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Abstract

An n x n ray pattern A is said to be spectrally arbitrary if for every monic
nth degree polynomial f(x) with coefficients from C, there is a complex matrix
in the ray pattern class of A such that its characteristic polynomial is f(x). In
this paper, a family ray patterns is proved to be spectrally arbitrary by using
Nilpotent-Jacobian method.
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1 Introduction
A ray pattern A = (aji) of order n is a matrix with entries a;; € {€?]0 < 0 <
2} U {0}, where i? = —1. Its ray pattern class is

QR(A) = {B = (b]k) S MR(C” bjk = TjkQjk, Tjk € R+, 1< j,k < n}

It is easy to see that ray patterns are a generalization of the sign patterns.

A ray pattern A is said to be spectrally arbitrary if for any monic nth degree
polynomial f(x) with coefficients from C, there is a complex matrix B € Qr(A)
such that the characteristic polynomial of B is f(z).

Spectrally arbitrary problem is a basic subject in combinatorial matrix theory
and a hot topic for some international scholars. The problem of the spectrally arbi-
trary sign patterns was introduced in [2]. J.H. Drew et al. developed the Nilpotent-
Jacobian method to show that a sign pattern is spectrally arbitrary in [2]. Work on
spectrally arbitrary sign patterns has continued in several articles including [1,3,4].
J.J. Mcdonald and J. Stuart in [6] extended the Nilpotent-Jacobian method from
sign patterns to the ray patterns. Y.Z. Mei and Y.B. Gao in [7] showed that the
minimum number of nonzeros in an n x n irreducible spectrally arbitrary ray pattern
is 3n — 1.
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Though the general method — Nilpotent-Jacobian method — to prove the spec-
trally arbitrary property has been developed, the proof procedure is not very easy.
Let Ay = (ajk) be an n X n complex square matrix as follows

]_ PR m

1 /-1 1 0 0 0
-1 0 1 0 0 0
-1 0 0 0 1 0 0

m 0O 0 0 ¢? 1 0 0

A= | 00000 DD 0 gchcom),

1 0 0 0 0 0O 0 1 0 0 0
1 0 0 0 0O 0 1 0 0
-1 0 0 0 0O 0 1 0
-1 1 0 0 0 0 1

where n, m, j and k are positive integers; 2 < m <n —2,1 < j,k < n; and the
(m,m) entry is e,

In [6], the ray pattern A, > was proved to be spectrally arbitrary. In [8], the
ray pattern A, 3 was proved to be spectrally arbitrary. In [5,9], several families ray
patterns were proved to be spectrally arbitrary.

In this paper, we show that for n > 8 if § € <arccos 2 arccos 3+TY§>’ then

\/5 9
the ray pattern A, 4 is spectrally arbitrary.

2 The Extended Nilpotent-Jacobian Method

A square matrix A is called to be nilpotent if there exists a positive integer k such
that A¥ = 0 but A¥~! #£ 0. A ray pattern B is said to be potentially nilpotent if there
is a complex matrix A € Qgr(B) with characteristic polynomial g(x) = z™. If the
ray pattern A is spectrally arbitrary, then A is potentially nilpotent affirmatively.

In [6], the extended Nilpotent-Jacobian method can be summarized as follows:

(1) Find a nilpotent matrix in the given ray pattern class.

(2) Change 2n of the positive coefficients (denoted 71,7, ,72,) of the e%i* in
this nilpotent matrix to variables t1,to, - , to,.

(3) Express the characteristic polynomial of the resulting matrix as:

n
2 (frltasta, - o ton) +ige(ty,ta, -+ o tan))z™ ",
k=1
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8(f17gl7.“;fn7gn)
a(t17t27"'7t27’b) :
(5) If the determinant of J, evaluated at (t1,to, - ,ton) = (ri,72, -+ ,T2p) iS

(4) Compute the determinant of the Jacobi matrix J =

nonzero, then the given ray pattern and all of its superpatterns are spectrally arbi-
trary, where a ray pattern P = (pj;i) is a superpattern of a ray pattern A = (ajy) if
Pjk = aji, whenever aj; # 0.

3 Main Results

Let n be an integer with n > 8. For convenience, we restrict 8 to 0 < 6 < g Let
p=q+iy/1—¢q?and ¢ = cosf. We consider the following n X n complex matrix

—aq 1 0 0 0

—a9 0 1 o .- 0 0

—as 0 0 1 0 0 0

aq 0 0 P 1 e 0 0

as 0 0 0 1 0 0 0
B= _ , (3.1)

(n_3 0 0 0 0 0 1 0 0

—Qp—2 0 0 0 0 0 1 0

—p_1 by, 0 0 0 0 1

a, —ibpy_q —ibp_g e+ e+ eee eee —iby —iby —iby
If aj > 0and b; > 0 for all 1 < j <mn, then B € Qr(Ay4). Denote

M = B[ =M"+> (fe+ige) A" F = 2"+ apAm ", (3.2)

k=1 k=1
where

fk‘ = fk(alaa27"' 7an;blab2>"' 7bn)7 9k :gk(a1>a2>"' 7an;blab2>"' 7bn)

are the real and imaginary parts of the coefficient oy, of \» 7%, for k = 1,2,--- ,n,
respectively.
Lemma 1 |[A\ — B|=\"+ i (fr +igi)\"F, where fi, and gy are defined as
above, then =
fi=a1—q,

fa=biv/1—¢*—a1q+ a,

f3=ba/1—q*+ arbi\/1—¢* — azq + as,

f1 =031 —=¢q>+ arba\/1 — ¢* + azbi1\/1 — ¢* — azq — ay,

fi = (bj1 + arbj_2 + asbj—3 + azbja) V1 — —a; (5<j<n-—3),
fro = —by + (asbp_g + asby_5 + a1by_4)\/1 — @2 + an_o,

fn—1 = —aiby + (a3bp—5 + agbp—a)\/1 — ¢ + an—1,

fn = —ap + azby,_4 vV 1- q27
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(gl:bl_ \/1—(127
g2 = by + a1by — big — a1/1 — ¢2,

g3 = b3 + a1by — bag — a1b1q + agby — az/1 — ¢2,

g; = bj +aibj_1 + azbj_o +azbj_3 — bj_1q — a1bj_2q
j—1
— > agbj_ —a2bj_3q —azbj_aq (5 <7 <n—3),
k=4

gn—2 = bp_2 +aib,—3 — a1by—aq + asbp_4 + azb,_s

n—3
— > agbp_o_k — asby_5q — azby_¢q,
fi=4
gn—1 = bp—1 — b1b, + a1b,—2 + agb,—3 + azb,—4
n—3
— > agbp_1-k — agbp_4q — asb,_5q + an—2b1,
=4

gn = —a1b1by, + a1bp—1 + agb,—2 + azb,—3
n

3
> arbn_k — a3bp_4q + an_2b2 + an_1b1.

k=4

Proof For 2<t<n—4,let

then

A =1 o .- 0
0
At: 0 )

0 0 A —1

lbt ibt_l ibg )\‘i‘ibl
A -1 0 0
0 A -1 0 0
0 0 A—p -1 0 0
0 0 0 A -1 0 0

Al —=B|=(A+a1)| : : . T

0 0 0 0 A -1 0
0 0 e e 00 XA -1
_bn 0 0 0 A

ibp_1  ibp_g  crr e oo eoo ibg by

g1 = by + a1bz — b3q — a1baq + aszby + azby — azbiq — az/1 — ¢,

SO O OO oo

A+ by

257
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n—3

+asl’ 4 a3} — Z apAp— + an—209 + an_1(A+ib1) — ay,
k=4

= N1 4 a1TA — by (A + iby)A + by 1 A — arbp (X 4 iby) + ayiby_1

n—3

+asl’ + a3 — Z apAp—k + an—202 + an_1(A+ib1) — ap,
k=4

where

t
Ay=X+i) b7 (2<t<n-4),

7j=1
n—3
Q=M 4 (byi — p)A" 0> (b — bj_p) A",
7j=2
n—3
D= X" 4 (b —p)A" 2+ Y (b — bjap)A" 27 + by, .
=2

Therefore, we have

a1 =1iby + a1 —p,

oy = 1by + ibl(al — p) —aip + ag,

ag = ibg + ibs(a1 — p) — ia1b1p + iasby — azp + as,

ay = iby +ib3(a1 — p) —ia1bap + iagby + iagbe — azp — iazbip — ay,

7—1
oy = ibj + ibj_l(al — p) - (aj +1 Z akbj,k — iagbj_g — iagbj_g)
k=4

—ip(albj_g -+ aij_g + a3bj_4) (5 <j<n-— 3),

Qp—9 = ibp—2 — by, — ta1bp_ap + ia1bp_3 + iagb,_4 + iazb,_s

n—3
—i Y axbp_o_ — ip(asbn_5 + azbn—¢) + an_2,
k=4
Qp—1 = tbp—1 — a1b, — 1b1b, + ta1by—9 + tasby—3 + tagb,—y
n—3
—i Y agby—1—k — ip(agbp_4 + azbp—s) + ian—2b1 + an—1,
k=4
n—3
Ay = —ialblbn + ialbn_l + iagbn_g + iagbn_g —1 Z akbn,k
k=4

L —1a3bp_4p + ian_2b2 + ian_1b1 — ay,.

Then the lemma holds.

Lemma 2 Forn > 8, if 0 € (arccos %, arccos 4/ 3%@) then the ray pattern
Ap 4 is potentially nilpotent.

Proof Let B have form (3.1), ¢ = cosf. In (3.2), assume that f; = 0 and
gr =0 for 1 <k <n, by Lemma 1, we have
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ai =g,
ag = a1q — bi\/1 - ¢2,
az = azq — a1biy/1— ¢2 — ba/1 — ¢2,
as = —azq + (arby + agby + b3)\/1 — ¢2,
a; =bj-1V/1— ¢ + aibj2/1 - ¢*
+agbj_a\/1 — @? +agh; 3/1—¢2 (5<j<n-—3),
an—9 = by — (azbn_¢ + azby_5 + a1bp_s)\/1 — ¢2,
an—1 = arby — (agby—5 + azby_4)y/1 — ¢2,
an = azby—a\/1 - ¢,

and

b =+/1-¢?

by = a1\/1—¢*> — a1by + big,

b3 = az\/1 — ¢* — a1by + a1b1q — azby + bag,

by = az\/1 — ¢* — a1bz + a1baq — azby — azbz + agbiq + bag,

7j—1
bj = —aibj_1 +bj_1g+ aibj_oq+ > arbj_i — asbj_3
k=4

—agb; o+ azbj_3q+azbj_4q (5<j<n-—3),
bp_2 = —a1b,—3 + a1b,_4q — azbp_4 — azb, 5

n—3
+ > arbp—o— + a2bp_5q + azby_sq,
fi—=4

bp—1 = b1by, — a1bp—2 — agby_3 — azby—4 — ap_2b1
n—3
+ > arbp_1—k + a2bp_4q + azb,_sq,
k=4

n—3

by, :(albnfl +asby,—2+azby_3— ak’bn—k_a3bnf4Q+an72b2+an71b1>(albl)_l-
Ji=4

So we only need to show that for 1 < j <niff € (arccos %, arccos %), then

a; > 0 and b; > 0, thus B € Qr(Ap.4) is nilpotent. The following proofs are limited

2 /343
to 0 € (arccos /5 AIcCos G )

Firstly, for 1 < j <4, it is easy to see that

a1:Q>07
as =2¢>—1>0,
as =4¢> — 3¢ > 0,

and
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(a4:—8q4+8q2—1>0,
b =+/1-¢>>0,

by = q\/1—¢* >0,

by = ¢*\/1—¢*> >0,

by =¢*/T— ¢ > 0.

Secondly, we consider a; for 5 < j <n—3 and b; for 5 < j < n —3. We proceed

by induction on j. For j = 5, we have

as = (bs + arbs + azbs + agb1)v/1 — ¢2 = 4¢(2¢* — 1)(1 — ¢°) > 0,
bs = a1b3q + asb1 — aszbs — asbs + asbaq + azbiqg = (—7q4 + 8q2 — 1)\/ 1-— q2 > 0.

Suppose that a; > 0 and b; > 0 hold for any j < where 5 <[ <n — 3, then
a=b_1vV1—¢+ab—av1—q%+abi_3v/1—q¢?>+azb_4/1—¢> >0,
-1

b= —aib_1 +b1q+arboq+ > agbik — asbi_g — asb_y + asbi_3q + agbi_aq
k=4
-1

= (1 — q2)bl,2 + Z arbi_k + 2q(1 — q2)bl,3 + agbj_4q > 0.
k=4

Therefore by induction, a; > 0 and b; > 0 for 5 < j < n — 3.
Thirdly, it is obvious that a, > 0. Thus we only have to consider the following

equations
an—2 = by, — (a3bp—6 + a2bp—5 + a1bp—a)\/1 — ¢2, (3.3)
an—1 = ai1b, — (agbn—s + a2bp—4)/1 — ¢2,
bp—2 = —a1by—3 + a1by,—4q — a2by,—4 — azb,_5
n—3
+ Z agbp—o_ + azbp—6q + asb,_5q, (3.5)
=4
bp—1 = bib, — a1bp_2 — asb,_3 — agby,—4 — ap_2b1
n—3
+ Z arbp—1— + azbp—5q + asb,_4q, (3.6)
=4
n—3
bp= (al bnfl+a2bn72+03bn73_zakbn—k_a3bn74Q+an72b2+an71bl) (a1by)™t. (3.7)
k—4

For the formula (3.5), by
n—4

bp—3 = a1b,_5q — azb,_5 — azb,_¢ + Z arbp—3— + azby—7q + asbn_eq,
k=4



No.3 J.W. Deng, Ray Patterns 261

we have
bn2= (1= ¢*)bp—s+ q(1 = ¢*)bns + (6¢* — 5¢°)br—s + an_3b1
n—4 n—4
+3 arbna—k — a1y agbn_s_i — ¢*(4¢° — 3q)bn_7.
k=4 k=4
Since
an—3 = (agbp—7 + a2bp—6 + arbp—5 + bp—a)/1 — ¢2,
we obtain
bn—s = 2(1 — ¢*)by—a + 2q(1 — ¢*)bn—s + (4¢* — 2¢° — 1)y
n—4
+(4¢% = 3¢)(1 = 2¢°)bp—7 + > _ ar(bn-a—k — Gbn—3_1)-
k=4
By
n—>s
bn74 = albnfﬁq - a2bn76 - aSbn77 + Z akbn—4—k + a3bn78q + a2bn77Qa
k=4

it follows that

b2 =2q(1 — ¢*)by_5 + (6¢* — 6¢° + Dbp_g + (—4¢° + 2¢° + q)bp_7

n—4 n—>5
+2¢(1—¢*)(4¢° = 3)bn-s+ Y _ar(bns—k—qbn—s—)+2(1—¢*)>_arbp_s—-
k=4 k=4

Now we only need to show that b,,_o_p — gb,_3_ > 0for 4 < k <n—4. Itis
obvious that b; —gbj_1 = 0 for 2 < j < 4. For j = 5, we can obtain

bs — qby = (—8q4 +8q2 —1)y/1—¢*>>0.
For 6 < j < n— 3, we have
aj —qaj—1 = (bj—1 + aibj_o + asbj_3 + agbj_4)\/1 — ¢?
—q(bj—2 + a1bj_3 + agbj_4 + azbj_5)\/1 — ¢?
= [bj—1 — (1 = ¢*)bj—3 — 2q(1 — ¢*)bj—1 — qasbj—s]v/1 — ¢*

j—2
= Zakbj_l_k\/ 1-— q2 > 0.
k=4

Thus, for 6 < j < n — 3, we have



262 ANN. OF APPL. MATH. Vol.33

j-1
bj —qbj_1 = aibj_2q + Z agbj_k — asbj_s — azbj_a + asbj_3q + asbj_aq — a1bj_3q>
k=4
j—2
— Z akbj_1-kq + asbj_aq + asbj_3q — asbj_1q* — asb;_sq*
k=4
= (1= ¢"bja+q(1 —¢*)bj 3+ (—2¢" +3¢° — 1)bj_4
j—1
—0—(—4q5 +7¢° — 3q)bj_5 + Z bj—k(ar — qag—1) > 0.
k=6
Then b,,_o > 0.

For the formula (3.7), by (3.4) and (3.6), we have

a1biby, = (1= ¢*)bn—2 + 2¢(1 — ¢*)bn—3 + (4" — 2¢° — 1)bp_4
n—3

+(4¢% = 3¢)(1 = 2¢°)bp—5 + > _ ar(bn—k — gbn-1-¢),
k=4

then by (3.5) we can obtain

a1bib, = q(1 — ¢*)bp—3 + (5¢" — 4¢%)bp—a + (=6¢° + 6¢° — q)by—5

n—3
+(4¢° = 39)(1 — ¢*)abn—6 + Y _ ar(bn—t — qbn_1-1)
k=4
n—4
+(1 = %)) arbns—k + (1 — ¢*)an_3b1.
k=4
Note that
an—3 = (agbn—7 + agbp_¢ + arbp_s5 + by_4)v/'1 — ¢2,
then

a1bibn = q(1 — ¢*)bn—s + (6¢* — 6¢* + 1)by_s + (—5¢° + 4¢°)by_5
+(1—¢*)(2¢" — 1bns + (4¢° — 3¢)(1 — ¢*)*bp 7

n—3 n—4
+3 " ap(bner — @hn1-x) + (1= *) Y _ axbp_o—y > 0. (3.8)
k=4 k=4

Mutiply both sides of the formula (3.3) by a1b;, then
arbian—2 = a1biby, — aibi(azb,—6 + agbn—5 + a1bp—a)/1 — ¢2.

By (3.8), we have
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arbian—2 = q(1 — ¢*)bp—3 + (7¢* — 7¢* + Dbps + (3¢° + ¢* + @)bn—s
+(2¢° — 1)(1 = ¢°)*bn—s + (4¢° — 3¢)(1 — ¢*)*bp—7

n—3 n—4
+ Z ar(bn_k — qbn_1-x) + (1 — ¢*) Z arbp—o—k
) =1

= q(1 = ¢®)bn-3 + (1 — ¢*)bp—s + (11¢° — 7¢> + 2¢)b,_5
+(2¢° = 1)(1 = ¢*)*bp—s + (4¢> = 3¢)(1 = ¢*)*bn—7

n—3 n—4
+> ar(bpk — gbn1-%) + (1= ¢*) D arbp—2 1 >0,
k=5 k=4

For the formula (3.4), by (3.3), we have
by = (asbn_g + azbp—5 + a1bp—1)\/1 — ¢% + an_o. (3.9)
By (3.9),
Un_1 = aran_o+arasbp_s\/1 — >+2¢(1—¢*)\/1 — @bp_s+(1—¢*)v/1 — ¢®by_y > 0.
For the formula (3.6), by (3.5) and (3.9), we have

b1 = (1 — ¢*)byp—3 +2q(1 — ¢*)bp—sa + (4¢* — 2¢* — 1)b,,—5

n—3
+(4¢% = 3¢)(1 = 2¢°)bp—6 + > _ ar(bn-1—k — qbn—2—1)-
k=4
Since
n—4
bn—3 = arbp_5q — az2bn—5 — azbn_¢ + Y _ arbn_s_k + agbp_7q + azbn o4,
k=4
we have

bn-1=2q¢(1 = ¢*)bp—s + (5¢" — 4¢°)bp_5 + (—64¢° + 6¢° — q)bp— + (1 — ¢*)azqbn_7

n—3 n—>5
+> ap(bn-1-k = gbn2-k) + (1= *) Y arbp-s k + (1 — ¢*)an_ab1.
k=4 k=4

By an—4 = (asbp—s + agbp—7 + a1bp—6 + bn—5)v/1 — ¢, we can obtain

bn—1 = 2q(1 — ¢*)bp—s + (6¢* — 6% + 1)by—s + (—5¢° + 4¢°)bn—s

+(1=¢*)(2¢" = Dbz + (4¢° = 3¢)(1 — ¢*)*bp—s
n—3 n—>5

+ > ak(bn-1-k — qbno-k) + (1= ¢*) > _ arbp_3_ > 0.
k=t k=4
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From the above statement, we can verify that for 1 < j < n, if € (arccos N

arccos 4/ %), then a; > 0 and b; > 0. Consequently, B € Qr(Ay,4) is nilpotent,
which completes the proof.

Lemma 3 Iffe (arccos 5 arceos v/ 3+6\[) then det J=det M#O.

0(a1,b1, ,an,bn)
Proof Let the Jacobian matrix J = W.
a1,01, " ,an, n)

the 2n x 2n matrix J has the following block form

Jin Ji2
/= <J21 J22> ’

where Ji1 is a (2n — 6) x (2n — 6) principal submatrix of J; Ji2 is a (2n — 6) x 6
submatrix formed by deleting the 1th, the 2th, ---, the (2n — 6)th column of the
matrix J; Jop is a 6 X (2n — 6) submatrix formed by deleting the 1th, the 2th, -- -,
the (2n — 6)th row of the matrix J; Ja is a 6 x 6 submatrix formed by deleting the
1th, the 2th, ---, the (2n — 6)th column and the 1th, the 2th, ---, the (2n — 6)th
row of the matrix J.

It is easy to see that for 1 < j < 3, af? =1 and agj =1 ford <j<n-3,

ggj_ = —1 and gzj_ = 1. Thus the matrix J11 is a lower triangular matrix with a
J J

By Lemma 1, we assume

diagonal entries of n copies of 1s and n — 6 copies of —1s. It is easy to see that Jio
is a zero matrix. Furthermore, the matrix

1 0 0 0 O -1
O 1 0 0 O 0
so_]oo 10 0 —a
27 b ap 01 0 —b |’
0O 0 0 O 1 0
b2 a bl al 0 —a1b1
then
1 0 0 0 O —1
0O 1 0 0 O 0
detJ:detJudethgz(—l)”_ﬁ 0 0 10 0 A :(—1)”_7(1@#0'
b1 aj 0 1 0 —b1
0O 0 0 0 -1 0
b2 a9 b1 aq 0 —(Ilbl

Therefore the lemma holds.
By the Nilpotent-Jacobian method on ray patterns and Lemmas 1-3, we have
the following theorem.

Theorem 1 Forn > 8, if 0 € (arccos 5 arccos v/ 3+‘[) then the ray pattern
Ap .4 is spectrally arbitrary.
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