ON THE BOUNDEDNESS OF A CLASS OF NONLINEAR DYNAMIC EQUATIONS OF THE THIRD ORDER ${ }^{*}$

Ningning Zhu \ddagger Fanwei Meng
(School of Mathematical Science, Qufu Normal University, Qufu 273165, Shandong, PR China)

Abstract

In this paper, a modified nonlinear dynamic inequality on time scales is used to study the boundedness of a class of nonlinear third-order dynamic equations on time scales. These theorems contain as special cases results for dynamic differential equations, difference equations and q-difference equations.

Keywords time scales; dynamic equation; integral inequality; boundedness; third-order

2000 Mathematics Subject Classification 34C11; 34N05

1 Introduction

To unify and extend continuous and discrete analyses, the theory of time scales was introduced by Hilger [1] in his Ph.D.Thesis in 1988. Since then, the theory has been evolving, and it has been applied to various fields of mathematics; for example, see $[2,3]$ and the references therein. It is well known that Gronwall-type integral inequalities and their discrete analogues play a dominant role in the study of quantitative properties of solutions of differential, integral and difference equations.

During the last few years, some Gronwall-type integral inequalities on time scales and their applications have been investigated by many authors. For example, we refer readers to $[5-11]$. In this paper, motivated by the paper [4], we obtain the bounds of the solutions of a class of nonlinear dynamic equations of the third order on time scales, which generalizes the main result of [4]. For all the detailed definitions, notation and theorems on time scales, we refer the readers to the excellent monographs $[2,3]$ and references given therein. We also present some preliminary

[^0]No. 1 N.N. Zhu, etc., Boundedness of A Class of Nonlinear Dynamic Eqs. 103
results that are needed in the remainder of this paper as useful lemmas for the discussion of our proof.

In what follows, R denotes the set of real number, $R_{+}=[0,+\infty) ; C(M, S)$ denotes the class of all continuous functions defined on a set M with range in a set $S ; T$ is an arbitrary time scale and $C_{r d}$ denotes the set of rd-continuous functions. Throughout this paper, we always assume that $t_{0} \in T, T_{0}=\left[t_{0},+\infty\right) \cap T$.

2 Preliminary

Lemma 2.1 Suppose $u(t), a(t) \in C_{r d}\left(T_{0}, R_{+}\right)$, and a is nondecreasing, $f(t, s)$, $f_{t}^{\Delta}(t, s) \in C_{r d}\left(T_{0} \times T_{0}, R_{+}\right), \omega \in C\left(R_{+}, R_{+}\right)$is nondecreasing. If for $t \in T_{0}, u(t)$ satisfies the following inequality

$$
\begin{equation*}
u(t) \leq a(t)+\int_{t_{0}}^{t} f(t, s) \omega(u(s)) \Delta s, \quad t \in T_{0} \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
u(t) \leq G^{-1}\left[G(a(t))+\int_{t_{0}}^{t} f(t, s) \Delta s\right], \quad t \in T_{0} \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
G(v)=\int_{v_{0}}^{v} \frac{1}{\omega(r)} \mathrm{d} r, \quad v \geq v_{0}>0, G(+\infty)=+\infty . \tag{2.3}
\end{equation*}
$$

Proof For arbitrarily fixed $\tilde{t_{0}}>t_{0}$, by the condition, we have

$$
u(t) \leq a\left(\widetilde{t_{0}}\right)+\int_{t_{0}}^{t} f\left(\widetilde{t_{0}}, s\right) \omega(u(s)) \Delta s, \quad t \in\left[t_{0}, \widetilde{t_{0}}\right]
$$

Let $z(t)=a\left(\widetilde{t_{0}}\right)+\int_{t_{0}}^{t} f\left(\widetilde{t_{0}}, s\right) \omega(u(s)) \Delta s$, then we get $z\left(t_{0}\right)=a\left(\widetilde{t_{0}}\right)$ and $u(t) \leq z(t)$.
Since

$$
z^{\Delta}(t)=f\left(\widetilde{t_{0}}, t\right) \omega(u(t)) \leq f\left(\widetilde{t_{0}}, t\right) \omega(z(t)),
$$

we have

$$
\frac{z^{\Delta}(t)}{\omega(z(t))} \leq f\left(\widetilde{t_{0}}, t\right)
$$

Furthermore, for $t \in\left[t_{0}, \widetilde{t_{0}}\right]$, if $\sigma(t)>t$, then

$$
\begin{aligned}
{[G(z(t))]^{\Delta} } & =\frac{G(z(\sigma(t)))-G(z(t))}{\sigma(t)-t}=\frac{1}{\sigma(t)-t} \int_{z(t)}^{z(\sigma(t))} \frac{1}{\omega(r)} \mathrm{d} r \\
& \leq \frac{z(\sigma(t))-z(t)}{\sigma(t)-t} \frac{1}{\omega(z(t))}=\frac{z^{\Delta}(t)}{\omega(z(t))}
\end{aligned}
$$

If $\sigma(t)=t$, then

$$
\begin{aligned}
{[G(z(t))]^{\Delta} } & =\lim _{s \rightarrow t} \frac{G(z(t))-G(z(s))}{t-s}=\lim _{s \rightarrow t} \frac{1}{t-s} \int_{z(s)}^{z(t)} \frac{1}{\omega(r)} \mathrm{d} r \\
& =\lim _{s \rightarrow t} \frac{z(t)-z(s)}{t-s} \frac{1}{\omega(\xi)}=\frac{z^{\Delta}(t)}{\omega(z(t))},
\end{aligned}
$$

where G is defined in (2.3) and ξ lies between $z(s)$ and $z(t)$. So we always have

$$
[G(z(t))]^{\Delta} \leq \frac{z^{\Delta}(t)}{\omega(z(t))} .
$$

Using the above statements, we deduce that

$$
\begin{equation*}
[G(z(t))]^{\Delta} \leq \frac{z^{\Delta}(t)}{\omega(z(t))} \leq f\left(\widetilde{t_{0}}, t\right) . \tag{2.4}
\end{equation*}
$$

Replacing t with s in (2.4), and an integration with respect to s from t_{0} to t yields

$$
G(z(t))-G\left(z\left(t_{0}\right)\right) \leq \int_{t_{0}}^{t} f\left(\widetilde{t_{0}}, s\right) \Delta s .
$$

Hence,

$$
G(z(t)) \leq G\left(z\left(t_{0}\right)\right)+\int_{t_{0}}^{t} f\left(\widetilde{t_{0}}, s\right) \Delta s=G\left(a\left(\widetilde{t_{0}}\right)\right)+\int_{t_{0}}^{t} f\left(\widetilde{t_{0}}, s\right) \Delta s,
$$

and we have

$$
\begin{equation*}
z(t) \leq G^{-1}\left[G\left(a\left(\widetilde{t_{0}}\right)\right)+\int_{t_{0}}^{t} f\left(\widetilde{t_{0}}, s\right) \Delta s\right], \quad t \in\left[t_{0}, \widetilde{t_{0}}\right], \tag{2.5}
\end{equation*}
$$

where G^{-1} is the inverse function of G.
Let $t=\widetilde{t_{0}}$ in (2.5), then we get

$$
\begin{equation*}
z\left(\widetilde{t_{0}}\right) \leq G^{-1}\left[G\left(a\left(\widetilde{t_{0}}\right)\right)+\int_{t_{0}}^{\tilde{t_{0}}} f\left(\widetilde{t_{0}}, s\right) \Delta s\right] . \tag{2.6}
\end{equation*}
$$

Since $\widetilde{t_{0}}$ is chosen arbitrarily, from (2.6) we can obtain

$$
z(t) \leq G^{-1}\left[G(a(t))+\int_{t_{0}}^{t} f(t, s) \Delta s\right] .
$$

And then we get

$$
u(t) \leq G^{-1}\left[G(a(t))+\int_{t_{0}}^{t} f(t, s) \Delta s\right], \quad t \in T_{0} .
$$

The proof of Lemma 2.1 is completed.

No. 1 N.N. Zhu, etc., Boundedness of A Class of Nonlinear Dynamic Eqs. 105

Remark 2.1 Lemma 2.1 is similar to Theorem 3.1 in [10], but by defining a new function of G, which has more extensive applications.

Definition ${ }^{[12]}$ A function $g \in C\left(R_{+}, R_{+}\right)$is said to belong to the class of \Re if
(1) g is nondecreasing,
(2) $\frac{g(u)}{v} \leq g\left(\frac{u}{v}\right)$ for $u \geq 0, v \geq 1$.

It is easy to see that $g(u) \in \Re$ implies $\int_{1}^{+\infty} \frac{1}{g(s)} \mathrm{d} s=+\infty$.
Lemma 2.2 Suppose
(1) $u(t)$ and $a(t) \in C_{r d}\left(T_{0}, R_{+}\right), a(t) \geq 1$ is nondecreasing on T_{0};
(2) $f_{i}(t, s), f_{i}^{\Delta}(t, s) \in C_{r d}\left(T_{0} \times T_{0}, R_{+}\right)$;
(3) $h_{i} \in \Re(i=1,2, \cdots, m)$.

If for $t \in T_{0}, u(t)$ satisfies the following inequality

$$
\begin{equation*}
u(t) \leq a(t)+\sum_{i=1}^{m} \int_{t_{0}}^{t} f_{i}(t, s) h_{i}[u(s)] \Delta s, \quad t \in T_{0} \tag{2.7}
\end{equation*}
$$

then

$$
\begin{equation*}
u(t) \leq a(t) \prod_{i=1}^{m} L_{i}(t), \quad t \in T_{0} \tag{2.8}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
L_{i}(t)=G_{i}^{-1}\left[G_{i}(1)+\int_{t_{0}}^{t} f_{i}(t, s)\left(\prod_{k=1}^{i-1} L_{k}(s)\right) \Delta s\right], \quad i=1,2, \cdots, m \tag{2.9}\\
G_{i}(v)=\int_{v_{0}}^{v} \frac{1}{h_{i}(r)} \mathrm{d} r, \quad v \geq v_{0}>0 \\
\prod_{k=1}^{0} L_{k}(t)=1
\end{array}\right.
$$

Proof The proof is completely similar to that of Lemma 2.2 in [4], and we omit the details here.

Lemma 2.3 ${ }^{[13]}$ Assume $a<b \in T$ and $F(\tau, s)$ is a real-valued function on $T \times T$. Then

$$
\begin{equation*}
\int_{a}^{b} \int_{a}^{\tau} F(\tau, s) \Delta s \Delta \tau=\int_{a}^{b} \int_{\sigma(s)}^{b} F(\tau, s) \Delta \tau \Delta s \tag{2.10}
\end{equation*}
$$

where $\sigma(s)$ is the forward jump operator at s.

3 Main Results

Consider the following equation

$$
\begin{equation*}
\left(p_{2}(t)\left(p_{1}(t) x^{\Delta}\right)^{\Delta}\right)^{\Delta}+f(t, x(t))=0 \tag{3.1}
\end{equation*}
$$

and assume that the following hypotheses (denoted by (H)) are satisfied:
(1) $p_{1}(t), p_{2}(t) \in C_{r d}$ are positive for all $t \geq t_{0}$;
(2) $f: T \times R \rightarrow R$ satisfies

$$
|f(t, x)| \leq \sum_{i=1}^{m} b_{i}(t) h_{i}(|x|)+b_{m+1}(t),
$$

where $h_{i} \in \Re, b_{i} \in C_{r d}$ are nonnegative ($i=1,2, \cdots, m+1$);
(3) the uniqueness and the local existence of the solution of (3.1) are valid.

For convenience, for any function $d_{i} \in C_{r d}$, we define

$$
\left\{\begin{array}{l}
W_{1}\left(t, s ; d_{1}\right)=\int_{s}^{t} \frac{1}{d_{1}(u)} \Delta u \tag{3.2}\\
W_{2}\left(t, s ; d_{1}, d_{2}\right)=\int_{s}^{t} \frac{1}{d_{1}(u)} W_{1}\left(u, s ; d_{2}\right) \Delta u,
\end{array}\right.
$$

and from Lemma 2.3, we can conclude another form of $W_{2}\left(t, s ; d_{1}, d_{2}\right)$:

$$
\begin{aligned}
W_{2}\left(t, s ; d_{1}, d_{2}\right) & =\int_{s}^{t} \frac{1}{d_{1}(u)} W_{1}\left(u, s ; d_{2}\right) \Delta u=\int_{s}^{t} \int_{\sigma(\tau)}^{t} \frac{1}{d_{2}(\tau)} \frac{1}{d_{1}(u)} \Delta u \Delta \tau \\
& =\int_{s}^{t} \frac{1}{d_{2}(\tau)} W_{1}\left(t, \sigma(\tau) ; d_{1}\right) \Delta \tau .
\end{aligned}
$$

Lemma 3.1 If $W_{2}\left(t, t_{0} ; d_{1}, d_{2}\right)$ is bounded on T_{0}, then $W_{1}\left(t, t_{0} ; d_{1}\right)$ is also bounded on $T_{0} ;$ if $\lim _{t \rightarrow+\infty} W_{1}\left(t, t_{0} ; d_{1}\right)=+\infty$, then $\lim _{t \rightarrow+\infty} W_{2}\left(t, t_{0} ; d_{1}, d_{2}\right)=+\infty$.

Proof Let $t_{1} \in T_{0}$ be fixed and $t_{1}>t_{0}$, then by (3.2), we can get

$$
\begin{aligned}
W_{2}\left(t, t_{0} ; d_{1}, d_{2}\right) & =\int_{t_{0}}^{t_{1}} \frac{1}{d_{1}(u)} W_{1}\left(u, t_{0} ; d_{2}\right) \Delta u+\int_{t_{1}}^{t} \frac{1}{d_{1}(u)} W_{1}\left(u, t_{0} ; d_{2}\right) \Delta u \\
& \geq \int_{t_{1}}^{t} \frac{1}{d_{1}(u)} W_{1}\left(t_{1}, t_{0} ; d_{2}\right) \Delta u=W_{1}\left(t_{1}, t_{0} ; d_{2}\right) W_{1}\left(t, t_{1} ; d_{1}\right)
\end{aligned}
$$

which implies the validity of Lemma 3.1.
Theorem 3.1 Suppose that hypotheses (H) hold and the following conditions are satisfied:
(1) $\int_{t_{0}}^{t} b_{i}(s) W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) \Delta s$ is bounded on T_{0} for $1 \leq i \leq m+1$;
(2) $W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)$ is bounded on T_{0}.

Then (i) every solution $x(t)$ of (3.1) is bounded on T_{0}; (ii) if $b_{i}(t) \in L_{1}\left(t_{0},+\infty\right)$ for $1 \leq i \leq m+1$, then $p_{2}(t)\left(p_{1}(t) x^{\Delta}\right)^{\Delta}$ is also bounded on T_{0}.

Proof (i) Let $x(t)$ be any solution of (3.1) with the initial time $t=t_{0}$, existing on some maximal interval $I_{0}=\left[t_{0}, L\right)$, here $t_{0}<L \leq+\infty$. By conditions (H), we can easily see $L=+\infty$.

No. 1 N.N. Zhu, etc., Boundedness of A Class of Nonlinear Dynamic Eqs. 107

Integrating (3.1) from t_{0} to t, we get

$$
\begin{equation*}
\left(p_{1}(t) x^{\Delta}(t)\right)^{\Delta}=\frac{p_{2}\left(t_{0}\right)\left[p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right]^{\Delta}}{p_{2}(t)}-\frac{\int_{t_{0}}^{t} f(s, x(s)) \Delta s}{p_{2}(t)} . \tag{3.3}
\end{equation*}
$$

Integrating (3.3) from t_{0} to t, we get
$x^{\Delta}(t)=\frac{p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)}{p_{1}(t)}+\frac{p_{2}\left(t_{0}\right)\left[p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right]^{\Delta} \int_{t_{0}}^{t} \frac{1}{p_{2}(s)} \Delta s}{p_{1}(t)}-\frac{\int_{t_{0}}^{t} \frac{1}{p_{2}(\tau)} \int_{t_{0}}^{\tau} f(s, x(s)) \Delta s \Delta \tau}{p_{1}(t)}$.
Integrating this equation again from t_{0} to t, and then using Lemma 2.3 we obtain

$$
\begin{align*}
x(t)= & x\left(t_{0}\right)+p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right) \int_{t_{0}}^{t} \frac{1}{p_{1}(u)} \Delta u+p_{2}\left(t_{0}\right)\left[p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right]^{\Delta} \int_{t_{0}}^{t} \frac{1}{p_{1}(u)} \int_{t_{0}}^{u} \frac{1}{p_{2}(s)} \Delta s \Delta u \\
& -\int_{t_{0}}^{t} \frac{1}{p_{1}(u)} \int_{t_{0}}^{u} \frac{1}{p_{2}(\tau)} \int_{t_{0}}^{\tau} f(s, x(s)) \Delta s \Delta \tau \Delta u \\
= & x\left(t_{0}\right)+p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right) W_{1}\left(t, t_{0} ; p_{1}\right)+p_{2}\left(t_{0}\right)\left[p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right]^{\Delta} W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right) \\
& -\int_{t_{0}}^{t} \int_{\sigma(s)}^{t} \frac{1}{p_{1}(u)} W_{1}\left(u, \sigma(s) ; p_{2}\right) f(s, x(s)) \Delta u \Delta s \\
= & x\left(t_{0}\right)+p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right) W_{1}\left(t, t_{0} ; p_{1}\right)+p_{2}\left(t_{0}\right)\left[p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right]^{\Delta} W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right) \\
& -\int_{t_{0}}^{t} W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) f(s, x(s)) \Delta s \tag{3.4}
\end{align*}
$$

where W_{1} and W_{2} are defined as in (3.2).
Now by conditions (H) and (3.4), we can get

$$
\begin{equation*}
|x(t)| \leq N(t)+\sum_{i=1}^{m} \int_{t_{0}}^{t} W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) b_{i}(s) h_{i}(|x(s)|) \Delta s, \quad t \in T_{0}, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{aligned}
N(t)= & 1+\left|x\left(t_{0}\right)\right|+p_{1}\left(t_{0}\right) W_{1}\left(t, t_{0} ; p_{1}\right)\left|x^{\Delta}\left(t_{0}\right)\right|+p_{2}\left(t_{0}\right) W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)\left|\left[p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right]^{\Delta}\right| \\
& +\int_{t_{0}}^{t} W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) b_{m+1}(s) \Delta s .
\end{aligned}
$$

Since $W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)$ is bounded on T_{0}, by Lemma 3.1, $W_{1}\left(t, t_{0} ; p_{1}\right)$ is bounded on T_{0}.

By Lemma 2.2 and the last inequality, we conclude that

$$
\begin{equation*}
|x(t)| \leq N(t) \prod_{i=1}^{m} U_{i}(t), \quad t \in T_{0} \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
U_{i}(t) & =G_{i}^{-1}\left[G_{i}(1)+\int_{t_{0}}^{t} W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) b_{i}(s)\left(\prod_{k=1}^{i-1} U_{k}(s)\right) \Delta s\right] \\
& \leq G_{i}^{-1}\left[G_{i}(1)+\left(\prod_{k=1}^{i-1} U_{k}(t)\right) \int_{t_{0}}^{t} W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) b_{i}(s) \Delta s\right],
\end{aligned}
$$

where G_{i} is defined in (2.9).
By (3.6) we can easily observe that $x(t)$ is bounded on T_{0}.
(ii) Moreover, we easily obtain from (3.3) that
$p_{2}(t)\left|\left(p_{1}(t) x^{\Delta}(t)\right)^{\Delta}\right| \leq p_{2}\left(t_{0}\right)\left|\left(p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right)^{\Delta}\right|+\int_{t_{0}}^{t} b_{m+1}(s) \Delta s+\sum_{i=1}^{m} h_{i}(C) \int_{t_{0}}^{t} b_{i}(s) \Delta s$,
where $|x(t)| \leq C$ holds for all $t \in T_{0}$ by (i), here C is a constant. Hence, if also $b_{i}(t) \in$ $L_{1}\left(t_{0},+\infty\right)$ for $1 \leq i \leq m+1$, then the boundedness of $p_{2}(t)\left(p_{1}(t) x^{\Delta}(t)\right)^{\Delta}$ follows from the above inequality immediately. The proof of Theorem 3.1 is completed.

Theorem 3.2 Suppose that hypotheses (H) hold and the following conditions are satisfied:
(1) $\int_{t_{0}}^{t} W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) b_{i}(s) \Delta s$ is bounded on $T_{0}, i=1,2, \cdots, m$;
(2) $\lim _{t \rightarrow+\infty} W_{1}\left(t, t_{0} ; p_{1}\right)=+\infty, \lim _{t \rightarrow+\infty} W_{1}\left(t, t_{0} ; p_{2}\right)=+\infty$;
(3) $\int_{t_{0}}^{+\infty} b_{m+1}(s) \Delta s<+\infty, \int_{t_{0}}^{+\infty} W_{2}\left(s, t_{0} ; p_{1}, p_{2}\right) b_{i}(s) \Delta s<+\infty, i=1,2, \cdots, m$. Then for any solution of (3.1), we have (i) $|x(t)|=O\left(W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)\right)$ as $t \rightarrow+\infty$; (ii) $\left|p_{2}(t)\left(p_{1}(t) x^{\Delta}(t)\right)^{\Delta}\right|=O(1)$ as $t \rightarrow+\infty$.

Proof (i) By Theorem 3.1, the solution of (3.1) exists on T_{0}. Since

$$
\lim _{t \rightarrow+\infty} W_{1}\left(t, t_{0} ; p_{1}\right)=+\infty, \quad \lim _{t \rightarrow+\infty} W_{1}\left(t, t_{0} ; p_{2}\right)=+\infty,
$$

we can easily get

$$
\lim _{t \rightarrow+\infty} \frac{W_{1}\left(t, t_{0} ; p_{1}\right)}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)}=\lim _{t \rightarrow+\infty} \frac{\int_{t_{0}}^{t} \frac{1}{p_{1}(s)} \Delta s}{\int_{t_{0}}^{t} \frac{1}{p_{1}(s)} W_{1}\left(s, t_{0} ; p_{2}\right) \Delta s}=0 .
$$

And by Lemma 3.1, we have $\lim _{t \rightarrow+\infty} W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)=+\infty$.
By the definition of $W_{2}\left(t, s ; p_{1}, p_{2}\right)$, we easily observe that $W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) \leq$ $W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)$ when $t_{0} \leq s \leq t$.

From (3.4) in the proof of Theorem 3.1 and conditions (H) we have

No. 1 N.N. Zhu, etc., Boundedness of A Class of Nonlinear Dynamic Eqs. 109

$$
\begin{align*}
& \frac{|x(t)|}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)} \\
\leq & \frac{\left|x\left(t_{0}\right)\right|}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)}+p_{1}\left(t_{0}\right)\left|x^{\Delta}\left(t_{0}\right)\right| \frac{W_{1}\left(t, t_{0} ; p_{1}\right)}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)}+p_{2}\left(t_{0}\right)\left|\left[p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right]^{\Delta}\right| \\
& +\int_{t_{0}}^{t} \frac{W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right)}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)} f(s, x(s)) \Delta s \\
\leq & \frac{\left|x\left(t_{0}\right)\right|}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)}+p_{1}\left(t_{0}\right)\left|x^{\Delta}\left(t_{0}\right)\right| \frac{W_{1}\left(t, t_{0} ; p_{1}\right)}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)}+p_{2}\left(t_{0}\right)\left|\left[p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right]^{\Delta}\right| \\
& +\sum_{i=1}^{m} \int_{t_{0}}^{t} \frac{W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right)}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)} b_{i}(s) h_{i}(|x(s)|) \Delta s+\int_{t_{0}}^{t} \frac{W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right)}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)} b_{m+1}(s) \Delta s \\
\leq & H(t)+\sum_{i=1}^{m} \int_{t_{0}}^{t} W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) b_{i}(s) h_{i}\left(\frac{|x(s)|}{W_{2}\left(s, t_{0} ; p_{1}, p_{2}\right)}\right) \Delta s, \tag{3.7}
\end{align*}
$$

where

$$
\begin{aligned}
H(t)= & 1+\frac{\left|x\left(t_{0}\right)\right|}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)}+p_{1}\left(t_{0}\right)\left|x^{\Delta}\left(t_{0}\right)\right| \frac{W_{1}\left(t, t_{0} ; p_{1}\right)}{W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right)} \\
& +p_{2}\left(t_{0}\right)\left|\left[p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right]^{\Delta}\right|+\int_{t_{0}}^{t} b_{m+1}(s) \Delta s .
\end{aligned}
$$

Now using Lemma 2.2 to the last inequality, we find

$$
\begin{equation*}
|x(t)| \leq W_{2}\left(t, t_{0} ; p_{1}, p_{2}\right) H(t) \prod_{i=1}^{m} V_{i}(t), \quad t \in T_{0} \tag{3.8}
\end{equation*}
$$

where

$$
\begin{aligned}
V_{i}(t) & =G_{i}^{-1}\left[G_{i}(1)+\int_{t_{0}}^{t} W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) b_{i}(s)\left(\prod_{k=1}^{i-1} V_{k}(s)\right) \Delta s\right] \\
& \leq G_{i}^{-1}\left[G_{i}(1)+\left(\prod_{k=1}^{i-1} V_{k}(t)\right) \int_{t_{0}}^{t} W_{2}\left(t, \sigma(s) ; p_{1}, p_{2}\right) b_{i}(s) \Delta s\right],
\end{aligned}
$$

where G_{i} is defined in (2.9).
By conditions of Theorem 3.2 and letting $t \rightarrow+\infty$ in (3.8), we obtain the desired relation in (i).
(ii) By (3.8) we derive from (3.3) that

$$
\begin{aligned}
& p_{2}(t)\left|\left(p_{1}(t) x^{\Delta}(t)\right)^{\Delta}\right| \\
\leq & p_{2}\left(t_{0}\right)\left|\left(p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right)^{\Delta}\right|+\int_{t_{0}}^{t} b_{m+1}(s) \Delta s+\sum_{i=1}^{m} \int_{t_{0}}^{t} b_{i}(s) h_{i}(|x(s)|) \Delta s
\end{aligned}
$$

$$
\begin{aligned}
\leq & p_{2}\left(t_{0}\right)\left|\left(p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right)^{\Delta}\right|+\int_{t_{0}}^{t} b_{m+1}(s) \Delta s \\
& +\sum_{i=1}^{m} \int_{t_{0}}^{t} b_{i}(s) W_{2}\left(s, t_{0} ; p_{1}, p_{2}\right) h_{i}\left(\frac{|x(s)|}{W_{2}\left(s, t_{0} ; p_{1}, p_{2}\right)}\right) \Delta s \\
\leq & p_{2}\left(t_{0}\right)\left|\left(p_{1}\left(t_{0}\right) x^{\Delta}\left(t_{0}\right)\right)^{\Delta}\right|+\int_{t_{0}}^{t} b_{m+1}(s) \Delta s+\sum_{i=1}^{m} h_{i}(M) \int_{t_{0}}^{t} b_{i}(s) W_{2}\left(s, t_{0} ; p_{1}, p_{2}\right) \Delta s
\end{aligned}
$$

where the number $M>0$ is the upper bound of $H(t) \prod_{i=1}^{m} V_{i}(t)$ on T_{0}. Thus the proof of the Theorem 3.2 is now completed.

References

[1] S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18(1990),18-56.
[2] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, MA, 2001.
[3] M. Bohner, A. Peterson, Advanced Dynamic Equations on Time Scales, Birkhäuser, Boston, MA, 2003.
[4] Q.H. Ma, J.W. Wang, X.H. Ke, J. Pečarić, On the boundedness of a class of nonlinear dynamic equations of second order, Applied Mathematics Letter, 26(2013),1099-1105.
[5] E. Akin-Bohner, M. Bohner, F. Akin, Pachpatte inequalities on time scales, JIPAM. J. Inequal. Pure Appl. Math., 6:1(2005),23. Article 6 (electronic).
[6] M. Bohner, S. Stević, Asymptotic behavior of second-order dynamic equations, Appl. Math. Comput., 188(2007),1503-1512.
[7] D.R. Anderson, Dynamic double integral inequalities in two independent variables on time scales, J. Math. Inequal., 2(2008),163-184.
[8] RuiA.C. Ferreira, Delfim F.M. Torres, Generalizations of Gronwall-Bihari inequalities on time scales, J. Difference Equ. Appl., 15:6(2009),529-539.
[9] W.N. Li, Some delay integral inequalities on time scales, Comput. Math. Appl., 59(2010),1929-1936.
[10] Q.H. Feng, F.W. Meng, B. Zhang, Gronwall-Bellman type nonlinear delay integral inequalities on time scales, J. Math. Anal. Appl., 382:2(2011),772-784.
[11] Q.H. Ma, J. Pečarić, The bounds on the solutions of certain two-dimensional delay dynamic system on time scales, Comput. Math. Appl., 61(2011),2158-2163.
[12] P.R. Beesack, On Lakshmikantham's comparison method for Gronwall inequalities, Ann. Polon. Math., 35(1977),187-222.
[13] E. Akin, Cauchy functions for dynamic equations on a measure chain, J. Math. Anal. Appl., 267:1(2002),97-115.
[14] J. Gu, F.W. Meng, Some new nonlinear Volterra-Fredholm type dynamic integral inequalities on time scales, Applied Mathematics and Computation, 245(2014),235-242.
(edited by Liangwei Huang)

[^0]: *This research was partially supported by the NSF of China (Grant.11271225) and Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province.
 ${ }^{\dagger}$ Manuscript received July 9, 2016
 \ddagger Corresponding author. E-mail: znn199192@163.com

