∣∣ ∫ t+nk

n+nk

∫ s

n+nk

∫ σ

n+nk

f(r)dvdσds−
∫ t

n

∫ s

n

∫ σ

n
f̃(v)dvdσds

∣∣∣
≤ |cn+nk

− c̃n|+ |p||cn+nk−1 − c̃n−1|+ |dn+nk
− d̃n|+

1

2!
|en+nk

− ẽn|

+
1

3!
|a0||cn+nk

− c̃n|+
1

3!
|a1||cn+nk−1 − c̃n−1|

+

∫ t

n

∫ s

n

∫ σ

n
|f(v + nk)− f̃(v)|dvdσds

→ 0 as k → ∞.

Similarly, we can show that lim
k→∞

w̃(t− nk) = w(t) for each t ∈ R.
Step 2 We consider the general case where {s′k}k∈Z may not be an integer

sequence. Let n′
k = [s′k] and t′k = s′k − n′

k ∈ [0, 1) for each k. Then by Step 1,

there exist subsequences {tk}, {sk} and {nk} of {t′k}, {s′k} and {n′
k}, respectively,

such that tk = sk − nk, k ∈ Z, lim
k→∞

tk = t ∈ [0, 1], (11) holds and for each t ∈ R,

lim
k→∞

w(t+ t+ nk) = w̃(t+ t), lim
k→∞

w̃(t+ t− nk) = w(t+ t), (13)

where w̃ is given by (12). Let w̃1 = w̃(·+ t). Then it is sufficient to prove that

lim
k→∞

w(t+ sk) = w̃1(t), lim
k→∞

w̃1(t− sk) = w(t), for each t ∈ R. (14)

Now there are two cases to be considered: t + t > [t + t] and t + t = [t + t].

Assume that t+ t > [t+ t]. Then [t+ t] = [t+ tk] for sufficiently large k. Noticing

the boundedness of f(t), {cn}, {dn} and {en}, for sufficiently large k, we obtain

|w(t+ sk)− w(t+ t+ nk)|
= |w(t+ tk + nk)− w(t+ t+ nk)|

≤ |d[t+t]+nk
||tk − t|+ 1

2!
|e[t+t]+nk

||(t+ tk − [t+ tk])
2 − (t+ t− [t+ t])2|

+
a0
3!
|c[t+t]+nk

||(t+ tk − [t+ tk])
3 − (t+ t− [t+ t])3|

+
a1
3!
|c[t+t]+nk−1||(t+ tk − [t+ tk])

3 − (t+ t− [t+ t])3|

+
∣∣∣∫ t+tk+nk

[t+tk]+nk

∫ s

[t+tk]+nk

∫ σ

[t+tk]+nk

f(v)dvdσds−
∫ t+t+nk

[t+t]+nk

∫ s

[t+t]+nk

∫ σ

[t+t]+nk

f(v)dvdσds
∣∣∣
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≤ |d[t+t]+nk
||tk − t|+ 1

2!
|e[t+t]+nk

| |(2t+ tk + t− 2[t+ t])(tk − t)|

+
a0
3!
|c[t+t]+nk

| |(3t2+ t2k + tkt+ t
2− 6t[t+ t]− 3[t+ t](tk + t)+ 3[t+ t]2)(tk − t)|

+
a1
3!
|c[t+t]+nk−1| |(3t2+ t2k + tkt+ t

2− 6t[t+ t]− 3[t+ t](tk + t)+ 3[t+ t]2)(tk − t)|

+

∫ t+tk

t+t

∫ s

[t+t]

∫ σ

[t+t]
|f(v + nk)|dvdσds

→ 0 as k → ∞.

This together with (13) implies that lim
k→∞

w(t+ sk) = w̃1(t).

Assume that t+ t = [t+ t], that is t+ t ∈ Z. If t+ tk ≥ t+ t, (14) can be proved

by an argument similar to the above one, and we omit the details. If t+ tk < t+ t,

[t+ tk] = t+ t− 1 for sufficiently large k and t+ tk − [t+ tk] → 1 as k → ∞. Notice

also that

w(m) = cm−1 + pcm−2 + dm−1 +
1

2!
em−1 +

1

3!
a0cm−1 +

1

3!
a1cm−2

+

∫ m

m−1

∫ s

m−1

∫ σ

m−1
f(v)dvdσds,

for any m ∈ Z. Then for sufficiently large k,

|w(t+ sk)− w(t+ t+ nk)|
= |w(t+ tk + nk)− w(t+ t+ nk)|

≤ |dt+t−1+nk
||tk − t|+ 1

2!
|et+t−1+nk

||(tk − t+ 1)2 − 1|

+
a0
3!
|ct+t−1+nk

||(tk − t+ 1)2 − 1|+ a1
3!
|ct+t+nk−2||(tk − t+ 1)2 − 1|

+
∣∣∣ ∫ t+tk+nk

[t+tk]+nk

∫ s

[t+tk]+nk

∫ σ

[t+tk]+nk

f(v)dvdσds

−
∫ t+t+nk

t+t−1+nk

∫ s

t+t−1+nk

∫ σ

t+t−1+nk

f(v)dvdσds
∣∣∣

≤ |dt+t−1+nk
||tk − t|+ 1

2!
|et+t−1+nk

||(tk − t+ 1)2 − 1|

+
a0
3!
|ct+t−1+nk

||(tk − t+ 1)2 − 1|+ a1
3!
|ct+t+nk−2||(tk − t+ 1)2 − 1|

+

∫ t+tk

t+t

∫ s

t+t−1

∫ σ

t+t−1
|f(v + nk)|dvdσds

→ 0 as k → ∞.

This together with (13) leads to lim
k→∞

w(t+ sk) = w̃1(t).

Similarly, we can prove that lim
k→∞

w̃1(t−sk) = w(t) for each t ∈ R, and then (14)

is true.
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Theorem 1 If |p| ̸= 1. Suppose that all eigenvalues of A are simple (denoted

by λ1, λ2, λ3, λ4) and |λi| ̸= 1, 1 ≤ i ≤ 4. Then equation (1) has a unique almost

automorphic solution x(t), which can, in fact be determined explicitly in terms of

w(t) as defined in the proof of Lemma 3.3.

Proof From Lemma 3.2, we know that system (7) has a unique bounded solution

{vn}n∈Z ∈ PAAS(R4). Let (cn, dn, en) be the first three components of vn, now it

follows from Lemma 3.3 that (1) has a unique bounded solution x(t) such that

x(n) = cn, y(n) = dn, z(n) = dn, n ∈ Z, where y(n) and z(n) are defined in (2)-(4),

and for t ∈ [n, n+ 1), n ∈ Z, and for t ∈ R,

w(t) = cn + pcn−1 + dn(t− n) +
1

2!
en(t− n)2 +

1

3!
a0cn(t− n)3

+
1

3!
a1cn−1(t− n)3 +

∫ t

n

∫ s

n

∫ σ

n
f(v)dvdσds. (15)

From Lemma 3.4, we have that w ∈ AA(R). It is easy to get

x(t) =



∞∑
n=0

(−p)nw(t− n), |p| < 1,

∞∑
n=0

(−1)n

pn+1
w(t+ n+ 1), |p| > 1.

(16)

Therefore x ∈ AA(R) by Proposition 2.1.

The uniqueness of x(t) as an almost automorphic solution of (1) follows from

the uniqueness of the almost automorphic solution vn : Z → R4 of (7) given by

Lemma 3.3, which determines the uniqueness of w(t), and therefore from (16) the

uniqueness of x(t). This completes the proof.
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