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Abstract

We design a family of 2D Hm-nonconforming finite elements using the full
P2m−3 degree polynomial space, for solving 2mth elliptic partial differential
equations. The consistent error is estimated and the optimal order of conver-
gence is proved. Numerical tests on the new elements for solving tri-harmonic,
4-harmonic, 5-harmonic and 6-harmonic equations are presented, to verify the
theory.
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1 Introduction

For solving 2mth order elliptic partial differential equations, the finite element

spaces are designed as either a subspace of Hm Sobolev space, or not a subspace. In

the first case, the finite element is called a conforming element. In the latter case,

the finite element is called a non-conforming element. But some continuity is still

required for non-conforming finite elements. The Courant triangle, the space of con-

tinuous piecewise linear functions, is anH1 conforming finite element, solving second

order elliptic equations. The Crouzeix-Raviart triangle, the space of piecewise linear

functions continuous at mid-edge points of each triangle, is a P1 H1-nonconforming

finite element. The possible minimum polynomial degree is m for an Hm conforming
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and non-conforming finite element. This is because an mth order derivative of poly-

nomial degree m−1 or less would be zero. Wang and Xu constructed a family of Pm

nonconforming finite elements for 2mth-order elliptic partial differential equations

in Rn for any n ≥ m, on simplicial grids [18]. Such minimum finite elements are

very simple compared with the standard conforming elements. For example, in 3D,

for m = 2, 3, 4 the polynomial degrees of the H2, H3 and H4 elements are 9, 17

and 25, respectively, cf. [1, 2, 20], while those of Wang-Xu’s elements are 2, 3 and 4

only, respectively. However, there is a limit that the space dimension n must be no

less than the Sobolev space index m. For example, Wang and Xu constructed a P3

H3-nonconforming element in 3D [18], but not in 2D.

On rectangular grids, the problem of constructing Hm conforming elements is

relatively simple. Hu, Huang and Zhang constructed an n-D C1-Q2 element on

rectangular grids [10]. Here Qk means the space of polynomials of separated degree

k or less. Then, the element is extended to a whole family of Ck−1-Qk elements,

i.e., Hk-conforming Qk elements for any space dimension n, in [11]. That is, the

minimum polynomial degree k (= m) is achieved in constructing Hm-conforming

finite elements, on rectangular grids for any space dimension n. There is no limit of

Wang-Xu [18] that n ≥ m.

It is a challenge to remove the limit n ≥ m in the Wang-Xu’s work [18], by

constructing the minimum degree non-conforming Hm finite elements for the space

dimension n < m. First, in 2D, we need to construct Hm non-conforming finite

elements of polynomial degree m on triangular grids, m > 2. This is not possible on

general grids. In [12] Hu-Zhang constructed an H3 non-conforming finite element of

cubic polynomials, but on the Hsieh-Clough-Tocher macro-triangle grids, following

the idea in the construction of Hm conforming elements on macro rectangular grids

in [10,11]. In [19], Wu-Xu enriched the P3 polynomial space by 3 P4 bubble functions

to obtain a working H3 non-conforming element in 2D. In fact, they extended this

technique to n space dimension [19] so that Hn+1 non-conforming elements in n

space dimension is constructed by Pn+1 polynomials enriched by n Pn+2 face-bubble

functions. In this work, we use the full P2m−3 polynomial space for m ≥ 4 to

construct 2D Hm non-conforming elements. For m = 3 > n = 2, we have the P4

non-conforming finite element. That is, the new element is of full P4 space, two

more degrees of freedom locally than Wu-Xu’s element [19].

2 Definition of Nonconforming Elements

Let a 2D polygonal domain be triangulated by a quasi-uniform triangular grid of

size h, Th. Let Eh denote the set of edges of Th, and Eh(Ω) denote the set of internal
edges. Given e = K1 ∩K2, the jump and average of a piecewise function v across it
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are defined as, respectively,

[v] := (v|K1)|e − (v|K2)|e and {v} :=
(v|K1)|e + (v|K2)|e

2
.

For any boundary edge e ⊂ ∂K, let

[v] := {v} := (v|K)|e.

On each element K of grid Th, we denote the polynomial space of degree k by Pk(K).

For defining an Hm-nonconforming element, we need the weak continuity

−
∫
e
[∇m−1v]ds = 0, (2.1)

for any function v in the nonconforming finite element space and any internal edge

e of Th. In this paper, ∇m is the m-th Hessian tensor. For example, ∇1u = ∇u is

the vector gradient, ∇2u = (∂i∂ju) is the 2-Hessian matrix. A sufficient condition

for (2.1) is up to additional possible degrees of freedom for the uni-solvency to take

the following degrees of freedom on each element K:

• The values of ∇ℓv, ℓ = 0, · · · ,m− 2, at its three vertices;

• the integral means of ∂m−1v
∂nm−1 over its three edges.

On one hand, such a set of conditions imposes 3 + 3m(m−1)
2 degrees of freedom,

which requires a minimal degree of the polynomials, say d(m). Note that d(1) = 1,

d(2) = 2, and d(3) = 4. On the other hand, on any edge e of element K, the

restriction of the function vh is a polynomial with respect to the arc length. This

set of conditions in fact imposes all the values of ∂ℓvh|e
∂tℓ

, ℓ = 0, · · · ,m − 2, at the

two endpoints of edge e, which determine uniquely a polynomial with respect to the

arch length of degree ≤ 2m− 3. It is elementary to show that

d(m) ≥ 2m− 3 when m ≤ 3

and

d(m) < 2m− 3 otherwise.

This indicates that the minimal degree of the polynomials should be

d(m) =


1, m = 1,

2, m = 2,

4, m = 3,

2m− 3, m > 3.
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Therefore, we denote the finite element space on one element K by

Vm(K) :=


P1(K), m = 1,

P2(K), m = 2,

P4(K), m = 3,

P2m−3(K), m > 3.

For m = 1, it recovers the celebrated Crouzeix–Raviart element which uses

P1(K) as the shape function space on element K [5]. For m = 2 it becomes the sim-

plest nonconforming element for fourth order elliptic problems, namely the Morley

element which uses P2(K) as the shape function space on element K [5]. For m = 3,

it implies that the recent elements from Wu and Xu [19] and [12] are the simplest

H3 nonconforming elements in 2D which can not be essentially improved. Here, we

propose a new set of degrees of freedom for P4(K) which yields somehow a new H3

nonconforming element. In the sequel, we propose a set of degrees of freedom for

the spaces V3(K) = P4(K) and Vm(K) = P2m−3(K) with m ≥ 4. We define the

finite element space by the following 6 cases.

Case 1 For m = 3, on each element K ∈ Th, the degrees of freedom for P4(K)

are as follows,

v(xi), ∇v(xi), v(mi), and −
∫
ei

∂2v

∂n2
i

ds, (2.2)

where xi are three vertexes of K, ei are three edges of K, and mi are three mid-

points of the edges ei of K, respectively, (see Figure 1). Here ni is the unit normal

vector to an edge ei. The degrees of freedom of V3(K) are plotted in Figure 2. Note

that there are 3 × (1 + 2) + 3 × (1 + 1) = 15 dofs, which is the dimension of the

2D P4 polynomial space. The new element is continuous, that is, an H1 conforming

element.
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Figure 1: Vertex, edge, mid-point, unit normal vector,
unit tangent vectors, of a triangle K.
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Figure 2: The degrees of freedom for P4(K) and P5(K), defined in (2.2) and (2.3).

Case 2 For m = 4, on each element K ∈ Th, the degrees of freedom for P5(K)

are as follows

v(xi), ∇v(xi), ∇2v(xi), and −
∫
ei

∂3v

∂n3
i

ds, (2.3)

where xi are three vertexes of K, ei are three edges of K, and ni is the unit normal

vector to an edge ei (see Figure 1). The degrees of freedom of P5(K) are plotted in

Figure 2. We note that the number of linear functionals is 3×(1+2+3)+3×(1+1) =

21 dofs, which is the dimension of the 2D P5 polynomial space. Note that this

element is the same as the famous Argyris element [2], except the first order normal

derivative of the Argyris element which is replaced by the integral mean of the third

order normal derivative. However the element is only an H1 conforming element,

not an H2 conforming element.

Case 3 For m = 5, the H5 non-conforming element is made by P2m−3 = P7

polynomials, which is defined by the following degrees of freedom:

∇αv(xi), |α| ≤ 3,
∂v(mi)

∂ni
, −
∫
ei

∂4v

∂n4
i

ds, (2.4)

where xi are three vertices of K, ei are three edges of K, ni is the unit normal vector

to an edge ei and mi is its mid-point. Here the multi-index α = (i1, i2) defines the

order of mixed derivatives of v at a vertex xi. Let us count the number of linear

functionals,

3× (1 + 2 + 3 + 4) + 3× (1 + 1) = 30 + 6 = 36 = dimP7.

In particular, this element is also an H2-conforming element, that is, a C1 element.

Case 4 For m = 3k + 3, k = 1, 2, · · · , the Hm non-conforming finite element

consists of all P2m−3 = P6k+3 polynomials, whose degrees of freedom are as follows:
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∇αv(xi), |α| ≤ 3k + 1, −
∫
ei

∂3k+2v

∂n3k+2
i

ds,

∂v(mi)

∂ni
,
∂2v(mi,j,2)

∂n2
i

, · · · , ∂m0v(mi,j,m0)

∂nm0
i

,

∂m0+1v(mi,j,m1)

∂nm0+1
i

,
∂m0+2v(mi,j,m1−3)

∂nm0+2
i

, · · · , ∂m0+m2v(mi,j,7)

∂nm0+m2
i

, (2.5)

∂4kv(x1)

∂t2k2 ∂t2k3
,
∂4kv(x2)

∂t2k3 ∂t2k1
,
∂4kv(x3)

∂t2k1 ∂t2k2
,
∂4k+1v(x1)

∂t2k+1
2 ∂t2k3

,
∂4k+1v(x2)

∂t2k+1
3 ∂t2k1

,
∂4k+1v(x3)

∂t2k+1
1 ∂t2k2

,

v
(x1 + x2 + x3

3

)
,

where ti is the unit tangent vector in the direction of edge xi+1xi+2, and mi,j,l,

1 ≤ j ≤ l, are l uniformly distributed internal points on edge ei. But when k = 1,

the six tangential derivatives in (2.5) are replaced by 6 internal values. Here m0 =

[(3k+2)/2], which is the integer part of the number, if k ≥ 2 or else m0 = 0, namely,

m0 =


3ℓ+ 1, if k = 2ℓ, ℓ ≥ 1,
3ℓ+ 2, if k = 2ℓ+ 1, ℓ ≥ 1,
0, otherwise,

m1 =


3l − 2, if k = 2ℓ, ℓ ≥ 1,
3l + 1, if k = 2ℓ+ 1, ℓ ≥ 1,
0, otherwise,

and

m2 =


l − 2, if k = 2ℓ, ℓ ≥ 1,
l − 1, if k = 2ℓ+ 1, ℓ ≥ 1,
0, otherwise.

That is, we first fill the missing dofs on each edge to make function v C1, C2, and

so on until Cm0 (if k ≥ 2), which implies that we add one 1st normal derivative,

two 2nd normal derivatives, and so on until m0 m0-th normal derivatives. The

maximum level of added full normal derivatives is m0. After that, we can add some

high order normal derivatives, due to the constraint of adding higher order normal

derivatives on the two other edges. So the number of higher normal derivatives is

reduced by 3 each level, until reaching 7. By this time, the number of undefined

dofs is exactly 7. Consequently, in this case, we always have 7 internal degrees of

freedom (independent of dofs on neighboring triangles), which are imposed by six

tangential derivatives at three vertices and one value at the center. We depict the

dofs of the element when k = 1 in Figure 3.
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Figure 3: The degrees of freedom for P7 and P9 defined in (2.4) and (2.5) respectively.

Case 5 For m = 3k + 4, k = 1, 2, · · · , the Hm non-conforming finite element

consists of all P2m−3 = P6k+5 polynomials, whose degrees of freedom are as follows:

∇αv(xi), |α| ≤ 3k + 2, −
∫
ei

∂3k+3v

∂n3k+3
i

ds,

∂v(mi)

∂ni
,
∂2v(mi,j,2)

∂n2
i

, · · · , ∂m0v(mi,j,m0)

∂nm0
i

, (2.6)

∂m0+1v(mi,j,m1)

∂nm0+1
i

,
∂m0+2v(mi,j,m1−3)

∂nm0+2
i

, · · · , ∂m0+m2v(mi,j,6)

∂nm0+m2
i

,

∂2(m0+m2+1)v(xl)

∂nm0+m2+1
i ∂nm0+m2+1

j

with (i, j, l) permutations of (1, 2, 3),

where mi,j,l, 1 ≤ j ≤ l, are l uniformly distributed internal points on edge ei. Here

m0 = [(3k + 2)/2], the integer part of number, namely,

m0 =


3ℓ+ 1, if k = 2ℓ, ℓ ≥ 1,
3ℓ+ 2, if k = 2ℓ+ 1, ℓ ≥ 1,
0, otherwise,

m1 =


3l, if k = 2ℓ, ℓ ≥ 1,
3l + 3, if k = 2ℓ+ 1, ℓ ≥ 1,
0, otherwise,

and

m2 =


l − 1, if k = 2ℓ, ℓ ≥ 1,
l, if k = 2ℓ+ 1, ℓ ≥ 1,
0, otherwise.

That is, we first fill the missing dofs on each edge to make function v be C1, C2,

and so on until Cm0 , namely, we add one 1st normal derivative, two 2nd normal

derivatives, and so on until m0 m0-th normal derivatives. After that, we can only



No.3 J. Hu, etc., Nonconforming Finite Element 273

add some high order normal derivatives, due to the constraint of adding higher

order normal derivatives on the two other edges. So the number of higher normal

derivatives is reduced by 3 each level, until reaching 6 on each edge. By this time,

the number of undefined dofs is exactly 3. That is, in this case, we always have 3

internal degrees of freedom (independent of dofs on neighboring triangles), which can

be determined by three higher order derivatives at three vertices ∂2(m0+m2+1)v(xl)

∂n
m0+m2+1
i ∂n

m0+m2+1
j

with (i, j, l) permutations of (1, 2, 3).

We depict the dofs of the element when k = 1, that is, P11(K), in Figure 4.
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Figure 4: The degrees of freedom for P11(K) and P13(K) defined in (2.6) and (2.7).

Case 6 For m = 3k + 5, k = 1, 2, · · · , the Hm non-conforming finite element

consists of all P2m−3 = P6k+7 polynomials, whose degrees of freedom are as follows:

∇αv(xi), |α| ≤ 3k + 3, −
∫
ei

∂3k+4v

∂n3k+4
i

ds,

∂v(mi)

∂ni
,
∂2v(mi,j,2)

∂n2
i

, · · · , ∂m0v(mi,j,m0)

∂nm0
i

, (2.7)

∂m0+1v(mi,j,m1)

∂nm0+1
i

,
∂m0+2v(mi,j,m1−3)

∂nm0+2
i

, · · · , ∂m0+m2v(mi,j,5)

∂nm0+m2
i

,

where mi,j,l, 1 ≤ j ≤ l, are l uniformly distributed internal points on edge ei. Here

m0 = [(3k + 3)/2], which is the integer part of number, namely,

m0 =


3ℓ+ 1, if k = 2ℓ, ℓ ≥ 1,
3ℓ+ 3, if k = 2ℓ+ 1, ℓ ≥ 1,
0, otherwise,

m1 =


3l + 2, if k = 2ℓ, ℓ ≥ 1,
3l + 2, if k = 2ℓ+ 1, ℓ ≥ 1,
0, otherwise,
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and

m2 =


l, if k = 2ℓ, ℓ ≥ 1,
l, if k = 2ℓ+ 1, ℓ ≥ 1,
0, otherwise.

That is, we first fill the missing dofs on each edge to make function v C1, C2, and so

on until Cm0 . After that, we can only add some high order normal derivatives, due

to the constraint of adding higher order normal derivatives on the two other edges.

So the number of higher normal derivatives is reduced by 3 each level, until reaching

5 on each edge. By this time, the number of undefined dofs is exactly 0. We depict

the dofs of the element when k = 1, that is, P13(K), in Figure 4.

The global Hm non-conforming finite element space is defined by

Vm(Th) := {v ∈ L2(Ω)| v|K ∈ Vm(K) for any K ∈ Th, the
inter-element dofs (on neighboring elements) (2.8)
have same values, the boundary dofs take value 0},

where Vm(K) are defined in (2.2)-(2.7).

For the m-harmonic equations:

(−∆)mum = f in Ω,

∂ℓum
∂nℓ

= 0 on ∂Ω, ℓ = 0, 1, · · · ,m− 1,
(2.9)

the finite element approximation problem is: Find um,h ∈ Vm(Th) such that

(∇m
h um,h,∇m

h v) = (f, v) for any v ∈ Vm(Th), (2.10)

where ∇m
h is the discrete m-th Hessian tensor which is defined elementwise.

3 Well-posedness of Non-conforming Element

Lemma 3.1 The finite element functions in the space Vm(K) are uniquely

defined by the specified degrees of freedom.

Proof The proof for V1(K) and V2(K) can be found in [18]. We also skip the

proof for V3(K), V4(K) and V5(K) since it is similar to those of the high order cases.

So we have three cases, m = 3k + 5, 3k + 4, and m = 3k + 3 for Hm nonconforming

elements. For each case, we will show the square linear system of equations, with

homogeneous right-hand side, has a unique solution v = 0. This ensures the existence

and the uniqueness of the finite element functions.

For the first case, m = 3k+5, cf. degrees of freedom in (2.7), by the vertex and

edge (low-order normal derivatives) degrees of freedom, we have

v = Bp1, where B = λr
1λ

r
2λ

r
3 and p1 = a1λ1 + a2λ2 + a3λ3, (3.1)



No.3 J. Hu, etc., Nonconforming Finite Element 275

where r = m0 + m2 + 1 with m0 and m2 being defined in (2.7), and λi being

barycenter coordinates of the triangle. We shall prove that the parameters ai are

zero. It follows from the definition of the barycenter coordinates that

∇v = r
(n1

h1
λr−1
1 λr

2λ
r
3 +

n2

h2
λr
1λ

r−1
2 λr

3 +
n3

h3
λr
1λ

r
2λ

r−1
3

)
× (a1λ1 + a2λ2 + a3λ3) + λr

1λ
r
2λ

r
3

(
a1

n1

h1
+ a2

n2

h2
+ a3

n3

h3

)
,

∂v

∂n1
=

( r

h1
λr−1
1 λr

2λ
r
3 +

rc12
h2

λr
1λ

r−1
2 λr

3 +
rc13
h3

λr
1λ

r
2λ

r−1
3

)
× (a1λ1 + a2λ2 + a3λ3) + λr

1λ
r
2λ

r
3

(
a1

1

h1
+ a2

c12
h2

+ a3
c13
h3

)
,

where hi is the height of the triangle from vertex vi to the opposite edge ei, and

cij = ni · nj .

Note that the total degree of polynomial is 2m − 3 = 2(3k + 5) − 3 = 6k + 7.

We compute the m− 1(st) normal derivative of v on edge e1, where m− 1 = r + l,

r = 2k + 2 is an even number and l = k + 2. When restricted on the edge e1, any

term containing λ1 would vanish. Therefore, the r-th normal derivative must be on

the term λr
1, and the rest l-th normal derivative is on the other terms.

∂r+lv

∂nr+l
1

∣∣∣∣
e1

= p1
∂r+lB

∂nr+l
1

∣∣∣∣
e1

+ (r + l)
∂r+l−1B

∂nr+l−1
1

∂p1
∂n1

∣∣∣∣
e1

= p1

(
r+l
r

)
∂rλr

1

∂nr
1

∂l(λ2λ3)
r

∂nl
1

∣∣∣∣
e1

+(r+l)

(
r+l−1

r

)
∂rλr

1

∂nr
1

∂l−1(λ2λ3)
r

∂nl−1
1

∂p1
∂n1

∣∣∣∣
e1

.

This leads to

∂r+lv

∂nr+l
1

∣∣∣∣
e1

=
r!

hr1
(a2λ2 + a3λ3)

(
r + l
r

)

×
l∑

i=0

(
l
i

)
r!

(r − i)!
λr−i
2

(c12
h2

)i r!

(r − l + i)!
λr−l+i
3

(c13
h3

)l−i
∣∣∣∣
e1

+(r + l)
(
a1

1

h1
+ a2

c12
h2

+ a3
c13
h3

) r!

hr1

(
r + l − 1

r

)
×

l−1∑
i=0

(
l − 1
i

)
r!

(r − i)!
λr−i
2

(c12
h2

)i r!

(r − l + i+ 1)!
λr−l+i+1
3

(c13
h3

)l−i−1
∣∣∣∣
e1

.

Note that ∫ 1

0
xm(1− x)ndx =

m!n!

(m+ n+ 1)!
. (3.2)

Therefore,
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0 =

∫
e1

∂r+lv

∂nr+l
1

ds

=
r!

hr1

(
r + 1
r

) l∑
i=0

(
l
i

)
r!

(r − i)!

r!

(r − l + i)!

(c12
h2

)i(c13
h3

)l−i

×
(
a2

s1(r − i+ 1)!(r − l + i)!

(2r − l + 2)!
+ a3

s1(r − i)!(r − l + i+ 1)!

(2r − l + 2)!

)
+

r!

hr1

(
r + 1
r

)
l
(
a1

1

h1
+ a2

c12
h2

+ a3
c13
h3

)
×

l−1∑
i=0

(
l−1
i

)
r!

(r− i)!

r!

(r− l+ i+1)!

(c12
h2

)i(c13
h3

)l−i−1 s1(r− i)!(r− l+ i+1)!

(2r− l+2)!
,

where s1 is the length of the edge e1. This yields

0 =

l∑
i=0

(
l
i

)(c12
h2

)i(c13
h3

)l−i(
a2(r − i+ 1) + a3(r − l + i+ 1)

)
+l

(
a1

1

h1
+ a2

c12
h2

+ a3
c13
h3

)(c12
h2

+
c13
h3

)l−1
.

Further, by the equation

d

dx
x(x+ c)l =

l∑
i=0

(
l
i

)
(i+ 1)xicl−i,

we get

0 =
(c12
h2

+
c13
h3

)l−1[
a2(r − l + 1)

(c12
h2

+
c13
h3

)
+ a2l

c13
h3

+ a3(r − l + 1)
(c12
h2

+
c13
h3

)
+a3l

c12
h2

+ l
(
a1

1

h1
+ a2

c12
h2

+ a3
c13
h3

)]
=

(c12
h2

+
c13
h3

)l−1{a1
h1

l + a2(r + 1)
[c12
h2

+
c13
h3

]
+ a3(r + 1)

[c12
h2

+
c13
h3

]}
.

We derive the equation

a1
h1

l + a2(r + 1)
[c12
h2

+
c13
h3

]
+ a3(r + 1)

[c12
h2

+
c13
h3

]
= 0.

Multiplying the equation by the twice area of triangle K, noting that |K| = sihi/2,

i = 1, 2, 3, it follows

la1s1 + (r + 1)a2(c12s2 + c13s3) + (r + 1)a3(c12s2 + c13s3) = 0.

Noting that

c12s2 + c13s3 = n1 · s2n2 + n1 · s3n3 = −s2 cos(θ12)− s3 cos(θ13) = −s1,
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where θij is the angle between edge ei and ej , we get

la1 − (r + 1)a2 − (r + 1)a3 = 0.

Symmetrically,

la2 − (r + 1)a1 − (r + 1)a3 = 0, la3 − (r + 1)a1 − (r + 1)a2 = 0.

Adding the three equations, we obtain

(l − 2(r + 1))(a1 + a2 + a3) = −(3k + 4)(a1 + a2 + a3) = 0,

that it follows

a1 + a2 + a3 = 0.

Combing this equation with the first equation above, we obtain

(r + 1 + l)a1 = 0, a1 = 0.

Thus ai = 0, p1 = 0, and the unique solution v = 0.

We study next the second case m = 3k + 4, cf. (2.6). In this case, we have a P2

internal polynomial in v after factoring out the boundary factors. That is, when v

satisfies the homogeneous vertex and low-order normal derivative conditions,

v = Bp2, (3.3)

where B = λr
1λ

r
2λ

r
3 and p2 = a1λ2λ3+ a2λ3λ1+ a3λ1λ2+a4λ

2
1+a5λ

2
2+a6λ

2
3. Again,

here r = m0 +m2 + 1 with m0 and m2 being defined in (2.6). Next, we show that

ai = 0, i = 1, · · · , 6. By the condition

0 =
∂2rv(x3)

∂nr
1∂n

r
2

=
r!

hr1

r!

hr2

r∑
i=0

(
r
i

)2

c
2(r−i)
12 (λr

3p2)(x3) + 0 =
r!

hr1

r!

hr2

r∑
i=0

(
r
i

)2

c
2(r−i)
12 a6,

where the rest terms contain at least one factor of λ1 or λ2, we get a6 = 0. Sym-

metrically, we derive

v = λr
1λ

r
2λ

r
3(a1λ2λ3 + a2λ3λ1 + a3λ1λ2).

Consider the m− 1(st) normal derivative on an edge, m− 1 = r + 1+ l, r = 2k + 1

and l = k + 1,

∂r+l+1v

∂nr+1+l
1

∣∣∣∣
e1

=
∂3lv

∂n3l
1

∣∣∣∣
e1

= a3

(
3l
l

)
∂2lλ2l

1

∂n2l
1

∂l(λ2l
2 λ

2l−1
3 )

∂nl
1

∣∣∣∣
e1

+ a2

(
3l
l

)
∂2lλ2l

1

∂n2l
1

∂l(λ2l−1
2 λ2l

3 )

∂nl
1

∣∣∣∣
e1

+a1

(
3l

l + 1

)
∂2l−1λ2l−1

1

∂n2l−1
1

∂l+1(λ2l
2 λ

2l
3 )

∂nl+1
1

∣∣∣∣
e1

.

This leads to
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∂r+l+1v

∂nr+1+l
1

∣∣∣∣
e1

= a3

(
3l
l

)
(2l)!

h2l1

l∑
i=0

(
l
i

)
(2l)!ci12

(2l − i)!hi2
λ2l−i
2

(2l − 1)!cl−i
13

(l + i− 1)!hl−i
3

λl+i−1
3

∣∣∣∣
e1

+a2

(
3l
l

)
(2l)!

h2l1

l∑
i=0

(
l
i

)
(2l)!ci13

(2l − i)!hi3
λ2l−i
3

(2l − 1)!cl−i
12

(l + i− 1)!hl−i
2

λl+i−1
2

∣∣∣∣
e1

+a1

(
3l
l+1

)
(2l−1)!

h2l−1
1

l+1∑
i=0

(
l+1
i

)
(2l)!ci12
(2l−i)!hi2

λ2l−i
2

(2l)!cl+1−i
13

(l+i−1)!hl+1−i
3

λl+i−1
3

∣∣∣∣
e1

.

So, by the Euler formula (3.2),

0 =

∫
e1

∂r+l+1v

∂nr+1+l
1

ds

=

(
3l
l

)
(2l)!

h2l1
s1

[
a3

l∑
i=0

(
l
i

)
(2l)!ci12(2l − 1)!cl−i

13

(3l)!hi2h
l−i
3

+ a2

l∑
i=0

(
l
i

)
(2l)!ci13(2l − 1)!cl−i

12

(3l)!hi3h
l−i
2

+a1
h1

l + 1

l+1∑
i=0

(
l + 1
i

)
(2l)!ci12(2l)!c

l+1−i
13

(3l)!hi2h
l+1−i
3

]
.

Consequently

0 =

(
3l
l

)
((2l)!)2(2l − 1)!

(3l)!h2l1
s1

[
a3

(c12
h2

+
c13
h3

)l
+a2

(c12
h2

+
c13
h3

)l
+a1

2lh1
l + 1

(c12
h2

+
c13
h3

)l+1]
.

Noting that c12
h2

+ c13
h3

= − s1
2|K| ,

0 = a3 + a2 − a1
2lh1
l + 1

s1
2|K|

= a3 + a2 − a1
2l

l + 1
.

Symmetrically, we get two other equations. Adding these three equations, we obtain

2

l + 1
(a1 + a2 + a3) = 0.

Subtracting this equation from the above equation, we derive

a1 = 0, and symmetrically, a2 = a3 = 0.

So v ≡ 0.

For the third case, m = 3k + 3, cf. (2.5). Similar to the previous two cases,

instead of a P1 or a P2 internal polynomial, after setting low-order boundary/inter-

element degrees of freedom to zero, we have a P3 internal polynomial that

v = λr
1λ

r
2λ

r
3p3, (3.4)

where r = m0+m2+1 with m0 and m2 being defined in (2.5), and p3 being a degree

3 polynomial in λ1, λ2, and λ3,
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p3 =
∑

i+j+k=3

aijkλ
i
1λ

j
2λ

j
3.

Here we use the standard homogeneous polynomial basis. Now we apply an internal

degree of freedom, a high-order tangential derivative, to get (with notations si =

∥xi − xj∥, tk = (xi − xj)/si, i = 1, 2, 3, j = mod(i, 3) + 1, k = mod(j, 3) + 1)

∂2rv(x1)

∂tr2∂t
r
3

=
r!r!

(−s3)rsr2
a300 = 0, which implied a300 = 0,

because ∂t2λ
r
2 = 0, ∂i

ti2
λr
3(x1) = 0 if i < r. Repeating this calculation for the other

two 2r-order partial derivatives, we get a030 = a003 = 0. For the 2r + 1 order

tangential derivative, we have

∂2r+1v(x1)

∂tr+1
2 ∂tr3

=
(r + 1)!r!

(−s3)rs
r+1
2

a201 = 0, which implied a201 = 0.

Computing the other two 2(r + 1)-order partial derivatives, we get a120 = a012 = 0.

Therefore, we have only four non-zero terms,

v = λr
1λ

r
2λ

r
3(a102λ1λ

2
3 + a210λ

2
1λ2 + a021λ

2
2λ3 + a111λ1λ2λ3).

Consider the m − 1(st) normal derivative on an edge, m − 1 = r + l, r = 2k and

l = k + 3,

∂r+lv

∂nr+l
1

∣∣∣∣
e1

= a102

(
r + 1
l − 1

)
∂r+1λr+1

1

∂nr+1
1

∂l−1(λr
2λ

r+2
3 )

∂nl−1
1

∣∣∣∣
e1

+ a210

(
r + 1
l − 2

)
∂r+2λr+2

1

∂nr+2
1

∂l−2(λr+1
2 λr

3)

∂nl−2
1

∣∣∣∣
e1

+a021

(
r + 1
l

)
∂rλr

1

∂nr
1

∂l(λr+2
2 λr+1

3 )

∂nl
1

∣∣∣∣
e1

+ a111

(
r + 1
l − 1

)
∂r+1λr+1

1

∂nr+1
1

∂l−1(λr+1
2 λr+1

3 )

∂nl−1
1

∣∣∣∣
e1

= a102

(
r + 1
l − 1

)
(r + 1)!

hr+1
1

l−1∑
i=0

(
l − 1
i

)
r!λr−i

2 ci12
(r − i)!hi2

(r + 2)!λr−l+3+i
3 cl−1−i

13

(r − l + 3 + i)!hl−1−i
3

∣∣∣∣
e1

+a210

(
r + 1
l − 2

)
(r + 2)!

hr+2
1

l−2∑
i=0

(
l − 2
i

)
(r + 1)!λr+1−i

2 ci12
(r + 1− i)!hi2

r!λr−l+2+i
3 cl−2−i

13

(r − l + 2 + i)!hl−2−i
3

∣∣∣∣
e1

+a021

(
r + 1
l

)
r!

hr1

l∑
i=0

(
l
i

)
(r + 2)!λr+2−i

2 ci12
(r + 2− i)!hi2

(r + 1)!λr−l+1+i
3 cl−i

13

(r − l + 1 + i)!hl−i
3

∣∣∣∣
e1

+a111

(
r + 1
l − 1

)
(r + 1)!

hr+1
1

l−1∑
i=0

(
l − 1
i

)
(r + 1)!λr+1−i

2 ci12
(r + 1− i)!hi2

(r + 1)!λr−l+2+i
3 cl−1−i

13

(r − l + 2 + i)!hl−1−i
3

∣∣∣∣
e1

.

By the Euler formula (3.2),



280 ANN. OF APPL. MATH. Vol.33

0 =

∫
e1

∂r+lv

∂nr+l
1

ds = s1a102

(
r + 1
l − 1

)
(r + 1)!

hr+1
1

l−1∑
i=0

(
l − 1
i

)
r!ci12
hi2

(r + 2)!cl−1−i
13

(2r − l + 4)!hl−1−i
3

+s1a210

(
r+1
l−2

)
(r+2)!

hr+2
1

l−2∑
i=0

(
l−2
i

)
(r+1)!ci12

hi2

r!cl−2−i
13

(2r−l+4)!hl−2−i
3

+s1a021

(
r + 1
l

)
r!

hr1

l∑
i=0

(
l
i

)
(r + 2)!ci12

hi2

(r + 1)!cl−i
13

(2r − l + 4)!hl−i
3

+s1a111

(
r + 1
l − 1

)
(r + 1)!

hr+1
1

l−1∑
i=0

(
l − 1
i

)
(r + 1)!ci12

hi2

(r + 1)!cl−1−i
13

(2r − l + 4)!

∣∣∣∣
e1

.

That is

0 = s1

(
r + 1
l − 1

)
(r!)3

hr1(2r − l + 4)!

(c12
h2

+
c13
h3

)l−2

×
[
a102

(r + 1)2(r + 2)

h1

(c12
h2

+
c13
h3

)
+ a210

(l − 1)(r + 1)2

h21

+a021
(r + 1)3(r + 2)

l

(c12
h2

+
c13
h3

)2
+ a111

(r + 1)3

h1

(c12
h2

+
c13
h3

)]
.

By c12
h2

+ c13
h3

= − s1
2|K| ,

−a102(r + 2) + a210(l − 1) + a021
(r + 1)(r + 2)

l
− a111(r + 1) = 0.

Symmetrically, we get two other equations,

−a210(r + 2) + a021(l − 1) + a102
(r + 1)(r + 2)

l
− a111(r + 1) = 0, (3.5)

−a021(r + 2) + a102(l − 1) + a210
(r + 1)(r + 2)

l
− a111(r + 1) = 0. (3.6)

By the barycenter value, we get a 4th equation,

v
(x1 + x2 + x3

3

)
=

1

33r+3
(a021 + a102 + a210 + a111) = 0. (3.7)

Adding above four equations, as r = 2k and l = k + 3, we obtain

a021 = a102 = a210 =
(r + 1)l

(r + 1)(r + 2)− l(r + 2) + l(l − 1)
a111.

By (3.7),

a111 = 0, and a021 = a102 = a210 = 0.

So v = 0 in this third case. The proof is completed.
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4 Quasi-optimal Approximation
In this section, we derive a quasi–optimal convergence of finite element solutions.

The analysis in some sense is standard. By the usual Strang lemma,

∥∇m
h (um − uh)∥0 ≤ C inf

vm,h∈Vm(Th)
∥∇m

h (um − vm,h)∥0

+C sup
0̸=vm,h∈Vm(Th)

(∇m
h um,∇m

h vm,h)− (f, vm.h)

∥∇m
h vm,h∥0

. (4.1)

The first term on the right–hand side of (4.1) is the approximation error term which

can be estimated by a standard argument while the second term on the right–hand

side of (4.1) is usual referred to as the consistent error term. For the analysis, we need

a finite element subspace, say V c
m(Th), of Hm

0 (Ω). In fact, a function v ∈ P4m−3(K)

can be uniquely defined by the following degrees of freedom [3]:

• The value of ∇ℓv, ℓ = 0, · · · , 2m− 2, at the three vertices of element K;

• the i-th order (edge) normal derivative at each of i distinct points in the

interior of each edge for i ≤ m− 1;

• the value at (m−2)(m−1)
2 distinct points in the interior of each triangle, chosen

so that if a polynomial of degree m− 3 vanishes at all the points, it vanishes

identically.

Then the Hm conforming finite element space V c
m(Th) can be defined as

V c
m(Th) := {v ∈ Hm

0 (Ω), v|K ∈ P4m−3(K) for any element K,

v is continuous with respect to degrees of freedom (4.2)

on the internal interface of the mesh}.

It follows from [4, 8, 15, 17] that there exists an operator Πc
m : Vm(Th) → V c

m(Th)
such that∑

K∈Th

m−1∑
j=0

(
h
2(j−m)
K ∥∇j

h(vm,h−Πc
mvm,h)∥20,K

)
+∥∇m

h Πc
mvm,h∥20≤C∥∇m

h vm,h∥20, (4.3)

for any vm,h ∈ Vm(Th). Therefore, Πc
m is a uniformly bounded operator. Given

e = K1 ∩K2, define ωe = K1 ∩K2. Given ω ⊂ Ω and g ∈ L2(ω), define the integral

mean over ω of g by

Π0
ωg =

1

|ω|

∫
ω
gds,

which allows for defining the piecewise constant projection operator Π0:

Π0g|K = Π0
K(g|K) for any K ∈ Th and g ∈ L2(Ω).
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Theorem 4.1 Let um ∈ Hm
0 (Ω) and um,h ∈ Vm(Th) be the solutions of problems

(2.9) and (2.10) respectively. It holds that

C∥∇m
h (um−um,h)∥0≤ inf

vm,h∈Vm(Th)
∥∇m

h (um − vm,h)∥0 + ∥∇mum −Π0∇mum∥0

+
( ∑

e∈Eh(Ω)

∥∇mum−Π0
ωe
∇mum∥20,ωe

)1/2
+
( ∑

K∈Th

h2mK ∥f∥20,K
)1/2

.

(4.4)

Remark 4.1 Notice that in this theorem only the basicHm regularity is needed

for the exact solution um. See [7, 9, 13] for some related references on this aspect.

Proof of Theorem 4.1 By (4.1), we only need to analyze the consistent error

term. Given any sm,h, vm,h ∈ Vm(Th), let Πc
mvm,h ∈ V c

m(Th) be defined in (4.3).

Then,

(∇mum,∇m
h vm,h)−(f, vm,h)=

(
∇m

h (um − sm,h),∇m
h (vm,h −Πc

mvm,h)
)

+
(
∇m

h sm,h,∇m
h (vm,h−Πc

mvm,h)
)
−
(
f, (vm,h−Πc

mvm,h)
)

=:I1 + I2 + I3. (4.5)

By (4.3), the first term I1 can be bounded as

I1 ≤ C∥∇m
h (um − sm,h)∥0∥∇m

h vm,h∥0, (4.6)

while the third term I3 has the following estimate

I3 ≤ C
( ∑

K∈Th

h2mK ∥f∥20,K
)1/2

∥∇m
h vm,h∥0. (4.7)

Next, we analyze the second term I2. A series of integration by part leads to(
∇m

h sm,h,∇m
h (vm,h −Πc

mvm,h)
)

=
∑
e∈Eh

∫
e
{∇m

h sm,h} · n : [∇m−1
h (vm,h −Πc

mvm,h)]ds

+
∑

e∈Eh(Ω)

∫
e
[∇m

h sm,h] · n : {∇m−1
h (vm,h −Πc

mvm,h)}ds

−
∑
e∈Eh

∫
e
{div∇m

h sm,h} · n : [∇m−2
h (vm,h −Πc

mvm,h)]ds

−
∑

e∈Eh(Ω)

∫
e
[div∇m

h sm,h] · n : {∇m−2
h (vm,h −Πc

mvm,h)}ds

+
∑
e∈Eh

∫
e
{divdiv∇m

h sm,h} · n : [∇m−3
h (vm,h −Πc

mvm,h)]ds
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+
∑

e∈Eh(Ω)

∫
e
[divdiv∇m

h sm,h] · n : {∇m−3
h (vm,h −Πc

mvm,h)}ds

· · · · · · · · · · · · · · · · · ·
+(−1)m−1

∑
e∈Eh

∫
e
{div · · · div︸ ︷︷ ︸

m−1

∇m
h sm,h} · n : [(vm,h −Πc

mvm,h)]ds

+(−1)m−1
∑

e∈Eh(Ω)

∫
e
[div · · ·div︸ ︷︷ ︸

m−1

∇m
h sm,h] · n : {(vm,h −Πc

mvm,h)}ds

+
∑
K∈Th

((−1)m div · · · div︸ ︷︷ ︸
m

∇msm,h, vm,h −Πc
mvm,h)0,K . (4.8)

In the rest proof, we estimate the terms on the right-hand side of (4.8). First, the

trace theorem and the inverse estimate yield, for ℓ ≥ 2,∫
e
{div · · ·div︸ ︷︷ ︸

ℓ−1

∇m
h sm,h} · n : [∇m−ℓ

h (vm,h −Πc
mvm,h)]ds

=

∫
e
{div · · ·div︸ ︷︷ ︸

ℓ−1

(∇m
h sm,h −Π0∇mum)} · n : [∇m−ℓ

h (vm,h −Πc
mvm,h)]ds

≤ Ch−ℓ
e ∥∇m

h sm,h −Π0∇mum∥0,ωe∥∇m−ℓ
h (vm,h −Πc

mvm,h)∥0,ωe .

This and (4.3) show that∑
e∈Eh

∫
e
{div · · · div︸ ︷︷ ︸

ℓ−1

∇m
h sm,h} · n : [∇m−ℓ

h (vm,h −Πc
mvm,h)]ds

=
∑
e∈Eh

∫
e
{div · · · div︸ ︷︷ ︸

ℓ−1

(∇m
h sm,h −Π0∇mum)} · n : [∇m−ℓ

h (vm,h −Πc
mvm,h)]ds

≤ C∥∇m
h sm,h −Π0∇mum∥0∥∇m

h vm,h∥0. (4.9)

Similarly, ∑
e∈Eh(Ω)

∫
e
[div · · ·div︸ ︷︷ ︸

ℓ−1

∇m
h sm,h] · n : {∇m−ℓ

h (vm,h −Πc
mvm,h)}ds

≤ C∥∇m
h sm,h −Π0∇mum∥0∥∇m

h vm,h∥0. (4.10)

It remains to analyze the first two terms and the last term on the right hand–side of

(4.8). For the first term, it follows from the trace theorem and the inverse estimate

that ∫
e
{∇m

h sm,h} · n : [∇m−1
h (vm,h −Πc

mvm,h)]ds

=

∫
e
{∇m

h sm,h −Π0∇mum} · n : [∇m−1
h (vm,h −Πc

mvm,h)]ds

≤ Ch−1
e ∥∇m

h sm,h −Π0∇mum∥0,ωe∥∇m−1
h (vm,h −Πc

mvm,h)∥0,ωe .
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Here we use the fact that ∫
e
[∇m−1

h vm,h]ds = 0.

Together with (4.3), it states that∑
e∈Eh

∫
e
{∇m

h sm,h} · n : [∇m−1
h (vm,h −Πc

mvm,h)]ds

≤ C∥∇m
h sm,h −Π0∇mum∥0∥∇m

h vm,h∥0. (4.11)

Since [Π0
ωe
∇mum] = 0 for any internal edge e, the trace theorem and the inverse

estimate lead to∫
e
[∇m

h sm,h] · n : {∇m−1
h (vm,h −Πc

mvm,h)}ds

=

∫
e
[∇m

h sm,h −Π0
ωe
∇mum] · n : {∇m−1

h (vm,h −Πc
mvm,h)}ds

≤ Ch−1
e ∥∇m

h sm,h −Π0
ωe
∇mum∥0,ωe∥∇m−1

h (vm,h −Πc
mvm,h)∥0,ωe ,

which, plus (4.3), yields∑
e∈Eh(Ω)

∫
e
[∇m

h sm,h] · n : {∇m−1
h (vm,h −Πc

mvm,h)}ds

≤ C
( ∑

e∈Eh(Ω)

∥∇m
h sm,h −Π0

ωe
∇mum∥20,ωe

)1/2
∥∇m

h vm,h∥0. (4.12)

We turn to the last term which can be bounded by the element-wise inequality and

(4.3) as follows∑
K∈Th

((−1)m div · · · div︸ ︷︷ ︸
m

∇msm,h, vm,h −Πc
mvm,h)0,K

=
∑
K∈Th

((−1)m div · · · div︸ ︷︷ ︸
m

(∇msm,h −Π0∇mum), vm,h −Πc
mvm,h)0,K

≤ C∥∇msm,h −Π0∇mum∥0∥∇m
h vm,h∥0. (4.13)

Since sm,h is arbitrary, the desired estimate follows from (4.6), (4.7), (4.8)-(4.13),

and the triangle inequality. The proof is completed.

5 Numerical Tests

5.1 Numerical test 1 We apply H3 non-conforming finite element method (2.2)

to solve the tri-harmonic equation
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
(−∆)3u = f in (0, 1)× (0, 1),

u =
∂u

∂n
=

∂2u

∂n2
= 0 on the boundary,

with exact solution

u = 28(x− x2)3(y − y2)3. (5.1)

We use the nested refined, uniform grids shown in Figure 5. The errors and the

orders of convergence are displayed in Table 1. The optimal order convergence is

achieved, under the consistent error limitation.
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Figure 5: The first three levels of grids, T1, T2, T3 .

Table 1: The error eh = u− uh and the order of convergence,
by V3 element (2.2), for solution (5.1).

Tk ∥eh∥0 hn |eh|1,h hn |eh|2,h hn |eh|3,h hn

1 0.54397 0.0 2.47921 0.0 8.4032 0.0 40.666 0.0
2 0.03064 4.1 0.15218 4.0 1.0941 2.9 9.654 2.1
3 0.01403 1.1 0.07170 1.1 0.5084 1.1 6.967 0.5
4 0.00430 1.7 0.02190 1.7 0.1508 1.8 3.948 0.8
5 0.00115 1.9 0.00585 1.9 0.0401 1.9 2.051 0.9
6 0.00029 2.0 0.00149 2.0 0.0102 2.0 1.036 1.0

5.2 Numerical test 2 We apply H4 non-conforming finite element method (2.3)
to solve the 4-harmonic equation

(−∆)4u = f in (0, 1)× (0, 1),

u =
∂u

∂n
=

∂2u

∂n2
=

∂3u

∂n3
= 0 on the boundary,

with exact solution
u = 210(x− x2)4(y − y2)4. (5.2)

The errors and the orders of convergence are displayed in Table 2. The optimal
order convergence is achieved, under the consistent error limitation.
5.3 Numerical test 3 We apply H5 non-conforming finite element method (2.4)
to solve the 5-harmonic (order 10 PDE) equation
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Table 2: The error eh = u− uh and the order of convergence, by V4 element (2.3),
for 4-harmonic solution (5.2).

Tk ∥eh∥0 hn |eh|1,h hn |eh|2,h hn |eh|3,h hn |eh|4,h hn

1 0.00484 0.0 0.02699 0.0 0.2743 0.0 2.242 0.0 35.90807 0.0
2 0.00394 0.3 0.02406 0.2 0.2474 0.1 2.634 0.0 40.65954 0.0
3 0.00271 0.5 0.01553 0.6 0.1221 1.0 1.287 1.0 27.77417 0.5
4 0.00089 1.6 0.00508 1.6 0.0399 1.6 0.416 1.6 14.01396 1.0
5 0.00024 1.9 0.00136 1.9 0.0107 1.9 0.110 1.9 6.91730 1.0
6 0.00006 2.0 0.00035 2.0 0.0027 2.0 0.028 2.0 3.43714 1.0
7 0.00002 2.0 0.00009 2.0 0.0007 2.0 0.007 2.0 1.71544 1.0

(−∆)5u = f in (0, 1)× (0, 1),

u =
∂iu

∂ni
= 0 on the boundary, i = 1, 2, 3, 4,

with exact solution
u = 214(x− x2)5(y − y2)5. (5.3)

The errors and the orders of convergence are displayed in Table 3. The optimal
order convergence is achieved, under the consistent error limitation.

Table 3: The error eh = u− uh and the order of convergence, by
V5 (P7) element (2.4), for 5-harmonic solution (5.3).

Tk ∥eh∥0 hn |eh|1,h hn |eh|2,h hn |eh|3,h hn

1 0.00440 0.0 0.06001 0.0 0.2842 0.0 2.655 0.0
2 0.00214 1.0 0.88918 0.0 0.2433 0.2 3.590 0.0
3 0.00212 0.0 0.00019 — 0.1215 1.0 1.363 1.4
4 0.00077 1.5 0.00485 0.0 0.0424 1.5 0.449 1.6
5 0.00020 1.9 0.00126 1.9 0.0111 1.9 0.117 1.9

Tk |eh|4,h hn |eh|5,h hn

1 56.7108 0.0 590.506 0.0
2 80.3451 0.0 1081.068 0.0
3 30.7082 1.4 723.191 0.6
4 8.0391 1.9 313.370 1.2
5 2.1981 1.9 149.955 1.1

5.4 Numerical test 4 We apply H6 non-conforming finite element method (2.5)
to solve the 6-harmonic (order 12 PDE) equation

(−∆)6u = f in (0, 1)× (0, 1),

u =
∂iu

∂ni
= 0 on the boundary, i = 1, 2, · · · , 5,

with exact solution
u = 218(x− x2)6(y − y2)6. (5.4)

The errors and the orders of convergence are displayed in Table 4. The optimal
order convergence is achieved, under the consistent error limitation.
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Table 4: The error eh = u− uh and the order of convergence, by V6 (P9) element
(2.5), for 6-harmonic solution (5.4).

Tk ∥eh∥0 hn |eh|1,h hn |eh|2,h hn |eh|3,h hn

1 0.1267 0.0 0.4895 0.0 14.7042 0.0 295.1211 0.0
2 0.0252 2.3 7.4484 0.0 1.9216 2.9 25.7602 3.5
3 0.0333 0.0 0.0656 6.8 2.2800 0.0 26.4761 0.0
4 0.0083 2.0 0.0638 0.0 0.6696 1.8 8.3561 1.7
5 0.0039 1.1 0.0286 1.2 0.2919 1.2 3.5617 1.2

Tk |eh|4,h hn |eh|5,h hn |eh|6,h hn

1 3662.1828 0.0 28952.5084 0.0 296063.7189 0.0
2 348.0689 3.4 5385.4426 2.4 104537.9869 1.5
3 346.8000 0.0 5059.5643 0.1 99668.5074 0.1
4 117.1285 1.6 1783.9195 1.5 30779.2503 1.7
5 49.2540 1.2 758.6861 1.2 13664.7306 1.2
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