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Abstract

By employing the Schauder fixed-point theorem, we establish new suffi-
cient conditions for the controllability of impulsive functional boundary value
problems.
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1 Introduction
In practical control systems, impulses exist widely involving almost all fields such

as medicine, biology, economics, electronics and etc. And hence this kind of systems

has attracted considerable interest during the past decades. In general, as reported

in Lakshmikanthan, Bainov and Simeonov [1], impulsive systems combine continuous

evolution with instantaneous state jumps or resets. These systems provide a natural

framework for mathematical modeling of many real world evolutionary processes

where the states undergo abrupt changes at certain instants or at variable instants.

The concept of controllability plays an important role in control theory and

engineering, and the problem of controllability of boundary value problems repre-

sented by functional differential equations has been extensively studied (see Han

and Park [2], Akhmetov, Perestyuk and Tleubergenova [3], Akhmetov and Zafer [4]

and Balachandran, Dauer [5]). In Lando [6], a method was suggested for solving

problems of control over linear systems based on the normal solvability of boundary

value problems. Akhmetov and Zafer [4] developed the above ideas for impulsive

system
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d

dt
x(t) = A(t)x(t) + C(t)u+ f(t) + µg(t, x, u, µ), t ̸= θi,

∆x|t=θi = Bix+Divi + Ji + µWi(x, vi, µ),

x(α) = a, x(β) = b,

(1.1)

and obtained the controllability of system (1.1) by contraction mapping principle.

For fixed real numbers α and β with α < β and fixed positive integers r and p,

denote by Lr
2[α, β] the set of all square integrable functions η : [α, β] → Rr and by

Dr[1, p] the set of all finite sequences {ξi}, ξi ∈ Rr, i = 1, · · · , p. We define a space

Πr
p = Lr

2 ×Dr whose elements are denoted by {η, ξ} and let

⟨{η, ξ}, {ω, v}⟩ =
∫ β

α
(η, ω)dt+

p∑
i=1

(ξi, vi)

be an inner product in Πr
p, where (·, ·) is the Euclidean scalar product in Rr.

Set

PC(I,Rn) = {x : I → Rn, x(t) is continuous everywhere expect for a finite number

of points t̃ at which x(t̃−), x(t̃+) exist and x(t̃−) = x(t̃)}.

If x ∈ PC([−τ, T ],Rn), then for each t ∈ [0, T ], we define xt ∈ PC([−τ, 0],Rn) by

xt(θ) = x(t+ θ) for −τ ≤ θ ≤ 0.

In this paper, we investigate the controllability of the following impulsive func-

tional boundary value problems
d

dt
[x(t)− h(t, xt)] = A(t)x(t) + C(t)u+ f(t, xt) + µg(t, xt, u), t ̸= θi,

∆x(t) = Bix(t) +Divi + Ji + µWi(x, vi, µ), t = θi,
x(t) = ϕ(t), t ∈ [−τ, 0],
x(T ) = b,

(1.2)

where µ is a small positive parameter, both τ and T are positive constants, x ∈
Rn, the symbol ∆(θ) means x(θ+) − x(θ−) with x(θ+) = lim

t→θ+0
x(t) and x(θ−) =

lim
t→θ−0

x(t), ϕ ∈ Cτ = PC ([−τ, 0],Rn), A(t) and C(t) are the known matrices of the

sizes (n×n) and (n×m), respectively, the elements of which belong to L1
2[0, T ], both

Bi and Di are constant matrices of size (n×n) with det(Ii+Bi) ̸= 0 (i = 1, · · · , p),
{θi} (i = 1, · · · , p) is a strictly increasing sequence of real numbers in (0, T ) with

0 < θ1 < θ2 < · · · < θp < θp+1 = T , b, Ji, vi ∈ Rn are all constant vectors, J = {Ji},
v = {vi} (i = 1, · · · , p). f : [0, T ] × Cτ → Rn, g : [0, T ] × Cτ × Rm → Rn,

h : [0, T ]× Cτ → Rn, Wi : Rn × Rn × R → Rn (i = 1, · · · , p), {f, J} ∈ Πn
p [0, T ]. Set

G0 = [0, θ1], Gk = (θk, θk+1] (k = 1, · · · , p).
Definition 1.1 The boundary value problem (1.2) is said to be controllable, if

for any ϕ∈Cτ , b∈Rn, there exists a {u, v}∈Πm
p for which the boundary value problem
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(1.2) has a nontrivial solution.

We denote by X(t) with X(0) = I, a fundamental matrix of system

ẋ(t) = A(t)x, t ∈ [0, T ]

and define

Ψ(t) =

∫ t

0
Q(t)QT(t)dt+

∑
0<θi<t

PiP
T
i ,

where

Q(t) = X−1(t)C(t), Pi = X−1(θi)Di.

Define a space

B = {x : [−τ, T ] → Rn, x ∈ PC([0, T ],Rn), x(θ+k ), x(θ
−
k )

exist and x(θ−k ) = x(θk), x0 ∈ Cτ , k = 1, · · · , p}

with the norm

∥x∥B = ∥x0∥τ + ∥x∥,

and a space

B′ = {x ∈ B, x0 = 0 ∈ Cτ}

with the norm

∥x∥B′ = ∥x0∥τ + ∥x∥ = ∥x∥,

where ∥xt∥τ =: sup
t∈[t−τ,t]

∥x(t)∥, ∥x∥=: sup
t∈[0,T ]

∥x(t)∥, then both (B, ∥·∥B) and (B′, ∥ · ∥B′)

are Banach spaces.

Definition 1.2 x : [−τ, T ] → Rn is said to be a mild solution of system (1.2),

if x(t) has the following properties:

(i) x0 = ϕ ∈ Cτ ;

(ii) ∆x(θi) = Bix(θi) +Divi + Ji + µWi(x(θi), vi, µ);

(iii) the restriction of x(·) to the interval Gk (k = 0, 1, · · · , p + 1) is continuous

and the following integral equation is verified:

x(t) = X(t) [ϕ(0)− h(0, ϕ)] + h(t, xt)

+X(t)

∫ t

0
[Q(s)u+X−1(s)f(s, xs) + µX−1(s)g(s, xs, u)]ds

+X(t)
∑

0<θi<t

(
Pivi +X−1(θi)Ji + µX−1(θi)Wi(x(θi), vi, µ)

)
;

(iv) x(T ) = b.

Definition 1.3[7] A set M ⊂ Rn is said to be quasi-equicontinuous in [−τ, T ]

if for any ε > 0, there exists a constant δ > 0 such that if y ∈ M, τ1, τ2 ∈ [−τ, t1] or

τ1, τ2 ∈ Gk, k = 1, 2, · · · , p+ 1 and |τ1 − τ2| < δ, then ∥y(τ1)− y(τ2)∥ < ε.
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Lemma 1.1[8](Schauder fixed-pint theorem) Let E be a Banach space and B ⊂ E
be a bounded, closed and convex set. If T : B → B is completely continuous, then

the operator T has a fixed point x∗ ∈ B, that is, T x∗ = x∗.

Lemma 1.2[7] The set M ⊂ Rn is relatively compact if

(a) M is uniformly bounded, that is, ∥x∥M ≤ B for each x ∈ M and some

positive constant B;

(b) M is quasi-equicontinuous in [t0, T ].

2 Main Results

In this section, we investigate the controllability of the boundary value problem

(1.2). For convenience, we introduce the following hypotheses and notations.

(H1) There exist constants Mi > 0 (i = 1, · · · , 4), such that for t ∈ [0, T ], we

have

∥X(t)∥ ≤ M1, ∥X−1(t)∥ ≤ M2, ∥Ψ(t)∥ ≤ M3, ∥Ψ−1(t)∥ ≤ M4;

(H2) (i) for almost all t ∈ [0, T ], f : [0, T ] × Cτ → Rn : (t, ϕ) → f(t, ϕ) is

continuous on ϕ;

(ii) for any constant r > 0, there exists a function αr(t), such that for t ∈ [0, T ],

we have

sup
∥ϕ∥τ≤r

∥f(t, ϕ)∥ ≤ αr(t)

and

lim inf
r→+∞

1

r

∫ T

0
αr(t)dt = l1 < +∞;

(H3) (i) the function h : [0, T ]× Cτ → Rn is Lipschitz continuous, that is, there

exists a positive constant l2, such that

∥h(t1, ϕ1)− h(t2, ϕ2)∥ ≤ l2(|t1 − t2|+ ∥ϕ1 − ϕ2∥τ );

(ii) there exists a positive constant l3, such that for (t, ϕ) ∈ [0, T ]×Cτ , we have

∥h(t, ϕ)∥ ≤ l3(1 + ∥ϕ∥τ );

(H4) (i) for almost all t ∈ [0, T ], the function g is continuous;

(ii) for any constant r > 0 and u ∈ Rm, there exists a function βr(t), such that

for t ∈ [0, T ], we have

sup
∥ϕ∥τ≤r

∥g(t, ϕ, u)∥ ≤ βr(t)

and

lim inf
r→+∞

1

r

∫ T

0
βr(t)dt = l4 < +∞;
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(H5) (i) the functions Wi (i = 1, · · · , p) are all continuous;

(ii) for any constant r > 0, vi ∈ Rm and µ ∈ R+, there exist functions ρi(r),

such that

sup
∥y∥≤r

∥Wi(y, vi, µ)∥ ≤ ρi(r) (i = 1, · · · , p)

and

lim inf
r→+∞

1

r

p∑
i=1

ρi(r) = l5 < +∞.

Theorem 2.1 Assume that det(I +Bi) ̸= 0 (i = 1, · · · , p) and conditions (H1)-

(H5) hold, then system (1.2) is controllable provided that the following equation is

satisfied:

l1M1M2(1+M3M4)+ l3(1+M1M2M3M4)+µM1M2(1+M3M4)(l4+ l5) < 1. (2.1)

Proof Assume that the input control {u, v} is as follows:{
u(t) = QT(t)c+ û(t), t ∈ [0, T ],

vi = PT
i c+ v̂i, i = 1, · · · , p,

(2.2)

where c ∈ Rn is a constant vector, {û, v̂} ∈ Πm
p is orthogonal to all columns of

[QT, PT
i ], then the controllability problem of system (1.2) is equivalent to

x(t) =



ϕ(t), t ∈ [−τ, 0],

X(t) [ϕ(0)− h(0, ϕ)] + h(t, xt)

+X(t)

∫ t

0
[Q(s)u+X−1(s)f(s, xs) + µX−1(s)g(s, xs, u)]ds

+X(t)
∑

0<θi<t

(
Pivi +X−1(θi)Ji + µX−1(θi)Wi(x(θi), vi, µ)

)
, t ∈ (0, T ),

b, t = T.
(2.3)

Substituting equation (2.2) into equation (2.3), we obtain that the vector c as

c = Ψ−1(T )
[
X−1(T )b− ϕ(0) + h(0, ϕ)−X−1(T )h(T, xT )

]
−Ψ−1(T )

∫ T

0
X−1(s) (f(s, xs) + µg(s, xs, u)) ds

−Ψ−1(T )

p∑
i=1

X−1(θi) (Ji + µWi(x(θi), vi, µ)) . (2.4)

Define an operator Γ : B → B as
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(Γx)(t) =



ϕ(t), t ∈ [−τ, 0],

X(t) [ϕ(0)− h(0, ϕ)] + h(t, xt)

+X(t)

∫ t

0
[Q(s)u+X−1(s)f(s, xs) + µX−1(s)g(s, xs, u)]ds (2.5)

+X(t)
∑

0<θi<t

(Pivi+X−1(θi)Ji+µX−1(θi)Wi(x(θi), vi, µ)), t∈[0, T ],

where u is defined by equations (2.2) and (2.4).

Now we should prove that the operator Γ defined in equation (2.5) has one

fixed point x ∈ B, then system (1.2) has a mild solution x(t, u, v) with respect to

{u, v} ∈ Πm
p which implies that system (1.2) is controllable. Thus, the problem to

discuss the controllability of system (1.2) can be reduced into the existence of the

fixed point of the operator Γ.

Define

ϕ̂(t) =

{
ϕ(t), t ∈ [−τ, 0],

X(t)ϕ(0), t ∈ [0, T ],
(2.6)

then ϕ̂ ∈ B. Let
x(t) = y(t) + ϕ̂(t), t ∈ [−τ, T ].

Then y ∈ B′ and for t ∈ [0, T ],

y(t) = −X(t)h(0, ϕ) + h(t, yt + ϕ̂t)

+X(t)

∫ t

0

[
Q(s)u+X−1(s)f(s, ys + ϕ̂s) + µX−1(s)g(s, ys + ϕ̂s, u)

]
ds

+X(t)
∑

0<θi<t

(
Pivi +X−1(θi)Ji + µX−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)

)
,

for t ∈ [−τ, T ], x(t) = (Γx)(t).

Define an operator Φ : B′ → B′ as

(Φy)(t)=



0, t ∈ [−τ, 0],

X(t)
[
− h(0, ϕ)+Ψ(t)Ψ−1(T )k−Ψ(t)Ψ−1(T )

∫ T

0
X−1(s)f(s, ys+ ϕ̂s)ds

−Ψ(t)Ψ−1(T )X−1(T )h(T, yT + ϕ̂T ) +

∫ t

0
X−1(s)f(s, ys + ϕ̂s)ds

+
∑

0<θi<t

X−1(θi)Ji

]
+h(t, yt+ϕ̂t)−µX(t)

[
Ψ(t)Ψ−1(T )

(∫ t

0
X−1(s)f(s, ys+ϕ̂s)ds

+

p∑
i=1

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)
)
−
∫ t

0
X−1(s)g(s, ys + ϕ̂s, u)ds

−
∑

0<θi<t

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)
]
, t ∈ [0, T ],

(2.7)
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where k = X−1(T )b− ϕ(0) + h(0, ϕ)−
p∑

i=1
X−1(θi)Ji.

By simple computation, we know that the operator Γ : B → B has a fixed point

if and only if the operator Φ : B′ → B′ has a fixed point. So it turns out to prove

that Φ : B′ → B′ has a fixed point.

The proof is given in the following several steps.

Step 1 Φ(B′
q) ⊂ B′

q for some q > 0, where B′
q = {y ∈ B′, ∥y∥B′ ≤ q}. Otherwise,

for any positive constant q, there exists a yq ∈ B′
q, such that Φ(yq) /∈ B′

q, that is,

∥Φ(yq)∥B′ > q. By the definition of the operator Φ, we have

q < ∥(Φyq)∥B′

≤ M1

[
∥h(0, ϕ)∥+ ∥Ψ∥∥Ψ−1(T )∥|k|+M2(1 +M3M4)

∫ T

0
∥f(s, ys + ϕ̂s)∥ds

+M2∥Ψ∥∥Ψ−1(T )∥∥h(T, yT + ϕ̂T )∥+M2

p∑
i=1

∥Ji∥
]
+ l3(1 + ∥yt + ϕ̂t∥τ )

+µM1M2

[
∥Ψ∥∥Ψ−1(T )∥

(∫ T

0
∥g(s, ys+ϕ̂s, u)∥ds+

p∑
i=1

∥Wi(y(θi)+ϕ̂(θi), vi, µ)∥
)

+

∫ T

0
∥g(s, ys + ϕ̂s, u)∥ds+

p∑
i=1

∥Wi(y(θi) + ϕ̂(θi), vi, µ)∥
]

≤ M1

[
l3(1 + ∥ϕ∥τ ) +M3M4|k|+M2

p∑
i=1

∥Ji∥
]
+ l3(1 +M1M2M3M4)(1 + q′)

+M1M2(1+M3M4)

∫ T

0
αq′(s)ds+µM1M2(1+M3M4)

(∫ T

0
βq′(s)ds+

p∑
i=1

ρi(q
′)
)
,

where q′ = q + (1 + M1)∥ϕ∥τ . Dividing both sides of this by q and considering

conditions (H1)-(H5), we obtain that

l1M1M2(1 +M3M4) + l3(1 +M1M2M3M4) + µ(l4 + l5)M1M2(1 +M3M4) ≥ 1,

which contradicts equation (2.1). Hence for some positive constant q, Φ(B′
q) ⊂ B′

q.

Step 2 Φ : B′ → B′ is continuous.

Let {y(n), y} ⊂ B′ with ∥y(n) − y∥B′ → 0 for n → ∞. Then there exists some

positive constant q, such that

∥y(n)∥B′ ≤ q, ∥y∥B′ ≤ q.

That is, {y(n), y} ⊂ B′
q.



No.1 S.J. Yang, etc., Quasi-linear Impulsive Functional BVPs 97

∥∥Φy(n) − Φy
∥∥
B′

=
∥∥∥X(t)

[
−Ψ(t)Ψ−1(T )

∫ T

0
X−1(s)

(
f(s, y(n)s + ϕ̂s)− f(s, ys + ϕ̂s)

)
ds

−Ψ(t)Ψ−1(T )X−1(T )
(
h(T, y

(n)
T + ϕ̂T )− h(T, yT + ϕ̂T )

)
+

∫ t

0
X−1(s)

(
f(s, y(n)s + ϕ̂s)−f(s, ys + ϕ̂s)

)
ds
]
+
(
h(t, y

(n)
t + ϕ̂t)−h(t, yt+ ϕ̂t)

)
+µX(t)

[
−Ψ(t)Ψ−1(T )

∫ t

0
X−1(s)

(
f(s, y(n)s + ϕ̂s)− f(s, ys + ϕ̂s)

)
ds

−
p∑

i=1

X−1(θi)
(
Wi(y

(n)(θi) + ϕ̂(θi), vi, µ)−Wi(y(θi) + ϕ̂(θi), vi, µ)
)

+

∫ t

0
X−1(s)

(
g(s, y(n)s + ϕ̂s, u(s))− g(s, ys + ϕ̂s, u(s))

)
ds

+
∑

0<θi<t

X−1(θi)
(
Wi(y

(n)(θi) + ϕ̂(θi), vi, µ)−Wi(y(θi) + ϕ̂(θi), vi, µ)
)]∥∥∥

B′

≤ ((µ+ 1)M1M2M3M4 +M1M2)

∫ T

0

∥∥f(s, y(n)s + ϕ̂s)− f(s, ys + ϕ̂s)
∥∥ds

+M1M2M3M4

∥∥h(T, y(n)T + ϕ̂T )− h(T, yT + ϕ̂T )
∥∥

+ sup
t∈[0,T ]

∥∥h(t, y(n)t + ϕ̂t)− h(t, yt + ϕ̂t)
∥∥

+2µM1M2

p∑
i=1

∥∥Wi(y
(n)(θi) + ϕ̂(θi), vi, µ)−Wi(y(θi) + ϕ̂(θi), vi, µ)

∥∥
+µM1M2

∫ T

0

∥∥g(s, y(n)s + ϕ̂s, u(s))− g(s, ys + ϕ̂s, u(s))
∥∥ds.

In view of conditions (H2)-(H5) and ∥y(n)t + ϕ̂t∥τ ≤ q′, we have

∥f(t, y(n)t + ϕ̂t)− f(t, yt + ϕ̂t)∥ ≤ 2αq′(t),

∥g(t, y(n)t + ϕ̂t, u(t))− g(t, yt + ϕ̂t, u(t))∥ ≤ 2βq′(t),

and hence by dominated convergence theorem, we obtain that

lim
n→∞

∥Φy(n) − Φy∥B′ → 0.

That is, Φ : B′ → B′ is continuous.

Step 3 Φε(B′
q) is quasi-equicontinuous in [−τ, T ], where Φε : B′ → B′ is an

operator defined by



98 ANN. OF APPL. MATH. Vol.33

(Φεy)(t) =



0, t ∈ [−τ, 0],

X(t)
[
− h(0, ϕ)+Ψ(t)Ψ−1(T )k−Ψ(t)Ψ−1(T )

∫ T

0
X−1(s)f(s, ys+ ϕ̂s)ds

−Ψ(t)Ψ−1(T )X−1(T )h(T, yT + ϕ̂T ) +

∫ t−ε

0
X−1(s)f(s, ys + ϕ̂s)ds

+
∑

0<θi<t−ε

X−1(θi)Ji

]
+ h(t, yt + ϕ̂t)

−µX(t)
[
Ψ(t)Ψ−1(T )

(∫ t−ε

0
X−1(s)f(s, ys + ϕ̂s)ds

+

p∑
i=1

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)
)
−
∫ t−ε

0
X−1(s)g(s, ys + ϕ̂s, u)ds

−
∑

0<θi<t−ε

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)
]
, t ∈ [0, T ],

where 0 < ε < t is an arbitrary positive constant.

For any t1, t2 ∈ Gk (k = 0, 1, · · · , p) with t1 > t2,

∥(Φεy)(t1)− (Φεy)(t2)∥B′

=
∥∥∥ (X(t2)−X(t1))h(0, ϕ) + (X(t1)Ψ(t1)−X(t2)Ψ(t2))Ψ

−1(T )k

−(X(t1)Ψ(t1)−X(t2)Ψ(t2))Ψ
−1(T )

∫ T

0
X−1(s)f(s, ys + ϕ̂s)ds

− (X(t1)Ψ(t1)−X(t2)Ψ(t2))Ψ
−1(T )X−1(T )h(T, yT + ϕ̂T )

+ (X(t1)−X(t2))

∫ t2−ε

0
X−1(s)f(s, ys+ϕ̂s)ds+X(t1)

∫ t1−ε

t2−ε
X−1(s)f(s, ys+ϕ̂s)ds

+(X(t1)−X(t2))
∑

0<θi<t2−ε

X−1(θi)Ji +X(t1)
∑

t2−ε≤θi<t1−ε

X−1(θi)Ji

+h(t1, yt1+ϕ̂t1)−h(t2, yt2+ϕ̂t2)−µX(t1)Ψ(t1)Ψ
−1(T )

∫ t1−ε

t2−ε
X−1(s)f(s, ys+ϕ̂s)ds

+µ (X(t2)Ψ(t2)−X(t1)Ψ(t1))Ψ
−1(T )

∫ t2−ε

0
X−1(s)f(s, ys + ϕ̂s)ds

+µ (X(t2)Ψ(t2)−X(t1)Ψ(t1))Ψ
−1(T )

p∑
i=1

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)

+µ (X(t1)−X(t2))

∫ t2−ε

0
X−1(s)g(s, ys + ϕ̂s, u(s))ds

+µX(t1)

∫ t1−ε

t2−ε
X−1(s)g(s, ys + ϕ̂s, u(s))ds

+µ (X(t1)−X(t2))
∑

0<θi<t2−ε

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)
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+µX(t1)
∑

t2−ε≤θi<t1−ε

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)
∥∥∥
B′

≤ ∥X(t2)−X(t1)∥∥h(0, ϕ)∥+ ∥X(t1)Ψ(t1)−X(t2)Ψ(t2)∥∥Ψ−1(T )k∥

+∥X(t1)Ψ(t1)−X(t2)Ψ(t2)∥∥Ψ−1(T )∥
∥∥∥ ∫ T

0
X−1(s)f(s, ys + ϕ̂s)ds

∥∥∥
+∥X(t1)Ψ(t1)−X(t2)Ψ(t2)∥∥Ψ−1(T )∥∥X−1(T )∥∥h(T, yT + ϕ̂T )∥

+∥X(t1)−X(t2)∥
∥∥∥∫ t2−ε

0
X−1(s)f(s, ys + ϕ̂s)ds

∥∥∥
+∥X(t1)∥

∥∥∥ ∫ t1−ε

t2−ε
X−1(s)f(s, ys + ϕ̂s)ds

∥∥∥
+∥X(t1)−X(t2)∥

∥∥∥ ∑
0<θi<t2−ε

X−1(θi)Ji

∥∥∥+ ∥X(t1)∥
∥∥∥ ∑
t2−ε≤θi<t1−ε

X−1(θi)Ji

∥∥∥
+∥h(t1, yt1 + ϕ̂t1)− h(t2, yt2 + ϕ̂t2)∥

+µ∥X(t1)∥∥Ψ(t1)∥∥Ψ−1(T )∥
∥∥∥ ∫ t1−ε

t2−ε
X−1(s)f(s, ys + ϕ̂s)ds

∥∥∥
+µ∥X(t2)Ψ(t2)−X(t1)Ψ(t1)∥∥Ψ−1(T )∥

∥∥∥ ∫ t2−ε

0
X−1(s)f(s, ys + ϕ̂s)ds

∥∥∥
+µ∥X(t2)Ψ(t2)−X(t1)Ψ(t1)∥∥Ψ−1(T )∥

∥∥∥ p∑
i=1

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)
∥∥∥

+µ∥X(t1)−X(t2)∥
∥∥∥ ∫ t2−ε

0
X−1(s)g(s, ys + ϕ̂s, u(s))ds

∥∥∥
+µ∥X(t1)∥

∥∥∥∫ t1−ε

t2−ε
X−1(s)g(s, ys + ϕ̂s, u(s))ds

∥∥∥
+µ∥X(t1)−X(t2)∥

∥∥∥ ∑
0<θi<t2−ε

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)
∥∥∥

+µ∥X(t1)∥
∥∥∥ ∑
t2−ε≤θi<t1−ε

X−1(θi)Wi(y(θi) + ϕ̂(θi), vi, µ)
∥∥∥

≤ l3(1 + ∥ϕ∥τ )∥X(t2)−X(t1)∥+ ∥(X(t1)Ψ(t1)−X(t2)Ψ(t2)∥∥Ψ−1(T )k∥

+∥X(t1)Ψ(t1)−X(t2)Ψ(t2)∥∥Ψ−1(T )∥∥X−1(s)∥
∫ T

0
αq′(s)ds

+∥X(t1)Ψ(t1)−X(t2)Ψ(t2)∥∥Ψ−1(T )∥∥X−1(T )∥l3(1 + ∥yT + ϕ̂T ∥τ )

+∥X(t1)−X(t2)∥∥X−1(s)∥
∫ t2−ε

0
αq′(s)ds+ ∥X(t1)∥∥X−1(s)∥

∫ t1−ε

t2−ε
αq′(s)ds

+∥X(t1)−X(t2)∥
∑

0<θi<t2−ε

∥X−1(θi)Ji∥+ l2(|t1−t2|+∥yt1−yt2∥τ +∥ϕ̂t1− ϕ̂t2∥τ )
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+µ∥X(t2)Ψ(t2)−X(t1)Ψ(t1)∥∥Ψ−1(T )∥∥X−1(s)∥
∫ t2−ε

0
αq′(s)ds

+µ∥X(t1)∥∥Ψ(t1)∥∥Ψ−1(T )∥∥X−1(s)∥
∫ t1−ε

t2−ε
αq′(s)ds

+µ∥X(t2)Ψ(t2)−X(t1)Ψ(t1)∥∥Ψ−1(T )∥∥X−1(θi)∥
p∑

i=1

∥Wi(y(θi) + ϕ̂(θi), vi, µ)∥

+µ∥X(t1)−X(t2)∥∥X−1(s)∥
∥∥∥ ∫ t2−ε

0
βq′(s)ds+µ∥X(t1)

∥∥∥∥X−1(s)∥
∫ t1−ε

t2−ε
βq′(s)ds

+µ∥X(t1)−X(t2)∥∥X−1(θi)∥
∑

0<θi<t2−ε

∥Wi(y(θi) + ϕ̂(θi), vi, µ)∥.

The right-hand side is independent of y ∈ B′
q and tends to zero as t1− t2 → 0. Thus,

Φε(B′
q) is quasi-equicontinuous. The quasi-equicontinuities for the cases t2 < t1 ≤ 0

and t2 < 0 < t1 are obvious.

Note that by using the same method as in Step 1, we can show that the operator

Φε is uniformly bounded, which implies by Lemma 1.2 that Φε(B′
q) is a relatively

compact set in B′ for any ε ∈ (0, t). On the other side, we can easily prove that

∥(Φy)(t) − (Φεy)(t)∥B′ → 0 as ε → 0+. By Lemma 1.1, the operator Φ has a fixed

point ȳ ∈ B′. And hence the operator Γ has a fixed point x̄ = ȳ + ϕ̂ ∈ B. By

Definition 1.1, the boundary value problem (1.2) is controllable.

3 An Example

As an application, we consider the following impulsive functional boundary value

problems

d

dt
[x(t)− h(t, xt)] = A(t)x(t) + C(t)u+ f(t, xt) + µg(t, xt, u), t ̸= θi,

∆x(t) = Bix(t) +Divi + Ji + µWi(x, vi, µ), t = θi,

x(t) = ϕ(t), t ∈ [−τ, 0],

x(1) = b,

(3.1)

where

A(t) =

(
−2t4 + 2t2 − t 2t3 + 1

−2t5 + 4t3 − t2 − 2t− 1 2t4 − 2t2 + t

)
,

C =

(
1, 0
0, 1

)
, Di =

1

3

(
1, 0
0, 1

)
, Bi =

(
1, 0
0, 1

)
,

Ji =
(
(−1)i, (−1)i+1

)T
, θi = i/3, i = 1, 2, µ = 1/360, u = (u1, u2)

T.

For ϕ ∈ Cτ , s = ∥ϕ∥τ ,
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g(t, ϕ, u) =
1

10

(
cosu1 + scost, sinu2 + ssint

)T
,

Wi(y, vi, µ) =
1

10
(sinµvi1 + s, cosµvi2 + s)T,

f(t, ϕ) =
1

360

(
sin
√

1 + s2, cos
√

1 + s2
)T

, h(t, ϕ) =
1

360
(sint, sins)T.

By computation, we have

X(t) =

(
1− t2, t

t4 − t2 − t, 1− t3

)
, X−1(t) =

(
1− t3, −t

t+ t2 − t4, 1− t2

)
,

Q(t)=X−1(t), P1=X−1(θ1)D1=

(
26
81 −1

9
35
243

8
27

)
, P2=X−1(θ2)D2=

(
19
81 −2

9
74
243

5
27

)
,

sup
t∈[0,1]

∥X(t)∥ < 2, sup
t∈[0,1]

∥X−1(t)∥ < 3, sup
t∈[0,1]

∥Ψ(t)∥ < 9.1, sup
t∈[0,1]

∥Ψ−1(t)∥ < 2.9,

∥f(t, ϕ)∥ ≤
√
2

360

√
1 + s2, l1 =

√
2

360
, ∥h(t, ϕ)∥ ≤ 1 + s, l3 =

1

360
,

∥g(t, ϕ, u)∥ ≤ 1

5
+

√
2

10
s, l4 =

√
2

10
, ∥Wi∥ ≤ 1 + s

5
(i = 1, 2), l5 =

2

5
,

where ∥x∥ =
n∑

i=1
|xi| for x ∈ Rn and ∥A∥ = max

1≤j≤n

n∑
i=1

|aij | for A ∈ Rn×n. We know

that conditions (H1)-(H5) and (2.1) are satisfied, then by Theorem 2.1, system (3.1)

is controllable.
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