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Abstract

In this paper, we establish a Lyapunov-type inequality for fractional differ-
ential periodic boundary-value problems. As applications, a necessary condi-
tion is obtained to ensure the existence and uniqueness of nontrivial solutions
to this problem.
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1 Introduction

Derivatives and integrals of non-integer orders have a long history, and these

operators have wide applications in theory and engineering technology, such as bio-

physics, bioengineering, finance, control theory, quantum mechanics, image and sig-

nal processing, viscoelasticity and sciences. For its important application, the exis-

tence and uniqueness of solutions to the fractional differential equations were investi-

gated by many scholars. In [1] by applying the theory of Leray-Schauder degree, the

existence of nontrivial solutions to the boundary value problems of fractional differ-

ential equations is considered under some conditions concerning the first eigenvalue

corresponding to the relevant linear operator (see Theorem 2.1 of [1]). By using

Banach contraction principle and Krasnoselskill fixed point theorem, the existence

of solutions to the integral boundary value problems for the fractional differential

equations was investigated in [2]. The Lyapunov inequality has been applied to very
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useful invarious problems related with differential equations, for example, see [3-5].

letting q : [a, b] → R be a continuous function, the Lyapunov inequality states that

a necessary condition for the boundary value problem{
u′′(t) + q(t)u(t) = 0, a < t < b,

u(a) = u(b) = 0

to have nontrivial solutions is that∫ b

a
|q(s)|ds > 4

b− a
.

Recently, the research of Lyapunov-type inequality for fraction boundary value prob-

lem has been increasingly concerned. The first work in this direction is due to Fer-

reira (see [6]), where the author derived a Lyapunov-type inequality for differential

equations depending on the Riemann-Liouville fractional derivative, that is, for the

boundary value problem{
aD

αu(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = u(b) = 0,

where aD
α denotes the Riemann-Liouville fractional derivative of order α, and q :

[a, b] → R is a real and continuous function. It was proved that the above problem

has a nontrivial solution, then we have∫ b

a
|q(t)|dt > Γ(α)

( 4

b− a

)α−1

.

Clearly, if let α = 2 in the above inequality, then we obtain Lyapunov’s standard

inequality.

In [7], a Lyapunov-type inequality was obtain for the Caputo fractional boundary

value problem {
C
a D

αu(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = u(b) = 0,

where C
a D

α is the Caputo fractional derivative of order α, and q : [a, b] → R is a real

and continuous function. In this work, Ferreira proved that if the above problem

has a nontrivial solution, then∫ b

a
|q(t)|ds > Γ(α)αα

[(α− 1)(b− a)]α−1
.

Similarly, if let α = 2 in (6), then we obtain Lyapunov’s classical inequality.

Meanwhile, in [8], Jleli and Samet considered the following fractional differential

equation
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C
a D

αy(t) + q(t)y(t) = 0, a < t < b, 1 < α ≤ 2,

with the two boundary conditions

y(a) = 0 = y′(b)

or

y′(a) = 0 = y(b).

They proved that if the above two boundary problem has a nontrivial solution, then∫ b

a
(b− s)(α−2)|q(s)|ds ≥ Γ(α)

max{α− 1, 2− α}(b− a)

and ∫ b

a
(b− s)α−1|q(s)|ds ≥ Γ(α).

In addition, in [9], Jleli and Samet considered the fractional differential equation

under a Robin boundary condition{
C
a D

αu(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a)− u′(a) = u(b) + u′(b) = 0,

and proved that if the above problem has a nontrivial solution, then∫ b

a
(b− s)α−2(b− s+ α− 1)|q(s)|ds ≥ (b− a+ 2)Γ(α)

max{b− a+ 1, 2−α
(α−1)(b−a−1)}

.

Motivated by the above works, we consider in this paper a Riemann-Liouville frac-

tional differential equation under periodic boundary conditions. More precisely, we

consider the boundary value problem{
Dα

0+u(t) + q(t)u(t) = 0, t ∈ J := (0, 1], 0 < α < 1,

lim
t→0+

t1−αu(t) = u(1),
(1)

where q : [a, b] → R is a continuous function. We write (1) as an equivalent integral

equation, then by using some properties of its Green function, we get a corresponding

Lyapunov-type inequality, after that, we obtain a necessary condition for the periodic

boundary condition has nontrivial continuous solution. Meanwhile, we get sufficient

condition for periodic boundary conditions has an only trivial solution.

The organization of this paper is as follows. In Section 2, we introduce some pre-

liminaries and recall some concepts. In Section 3, we devote to calculating the Green

function and the correspond Lyapunov-type inequality and get a necessary condition

for the periodic boundary value problem to have nontrivial solutions. Meanwhile,

we get sufficient condition for periodic boundary conditions to have a unique trivial
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solution. In Section 4, an example is presented to illustrate the application of the

obtained results.

2 Preliminaries

In this section, we introduce the definitions of the Riemann-Liouville fractional

integral, the Riemann-Liouville derivative and Mittag-Leffler functions. For addi-

tional details, readers can refer to the references [10-13].

Definition 2.1 Let α ≥ 0 and f be a real function defined on [a, b]. The

Riemann-Liouville fractional integral of order α is defined by (aI
0f) ≡ f and

(aI
αf)(t) =

1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, α > 0, t ∈ [a, b],

where Γ(·) is Euler’s gamma function, that is, Γ(x) =
∫∞
0 tx−1e−tdt for x > 0.

Definition 2.2 The Riemann-Liouville fractional derivative of order α ≥ 0 is

defined by (Ca D
0f) ≡ f and

(Dα
a f)(t) = D⌈α⌉I⌈α⌉−α

a f(t) =
1

Γ(⌈α⌉ − α)

( d

dx

⌈α⌉)∫ x

a

f(t)

(x− t)α−⌈α⌉+1
dt,

where ⌈·⌉ is a ceiling function, that is, ⌈x⌉ = min{z ∈ Z : z ≥ x}.
Definition 2.3 Let α > 0, β > 0, and the function Eα,β (z) is defined by

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0, z ∈ C,

whenever the series converges is called the two-parameter Mittag-Leffler function

with the parameters α, β.

Remark 2.1 It is evident that one-parameter Mittag-Leffler functions are de-

fined in terms of their two-parameter counterparts via the relation Eα(z) = Eα,1(z).

For more details, we refer to [14].

Definition 2.4 u = 0 is called a trivial solution to problem (1). If u is a solution

to problem (1), and u is not identically zero, then u is called a nontrivial solution.

3 Main Results

We begin by writing problem (1) in its equivalent integral form.

Lemma 3.1[13] Let f(x) = (x− a)β for some β > −1 and n > 0, then

Dn
af(x) = D⌈n⌉I⌈n⌉−n

a f(x) =
Γ(β + 1)

Γ(⌈n⌉ − n+ β + 1)
D⌈n⌉[(x− a)⌈n⌉−n+β],

where ⌈·⌉ is a ceiling function, that is, ⌈n⌉ = min{z ∈ Z : z ≥ n}.
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Lemma 3.2[15] For any x, y ∈ R, when x < 0 < y, we have

0 < Eα,α(x) < Eα,α(0) =
1

Γ(α)
< Eα,α(y).

Let C[0, 1] be the set of all continuous functions defined on [0, 1]. Define ∥u∥ =

max
0≤t≤1

|u(t)|, for u ∈ X, then (C[0, 1], ∥ · ∥) is a Banach space.

For 0 < α < 1, u ∈ C(0, 1] , define

t1−αu(t)|t=0 = lim
t→0+

t1−αu(t), C1−α[0, 1] = {u ∈ C(0, 1]| t1−αu(t) ∈ C[0, 1]}.

Then

(1) C1−α[0, 1] endowed with the norm ∥u∥∞ = max
0≤t≤1

|t1−αu(t)| is a Banach space.

(2) C1−α[0, 1] ⊂ C(0, 1] ∩ L1[0, 1], where L1[0, 1] is the set of all Lebesgue inte-

grable functions on [0, 1].

Lemma 3.3 If u ∈ C1−α[0, 1] is a solution to the boundary value problem (1),

then u satisfies the following integral equation

u(t) =

∫ 1

0
Gλ0,α(t, s)(−λ0 − q(s))u(s)ds,

where λ0 = −Γ(1+α)
Γ(1−α) < 0 and

Gλ0,α(t, s) =



Γ(α)Eα,α(λ0t
α)Eα,α(λ0(1− s)α)tα−1(1− s)α−1

1− Γ(α)Eα,α(λ0)
+(t− s)α−1Eα,α(λ0(t− s))α, 0 ≤ s ≤ t ≤ 1,

Γ(α)Eα,α(λ0t
α)Eα,α(λ0(1− s)α)tα−1(1− s)α−1

1− Γ(α)Eα,α(λ0)
, 0 ≤ t ≤ s ≤ 1.

Proof For λ < 0, in [15], J.J. Nieto verified that the following periodic boundary

value problem of fractional differential equations{
Dα

0+u(t)− λu(t) = f(t), 0 < t < 1, 0 < α < 1,

lim
t→0+

t1−αu(t) = u(1)
(2)

has solutions in the form

u(t) =
Γ(α)Eα,α(λt

α)tα−1

1− Γ(α)Eα,α(λ)

∫ 1

0
(1− s)α−1Eα,α(λ(1− s)α)f(s)ds

+

∫ t

0
(t− s)α−1Eα,α(λ(t− s)α)f(s)ds.
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Periodic boundary value problems (1) is equivalent to the following problem{
Dα

0+u(t)− λ0u(t) = (−λ0 − q(t))u(t), 0 < t < 1, 0 < α < 1,

lim
t→0+

t1−αu(t) = u(1),
(3)

where λ0 = −Γ(1+α)
Γ(1−α) < 0. By Lemma 2.1 in [15], we can prove the conclusion.

Theorem 3.1 If the boundary value problem (1) has a nontrivial solution in

C1−α[0, 1], then

∥q∥ ≥ Γ(2α) |1− Γ(α)Eα,α(λ0)|
Γ(α)

+ λ0,

where λ0 = −Γ(1+α)
Γ(1−α) , ∥q∥ = max

t∈[0,1]
|q(t)|.

Proof Let u ∈ C1−α[0, 1] be a nontrivial solution to problem (1). According to

Lemma 3.2, we have

|t1−αu(t)| ≤
∫ 1

0
|Gλ0,α(t, s)| ·

∣∣∣ t1−α

s1−α

∣∣∣ · |s1−αu(s)| · |−λ0 − q(s)| ds

≤ (|λ0|+ ∥q∥)
∫ 1

0
|Gλ0,α(t, s)| ·

∣∣∣ t1−α

s1−α

∣∣∣ · |s1−αu(s)|ds,

then

∥u∥∞ ≤∥ u ∥∞ (|λ0|+ ∥q∥)
∫ 1

0
|Gλ0,α(t, s)| ·

∣∣∣ t1−α

s1−α

∣∣∣ds,
that is

(|λ0|+ ∥q∥)
∫ 1

0
|Gλ0,α(t, s)| ·

∣∣∣ t1−α

s1−α

∣∣∣ds ≥ 1.

(i) If 0 ≤ t ≤ s ≤ 1, according to Lemma 3.2, we have

(|λ0|+ ∥q∥)
∫ 1

0

(1− s)α−1sα−1

Γ(α) |1− Γ(α)Eα,α(λ0)|
ds ≥ 1,

(|λ0|+ ∥q∥)B(α, α)

Γ(α) |1− Γ(α)Eα,α(λ0)|
≥ 1 ⇒ (|λ0|+ ∥q∥)Γ(α)

Γ(2α) |1− Γ(α)Eα,α(λ0)|
≥ 1,

that is,

|λ0|+ ∥q∥ ≥ Γ(2α) |1− Γ(α)Eα,α(λ0)|
Γ(α)

,

where B(α, α) is a Euler’s Beta function. that is let α > 0, β > 0, then

B(α, β) =

∫ 1

0
tα−1(1− t)β−1dt =

Γ(α)Γ(α)

Γ(α+ β)
.
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(ii) If 0 ≤ s ≤ t ≤ 1, we have

(|λ0|+ ∥q∥)
∫ 1

0
|Gλ0,α(t, s)| ·

∣∣∣ t1−α

s1−α

∣∣∣ds ≥ 1,

that is

(|λ0|+ ∥q∥)
∫ t

0

[ (1− s)α−1sα−1

Γ(α) |1− Γ(α)Eα,α(λ0)|
+

∣∣∣ t1−α(t− s)α−1sα−1

Γ(α)

∣∣∣]ds ≥ 1

or equivalent

(|λ0|+ ∥q∥)
[ Γ(α)

Γ(2α)|1− Γ(α)Eα,α(λ0)|
+

∫ t

0

∣∣∣ t1−α(t− s)α−1sα−1

Γ(α)

∣∣∣]ds ≥ 1. (4)

Let u = s
t , then∫ t

0
t1−α(t− s)α−1sα−1ds =

∫ t

0
(t− s)α−1

(s
t

)α−1
ds =

∫ t

0

(
1− s

t

)α−1(s
t

)α−1)
tα−1ds

=

∫ 1

0
tα(1− u)α−1uα−1du = tαB(α, α).

This leads to

(|λ0|+ ∥q∥)
[ Γ(α)

Γ(2α)|1− Γ(α)Eα,α(λ0)|
+

tαB(α, α)

Γ(α)

]
≥ 1.

Because 0 < t ≤ 1, 0 < α ≤ 1,

(|λ0|+ ∥q∥)
[ Γ(α)

Γ(2α)|1− Γ(α)Eα,α(λ0)|
+

B(α, α)

Γ(α)

]
≥ 1,

that is

(|λ0|+ ∥q∥)
[Γ(α)(1 + |1− Γ(α)Eα,α(λ0)|)

Γ(2α)|1− Γ(α)Eα,α(λ0)|

]
≥ 1,

or equivalent

|λ0|+ ∥q∥ ≥ Γ(2α)|1− Γ(α)Eα,α(λ0)|
Γ(α)(1 + |1− Γ(α)Eα,α(λ0)|)

.

Therefore, combing (i) with (ii) completes the proof.

Corollary 3.1 If

∥q∥ <
Γ(2α) |1− Γ(α)Eα,α(λ0)|

Γ(α)
+ λ0,

where λ0 = −Γ(1+α)
Γ(1−α) , then (1) has a unique trivial solution in C1−α[0, 1].



No.2 X. Zhu, etc., Fractional Differential Periodic BVP 219

Corollary 3.2 If

∥q∥ <
Γ(2α) |1− Γ(α)Eα,α(λ0)|

Γ(α)
+ λ0,

where λ0 = −Γ(1+α)
Γ(1−α) , the problem{
Dα

0+u(t) + q(t)u(t) = f(t), t ∈ J := (0, 1], 0 < α < 1,

lim
t→0+

t1−αu(t) = u(1)

has a unique solution in C1−α[0, 1] for each f ∈ C[0, 1].

4 Example

Example 4.1 Consider the following problem{
Dα

0+u(t) +
1
3 t

αu(t) = 0, 0 < t ≤ 1, 0 < α < 1,

lim
t→0+

t1−αu(t) = u(1).
(5)

We assert that problem (5) has a unique trivial solution in C1−α[0, 1].

In fact, from Corollary 3.1, we only need to prove that

H(λ0, α) =
Γ(2α) |1− Γ(α)Eα,α(λ0)|

Γ(α)
+ λ0 − ∥q∥ > 0. (6)

In [16], C. Zeng and Y. Chen established a global Pade approximation of the gen-

eralized Mittag-Leffler function Eα,β(−x) with x ∈ [0,+∞). In [16] Table 1, when

x ∈ [0,+∞), the parameters 0 < α = β < 1, the global Pade approximation of the

function Eα,α(−x) is

Eα,α(−x) ≈
1

Γ(α)

1 + 2Γ(1−α)2

Γ(1+α)Γ(1−2α)x+ Γ(1−α)
Γ(1+α)x

2
. (7)

From (6) and (7), since λ0 = −Γ(1+α)
Γ(1−α) < 0,

H(λ0, α) ≈
Γ(2α)

Γ(α)

∣∣∣∣∣∣1− 1

1− 2Γ(1−α)
Γ(1−2α) +

Γ(1+α)
Γ(1−α)

∣∣∣∣∣∣+ Γ(1 + α)

Γ(1− α)
− ∥q∥.

Noting that

∥q∥ = max
0<t≤1

∣∣∣∣13 tα
∣∣∣∣ = 1

3
, α =

3

4
,

according to the Gamma function table, we obtain Γ(−0.5) ≈ −3.65, Γ(0.25) ≈
3.63, Γ(0, 5) ≈ 1.78, Γ(0.75) ≈ 1.23.
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In consequence,

H(λ0, α) ≈
Γ(2α)

Γ(α)

∣∣∣∣∣∣1− 1

1− 2Γ(1−α)
Γ(1−2α) +

Γ(1+α)
Γ(1−α)

∣∣∣∣∣∣+ Γ(1 + α)

Γ(1− α)
− ∥q∥

≈ 1.5

0.75

∣∣∣∣1− 1

3.34

∣∣∣∣− 1.23

3.63
− 1

3
≈ 0.66− 1

3
≈ 0.33 > 0.

From corollary 3.1, problem (5) has a unique trivial solution.
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