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Abstract

We design a family of 2D H™-nonconforming finite elements using the full
Py, _3 degree polynomial space, for solving 2mth elliptic partial differential
equations. The consistent error is estimated and the optimal order of conver-
gence is proved. Numerical tests on the new elements for solving tri-harmonic,
4-harmonic, 5-harmonic and 6-harmonic equations are presented, to verify the
theory.
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1 Introduction

For solving 2mth order elliptic partial differential equations, the finite element
spaces are designed as either a subspace of H" Sobolev space, or not a subspace. In
the first case, the finite element is called a conforming element. In the latter case,
the finite element is called a non-conforming element. But some continuity is still
required for non-conforming finite elements. The Courant triangle, the space of con-
tinuous piecewise linear functions, is an H' conforming finite element, solving second
order elliptic equations. The Crouzeix-Raviart triangle, the space of piecewise linear
functions continuous at mid-edge points of each triangle, is a P; H'-nonconforming
finite element. The possible minimum polynomial degree is m for an H™ conforming
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and non-conforming finite element. This is because an mth order derivative of poly-
nomial degree m — 1 or less would be zero. Wang and Xu constructed a family of P,
nonconforming finite elements for 2mth-order elliptic partial differential equations
in R™ for any n > m, on simplicial grids [18]. Such minimum finite elements are
very simple compared with the standard conforming elements. For example, in 3D,
for m = 2,3,4 the polynomial degrees of the H?, H? and H* elements are 9, 17
and 25, respectively, cf. [1,2,20], while those of Wang-Xu’s elements are 2, 3 and 4
only, respectively. However, there is a limit that the space dimension n must be no
less than the Sobolev space index m. For example, Wang and Xu constructed a P
H3-nonconforming element in 3D [18], but not in 2D.

On rectangular grids, the problem of constructing H™ conforming elements is
relatively simple. Hu, Huang and Zhang constructed an n-D C'-Qy element on
rectangular grids [10]. Here @), means the space of polynomials of separated degree
k or less. Then, the element is extended to a whole family of C*~1-Q}, elements,
i.e., H*-conforming Qj elements for any space dimension n, in [11]. That is, the
minimum polynomial degree k& (= m) is achieved in constructing H™-conforming
finite elements, on rectangular grids for any space dimension n. There is no limit of
Wang-Xu [18] that n > m.

It is a challenge to remove the limit n > m in the Wang-Xu’s work [18], by
constructing the minimum degree non-conforming H™ finite elements for the space
dimension n < m. First, in 2D, we need to construct H™ non-conforming finite
elements of polynomial degree m on triangular grids, m > 2. This is not possible on
general grids. In [12] Hu-Zhang constructed an H? non-conforming finite element of
cubic polynomials, but on the Hsieh-Clough-Tocher macro-triangle grids, following
the idea in the construction of H™ conforming elements on macro rectangular grids
in [10,11]. In [19], Wu-Xu enriched the P; polynomial space by 3 P4 bubble functions
to obtain a working H? non-conforming element in 2D. In fact, they extended this
technique to n space dimension [19] so that H"! non-conforming elements in n
space dimension is constructed by P,1 polynomials enriched by n P, 42 face-bubble
functions. In this work, we use the full P,,,_3 polynomial space for m > 4 to
construct 2D H™ non-conforming elements. For m = 3 > n = 2, we have the P,
non-conforming finite element. That is, the new element is of full P, space, two
more degrees of freedom locally than Wu-Xu’s element [19].

2 Definition of Nonconforming Elements

Let a 2D polygonal domain be triangulated by a quasi-uniform triangular grid of
size h, Tp. Let &, denote the set of edges of Ty, and &, (£2) denote the set of internal
edges. Given e = K1 N K», the jump and average of a piecewise function v across it
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are defined as, respectively,

(gl + (vlrz)le
2

[v] := (v[&y)]e = (vlro)le  and {v}:=
For any boundary edge e C 0K, let

[v] := {v} = (vlx)le-

On each element K of grid T;, we denote the polynomial space of degree k by Py (K).
For defining an H™-nonconforming element, we need the weak continuity

][[lev]ds =0, (2.1)

e

for any function v in the nonconforming finite element space and any internal edge
e of T5. In this paper, V™ is the m-th Hessian tensor. For example, Vu = Vu is
the vector gradient, Vu = (9;0;u) is the 2-Hessian matrix. A sufficient condition
for (2.1) is up to additional possible degrees of freedom for the uni-solvency to take
the following degrees of freedom on each element K:

e The values of Viv, £ =0,--- ,m — 2, at its three vertices;

e the integral means of &Lﬂ:?{ over its three edges.

m(m—1)
2
which requires a minimal degree of the polynomials, say d(m). Note that d(1) = 1,
d(2) = 2, and d(3) = 4. On the other hand, on any edge e of element K, the
restriction of the function vy is a polynomial with respect to the arc length. This
Ounle "y ... m — 2, at the

ott ) ’ ’
two endpoints of edge e, which determine uniquely a polynomial with respect to the

On one hand, such a set of conditions imposes 3 + 3 degrees of freedom,

set of conditions in fact imposes all the values of

arch length of degree < 2m — 3. It is elementary to show that
d(m) >2m —3 when m <3

and
d(m) < 2m — 3 otherwise.

This indicates that the minimal degree of the polynomials should be

1, m =1,
2 =2
d(m) — ) m b
4, m = 3,

2m—3, m > 3.
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Therefore, we denote the finite element space on one element K by

P1 (K), m = 1,
Py(K), m =2,
Vin(K) = (K)
P4(K), m = 3,
P2m—3(K)7 m > 3.
For m = 1, it recovers the celebrated Crouzeix—Raviart element which uses

Py (K) as the shape function space on element K [5]. For m = 2 it becomes the sim-
plest nonconforming element for fourth order elliptic problems, namely the Morley
element which uses P»(K) as the shape function space on element K [5]. For m = 3,
it implies that the recent elements from Wu and Xu [19] and [12] are the simplest
H?3 nonconforming elements in 2D which can not be essentially improved. Here, we
propose a new set of degrees of freedom for Py(K) which yields somehow a new H>
nonconforming element. In the sequel, we propose a set of degrees of freedom for
the spaces V3(K) = Py(K) and V;,,(K) = Pay—3(K) with m > 4. We define the
finite element space by the following 6 cases.
Case 1 For m = 3, on each element K € T, the degrees of freedom for Py(K)
are as follows,
v

where x; are three vertexes of K, e; are three edges of K, and m; are three mid-

v(x;), Vo(x;), v(m;), and ds, (2.2)

points of the edges e; of K, respectively, (see Figure 1). Here n; is the unit normal
vector to an edge e;. The degrees of freedom of V3(K) are plotted in Figure 2. Note
that there are 3 x (1 +2)+ 3 x (1 4+ 1) = 15 dofs, which is the dimension of the
2D P, polynomial space. The new element is continuous, that is, an H! conforming
element.

Figure 1: Vertex, edge, mid-point, unit normal vector,
unit tangent vectors, of a triangle K.
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v Vu(x;),|al <2

53
jcei 6nﬂt?i ds

(s
v(xi), ol <1 P5(K) for H*:

52
]Cei ang ds

Py(K) for H3:

Figure 2: The degrees of freedom for Py(K) and Ps(K), defined in (2.2) and (2.3).

Case 2 For m = 4, on each element K € Ty, the degrees of freedom for P5(K)
are as follows

3
v(x;), Vo(x;), V2u(x;), and f 8—st, (2.3)
e; 0N

where x; are three vertexes of K, e; are three edges of K, and n; is the unit normal
vector to an edge e; (see Figure 1). The degrees of freedom of P5(K) are plotted in
Figure 2. We note that the number of linear functionals is 3x (14+2+43)+3x (1+1) =
21 dofs, which is the dimension of the 2D P5 polynomial space. Note that this
element is the same as the famous Argyris element [2], except the first order normal
derivative of the Argyris element which is replaced by the integral mean of the third
order normal derivative. However the element is only an H' conforming element,
not an H? conforming element.

Case 3 For m = 5, the H® non-conforming element is made by P,,_3 = Py
polynomials, which is defined by the following degrees of freedom:

Ou(mi) [ 0% (2.4)

V*(x;), |a| <3, on; ., 8n§1 ,

where x; are three vertices of K, e; are three edges of K, n; is the unit normal vector
to an edge e; and m,; is its mid-point. Here the multi-index o = (i1, 1i2) defines the
order of mixed derivatives of v at a vertex x;. Let us count the number of linear
functionals,

3x (1424344)+3x (1+1)=30+6=36=dim Pr.

In particular, this element is also an H?-conforming element, that is, a C' element.
Case4 Form =3k +3, k=1,2,---, the H™ non-conforming finite element
consists of all Py,,—3 = Psir3 polynomials, whose degrees of freedom are as follows:
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N 83k+2v

V 'U(Xi), ‘Oé| S3k+1, f st,

8U(ml) 82v(mi7j72) 8mov(m¢,j,m0)
On; ’ on? ’ on"° ’

O u(my g, ) O Po(My g, —3)  9MOT™2u(my) (2.5)

onmot! ' onmot2 ’ ’ on/otm2 ’ :
34kv(X1) 84kv(X2) a4kU(X3) 84k+1v(x1) 84k+1v(X2) a4k+1v(x3)

8t%k8t§k ’ 8t§kat%k ) at%kat%k ’ 6t§k+16t§k ’ atgk-i-lat%k’ ’ 8t%k+1 81.%]{: ’
X1 + X2 + X3
U( 3 ) ’

where t; is the unit tangent vector in the direction of edge x;11x;;2, and m; ;,
1 < j <, are [ uniformly distributed internal points on edge e;. But when k =1,
the six tangential derivatives in (2.5) are replaced by 6 internal values. Here mgy =
[(3k+2)/2], which is the integer part of the number, if k& > 2 or else my = 0, namely,

A+1, ifk=20,0>1,
mo=+< 3+2, ifk=20+1¢2>1,
0, otherwise,
31—-2, ifk=2(,0>1,
mi =< 3l+1, ifk=204+1 ¢0>1,
0, otherwise,
and
-2, iftk=2(, 0>1,
mo=< -1, ifk=20+1,/¢0>1,
0, otherwise.

That is, we first fill the missing dofs on each edge to make function v C*, C?, and
so on until C™0 (if k& > 2), which implies that we add one 1st normal derivative,
The
maximum level of added full normal derivatives is mg. After that, we can add some

two 2nd normal derivatives, and so on until mg mg-th normal derivatives.

high order normal derivatives, due to the constraint of adding higher order normal
derivatives on the two other edges. So the number of higher normal derivatives is
reduced by 3 each level, until reaching 7. By this time, the number of undefined
dofs is exactly 7. Consequently, in this case, we always have 7 internal degrees of
freedom (independent of dofs on neighboring triangles), which are imposed by six
tangential derivatives at three vertices and one value at the center. We depict the
dofs of the element when k£ = 1 in Figure 3.
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P, for H?:

(6% .
Veu(xi).lal <3 pop e,

o4
fei ('?nz ds

Figure 3: The degrees of freedom for P; and Py defined in (2.4) and (2.5) respectively.

Case 5 For m =3k +4, k = 1,2,---, the H™ non-conforming finite element
consists of all Py,,—3 = Psir5 polynomials, whose degrees of freedom are as follows:

N 83k+3v
Ve(x;), |a| < 3k+2, | st,
i )
Ov(m;)  O*v(migo)  O"00(Myjm,) (2.6)
om om0 T omm ‘
ot o(mym,) 0" Po(Myjmy—s) O™ u(my )
8n2n0+1 ’ an;no-i-? ’ ’ 6nlmo+m2 ’
a?(mo+mz+l)v(xl) ) o .
Snro Tl e Fia 1 with (7, j,1) permutations of (1,2, 3),
i j

where m; ;;, 1 < j <[, are [ uniformly distributed internal points on edge e;. Here
mo = [(3k 4+ 2)/2], the integer part of number, namely,

3041, ifk=20, 0>1,

mo=1+< 3+2, ifk=20+1 ¢2>1,
0, otherwise,
31, ifk=2¢, £>1,
mi =< 343, ifk=20+10>1,
0, otherwise,
and
I—1, ifk=2¢0,0>1,
me =< I, itk=20+1, (>1,
0, otherwise.

That is, we first fill the missing dofs on each edge to make function v be C', C?,
and so on until C"°, namely, we add one 1st normal derivative, two 2nd normal
derivatives, and so on until mg mo-th normal derivatives. After that, we can only
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add some high order normal derivatives, due to the constraint of adding higher
order normal derivatives on the two other edges. So the number of higher normal
derivatives is reduced by 3 each level, until reaching 6 on each edge. By this time,
the number of undefined dofs is exactly 3. That is, in this case, we always have 3

internal degrees of freedom (independent of dofs on neighboring triangles), which can
82(m0+m2+1)y(xl)

om0 T2 gpmotmatl
3 J

be determined by three higher order derivatives at three vertices

with (¢, 7,1) permutations of (1,2, 3).
We depict the dofs of the element when k = 1, that is, P;1(K), in Figure 4.

VO‘U(Xi), |a| S 6

a7
fei 81177} ds

P11 for H7'

an; Ov(m,)
9%v(m;,; 2) v(m;,j2)
On? on?
3 .
9 SS;”) dv(m;;3)
i on3

Figure 4: The degrees of freedom for Pi;(K) and Py3(K) defined in (2.6) and (2.7).

Case 6 For m = 3k +5, k = 1,2,---, the H™ non-conforming finite element
consists of all Py,,—3 = Psir7 polynomials, whose degrees of freedom are as follows:

83k+4v
«
Ve(x;), |a| <3k+ 3, ]é 73k:+4d3’
3 (]
Ov(m;) 9*v(mio) 00 (M 5.y o7
om, © ow? T om 27)
K] (]
ot o(mym,) O PPo(Myjmy—s) O™ u(mys)
+1 b +2 ) ) + b
on;" on;" On;"orm2

where m; ;;, 1 < j <, are [ uniformly distributed internal points on edge e;. Here
mo = [(3k + 3)/2], which is the integer part of number, namely,

30+1, k=20, £>1,

mo=1+< 3+3, ifk=20+1,¢2>1,
0, otherwise,
3Al+2, ifk=20,0>1,
mp=< 3l+2, ifk=20+1,£¢>1,

0, otherwise,
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and
I, ifk=2¢ ¢>1,

me=< I, fk=20+1, £>1,
0, otherwise.
That is, we first fill the missing dofs on each edge to make function v C, C2, and so
on until C™°. After that, we can only add some high order normal derivatives, due
to the constraint of adding higher order normal derivatives on the two other edges.
So the number of higher normal derivatives is reduced by 3 each level, until reaching
5 on each edge. By this time, the number of undefined dofs is exactly 0. We depict
the dofs of the element when k = 1, that is, P;3(K), in Figure 4.
The global H™ non-conforming finite element space is defined by

Vin(Th) := {v € L*(Q)] v|x € Viu(K) for any K € Ty, the
inter-element dofs (on neighboring elements) (2.8)
have same values, the boundary dofs take value 0},

where V,,,(K) are defined in (2.2)-(2.7).
For the m-harmonic equations:

(=A™ = f in ©,

¢ (2.9)
Gum _ on 9, £=0,1,--- ,m—1,
on?

the finite element approximation problem is: Find w,, ;, € Vi, (75) such that
(Vi VIP0) = (f,0) for any v € Vin(Th), (2.10)

where V}" is the discrete m-th Hessian tensor which is defined elementwise.

3 Well-posedness of Non-conforming Element

Lemma 3.1 The finite element functions in the space Vi, (K) are uniquely
defined by the specified degrees of freedom.

Proof The proof for Vi(K) and V2(K) can be found in [18]. We also skip the
proof for V3(K), V4(K) and V5(K) since it is similar to those of the high order cases.
So we have three cases, m = 3k + 5,3k + 4, and m = 3k + 3 for H" nonconforming
elements. For each case, we will show the square linear system of equations, with
homogeneous right-hand side, has a unique solution v = 0. This ensures the existence
and the uniqueness of the finite element functions.

For the first case, m = 3k + 5, cf. degrees of freedom in (2.7), by the vertex and
edge (low-order normal derivatives) degrees of freedom, we have

v = Bp;, where B = A \; and p1 = a1 A1 + ag)2 + asAs, (3.1)
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where 1 = mg + mg + 1 with mg and my being defined in (2.7), and \; being
barycenter coordinates of the triangle. We shall prove that the parameters a; are
zero. It follows from the definition of the barycenter coordinates that

Vo = r(%x;—lxgxg 422 et %A%qu)

hs 37 hs
(al)\l + ag Ay + ag)\g) + )\ )\T)\T <a1 + CLQ —|— as 3)
h1 ha hs
v 1 rC12 -1 rC13 -1
AL 4+ T2 ar=n 4 T8 AT )
3n1 (h + ho + hs
1
X (a1 A1 4 a2A2 + asAs) + ATAGNS <a1 + 002g + 3013)
hy ho hs

where h; is the height of the triangle from vertex v; to the opposite edge e;, and
Cij =n;- nj.

Note that the total degree of polynomial is 2m — 3 = 2(3k +5) — 3 = 6k + 7.
We compute the m — 1(st) normal derivative of v on edge e;, where m —1 =1+,
r = 2k 4+ 2 is an even number and [ = k + 2. When restricted on the edge ey, any
term containing A\; would vanish. Therefore, the r-th normal derivative must be on
the term A, and the rest [-th normal derivative is on the other terms.

o+t B o+t-1B apl
— +(r+l)—————
e n 8n§+l o ( ) 8n§+l*1 ony

_ <r+z> " AT O (Ao A3)"

arHU

r41
8n1 €1

I—1\ 9"\ 91 (Mg X3)" O
o (T 107 Ooa)! O
o T Onj onj onj

€1

This leads to

oty r! <r+l>
——| = —(agX\as + as
8n§+l . h,i( 2A2 3A3) ’
: l r! )\r—i C12 J 7! A\ 1+i (C13 -
xE ) — =) —
i:()(l) (r—i)"2 <h2>(r—l+)' 3 (hg) o
1 c12 cis\ 7! (r+1-1
z( S a2 g
+(T+)a1h1+a2h2+a3h3)h’{< . )
xl_l -1 r! Ar—z’(@)i r! )\r—l+i+1(c£)l_i_1
N\ i ) =) Nhy/ (=i F 1) h3 o
Note that )
m!n!
"1l —-z)de = ———. 3.2
/Ox (1—2)"da (m+n+ 1) (3:2)

Therefore,
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arJrlv
0= st
e1 014

rl (r r! 7! c12\i/c —i
_hr< 1’1);(0 (r—aol(r—1014+9)! (hf) <hl§>l
X( si(r—i+ D)!I(r—1+1)! si(r—i)(r—1+i+ )>
“ (2r—l—l—2)' “ @2r —1+2)!

rl (r+1 C12 C13
l _—Z
+hr( r ) ( ]”L1+a2hz+ 3h3)

— r! r! c cig\mi-lsy (r—il(r —l+i+1)!
XZ<Z 1) (r—i)l (r—I14+i+1) (hlj) (}25) B (QT_H_;_)_—H )

=0

where s; is the length of the edge e;. This yields
! ‘ 4
= ! c12\t/c13\ 1=t ' |
O_Z;(Z) (h72) (?3) (a2(r—z+1)+a3(r—l+l+1))
! -1
H(a- + a7+ a2 (2 4+ 22)

hl h2 h3 h2 hg
Further, by the equation

l
d
= z(z +¢) :Z<>z+1 ik=i

1=

we get

0= (C;§+j§)l_l[a2(r—l+1)(g+fm)+a2l2§’+a3(r—l+1)(2§+c}§>

C12 1 C12 C13
e 1 e +ay)]
+as I +ilar— I + as Iy +a3— hs

= (2122+2f)l 1{hll+a2(r+ )[%Jr%ﬂ —l—ag(r—l—l)[%—i-%j}

We derive the equation

C12 C13 C12 C13
ey 2428 |22+ 22 =0
Bl el + )[hg +h3}+“3(” )[hg +h3}

Multiplying the equation by the twice area of triangle K, noting that |K| = s;h;/2,
1=1,2,3, it follows

la1s1 + (7‘ + 1)a2(01282 + 61383) + (7“ + 1)@3(01282 =+ 61383) = 0.
Noting that

C1282 + €1383 = N1 - SoNg + N7 - S3N3 = —S9 COS(012) — 83 COS((913) = —S1,
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where 0;; is the angle between edge e; and ej, we get
lay — (r+1)az — (r + 1)ag = 0.
Symmetrically,
lag — (r+1)a; — (r+1)as =0, laz— (r+1)a; — (r+ 1)ag =0.
Adding the three equations, we obtain
(I=2(r+1))(a1 + a2 +a3) = —(3k +4)(a1 + a2 + az) =0,

that it follows
a1 +az + a3z =0.

Combing this equation with the first equation above, we obtain
(r+1+10a =0, a3 =0.

Thus a; = 0, p1 = 0, and the unique solution v = 0.

We study next the second case m = 3k + 4, cf. (2.6). In this case, we have a P»
internal polynomial in v after factoring out the boundary factors. That is, when v
satisfies the homogeneous vertex and low-order normal derivative conditions,

v = Bpo, (3.3)

where B = A[ALA; and pa = a1 A2z + a2 A3 A1 +azAi Ao + a4/\% + a5)\§ + aﬁ)\g. Again,
here r = mg + mg + 1 with mg and mgy being defined in (2.6). Next, we show that
a; =0,79=1,---,6. By the condition

O v(xs) _ il (r ’ 2(r—i)  yr ol = )2 2(r—1)
0= Gutong = i 2o (1) A8 s 0= 2 () el

where the rest terms contain at least one factor of A; or Ay, we get ag = 0. Sym-
metrically, we derive

v = AgAgAg(alAg)\g + ag A3\ + ag)\l/\z).

Consider the m — 1(st) normal derivative on an edge, m —1=r+1+1,r=2k+1
and [ =k +1,

8r+l+1v _ 8311) o <3l> 821/\%l 6l<)\%l)\§l_1) ) <3l> 821)\%1 81()\?—1)\%[)
onf I ond|, l) on% on} o l) on% on} o
+a1( 3] > a?l—l)\%lfl 8l+1()\%l)\§l)
+1) e omit |,

This leads to
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r l —i
orHitL, 0 <3z> 21)!Z<z> (20)ch,, A (20— 1)lcl3 e
onj L) nd = \i) 2=y (+i-m
l .
31\ (20)! (l> @Dl o (L=
+a R ) S8 2 AT IR\
2(1) 2 ; i) 20— (i
ta 31 (21—1)!l+zl I+1) (2D}, \2l—i (201 \Hi-1
P\ R ) @ik iy

So, by the Euler formula (3.2),

8r+l+1

0= i r{“”d

l l i l—i
(20)1ch, (21 — 1)1ek5T (l> (20520 = 1)leyy
( ) I [ Z ( > (31) iy h 2; i) (3U)hEhG

+a i lii(“’ >(2l)'01z(2”'01+1 '
SRS AN (B RET |

Consequently
o 3l ((21)')2(2l* 1)' [ (012 013>l <612 Clg)l 2lh1 (012 613>l+1}
0_<z> e B\, Ty ) T, ) T\, Ty ) )
Noting that '312 + 7 613 = —Q‘S}ﬂ,
. 2lh1 S1 21
0=ast a2 = a7 o = 0sh a2 — o

Symmetrically, we get two other equations. Adding these three equations, we obtain

l+1(a1+a2+a3):0.

Subtracting this equation from the above equation, we derive
a1 =0, and symmetrically, ao = a3 = 0.

So v =0.

For the third case, m = 3k + 3, cf. (2.5). Similar to the previous two cases,
instead of a P; or a P, internal polynomial, after setting low-order boundary/inter-
element degrees of freedom to zero, we have a Ps internal polynomial that

v = AASN;ps, (3.4)

where r = mg+ma+ 1 with mo and mg being defined in (2.5), and p3 being a degree
3 polynomial in A, A9, and As,
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Ps= Y agXiANL
i+j+k=3
Here we use the standard homogeneous polynomial basis. Now we apply an internal
degree of freedom, a high-order tangential derivative, to get (with notations s; =
Ixi — x|, tr = (x; —x;) /s, 1=1,2,3, j =mod(z,3) + 1, k = mod(j,3) + 1)

O v(xy) el
ot5oty (—s3)"sh

aszon — 07 which implied aszopn — O7

because O, A5 = 0, 8@ A5(x1) = 0 if 4 < r. Repeating this calculation for the other
2

two 2r-order partial derivatives, we get ag3g = ago3 = 0. For the 2r + 1 order

tangential derivative, we have

07 +u(xy) (r +1)!r!
= az01 =
6t£+16t§ ( 83)r r+1

0 which implied as01 — 0.
Computing the other two 2(r + 1)-order partial derivatives, we get a120 = ag12 = 0.
Therefore, we have only four non-zero terms,

v = )\{)\5)\5((1102)\1)\% + aglo)\%)\z + (1021)\%)\3 + a111)\1)\2)\3).

Consider the m — 1(st) normal derivative on an edge, m — 1 = r + [, r = 2k and
l=Fk+3,

oty
oni*|,
(=1 an?lﬁ_i_l 8nll_l el l-2 an7i+2 al’lll_2 el
+ap21 <T + 1) M INEN +ai <7“ + 1> O O (AN
! Onj on} o I—-1) onj*! ol .
(r+1) (r + 1)! <= ( ) PNy (1 4 2)INg
= a102 13
A M (r — i)!hs (r—l+3+z)!hg“ .
r+1Y\ (r+2)! — (r4 DI, pINGTIrR o2
+a210 1—2 Tare2 Z 1 T Ry s
I i=0 (r+1=9hy (r—1+2+i)h} o

: 2—1 r—l+1+i l—i
r41 1\ (r+2)I\72 7y (r 4+ 1) c
+a021< ! > Z( > )2 'hllz( ) . A\ ll—gz
= \i) (r+2=9hy (r—1+1+0)n5" |,
r+1 1 = 1= 1Y (r+ DG, (4 DG
+ain I
U 0

(r+1—i)lhy  (r—1+2+d)n5 "
By the Euler formula (3.2),

i= €1
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rtl - .
0= o an{ﬁds = $1a102 <; +11> Thii ; <l ) rlcjz 74(7“:;—2:'40)!# _
Fs1a310 <7l‘+ > TH);Z 2(1 > 7«+1Z let, P2 Zl _
S (2r—l+4)!h3 i
: I—i
+s1a021 (T I ) Z <§) 7’+2 ‘612 74(7;‘1;—1’_)'46)%1 :
1i=o
+s1a111 (?ji) (r —Ti—Jj). -1 (l - 1) (r+ 1)!012 (r + 1)lckz1—
hi P { R}, 2r—1+4) ],
That is

r+1 (T’!)3 C12 c13\ 2
0= .\ (2, Y8
o1 <1—1> hr (2 r—l+4)'<h2 * h3)

(r+1*(r+2) /a2 | a3 (I—1)(r+ 1)
X [a102 I (h2 + hs ) + a2190 h%
(T‘ + 1) (T + 2) C12 C13 (T + 1)3 C12 Cc13
o l (hz - h3) T <h2 + h3>]
By C12 + Cld — _folqv

(r+1)(r+2)

—a102(r + 2) + a210(l — 1) + ap21 i

— CL111(7" + 1) =0.

Symmetrically, we get two other equations,

(r+1)(r+2)

—CL210(T + 2) + aogl(l — 1) + a102 — CL111(7" + 1) =0, (35)

l
r+1)(r+2
—ap1(r +2) + ap2(l — 1) + a210()l() —am(r+1)=0. (3.6
By the barycenter value, we get a 4th equation,
X1+ x9 +x 1
v( ! 32 3) = 33043 (@021 + @102 + az10 + a1n) = 0. (3.7)
Adding above four equations, as r = 2k and [ = k + 3, we obtain
(r+1)

ap21 = a102 = Aa210 = aiil-

(r+1)(r+2)—Il(r+2)+1(1-1)

By (3.7),
a1 =0, and a2 = a1p2 = a0 = 0.

So v = 0 in this third case. The proof is completed.
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4 Quasi-optimal Approximation
In this section, we derive a quasi-optimal convergence of finite element solutions.
The analysis in some sense is standard. By the usual Strang lemma,

VR (um —up)llo <C  inf [V (um — vm,n)llo
(Tn)

Um,h m
+C sup (V;Lnuwh V’;’anmvh) - (f? vm.h)
0#m n€Vin(Th) IVivm.nllo

(4.1)

The first term on the right—hand side of (4.1) is the approximation error term which
can be estimated by a standard argument while the second term on the right—hand
side of (4.1) is usual referred to as the consistent error term. For the analysis, we need
a finite element subspace, say V,5(7p), of HJ*(2). In fact, a function v € Pyy,—3(K)
can be uniquely defined by the following degrees of freedom [3]:

e The value of Viv, £ =0,---,2m — 2, at the three vertices of element K;
e the i-th order (edge) normal derivative at each of i distinct points in the
interior of each edge for i < m — 1;

(m=2)(m—

e the value at 2m D distinct points in the interior of each triangle, chosen

so that if a polynomial of degree m — 3 vanishes at all the points, it vanishes
identically.

Then the H™ conforming finite element space V¢ (7,) can be defined as
Vo (Tn) == {v € Hy'(), v|x € Pyn—3(K) for any element K,
v is continuous with respect to degrees of freedom (4.2)

on the internal interface of the mesh}.

It follows from [4,8,15,17] that there exists an operator IIS, : Vi, (Tn) — V.S (Th)
such that

> Z 271 (O =TI V)3 1) + IV TIE 0 |13 OV 0|13, (4.3)
KeT, j=0

for any vy, p € Vin(Th). Therefore, IIY, is a uniformly bounded operator. Given
e = K1 N Ko, define w, = K1 N Ky. Given w C Q and g € L?(w), define the integral

mean over w of g by
1
Hgg = M/gdsv
w

which allows for defining the piecewise constant projection operator I1°:

| x = % (g|x) for any K € Ty, and g € L*(Q).
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Theorem 4.1 Let u,, € Hi* () and up, p, € Vin(Th) be the solutions of problems
(2.9) and (2.10) respectively. It holds that
ClIVi (um—tmp)llo<  inf - IV (i = i) o+ [Vt — IOV ™o

VUm, h €Vm (Th

uP> ”Vmum—ﬂﬂevmumH%,We)1/2+( Zh%(mnfn%,f()m

Cegh(ﬂ) KeTy
(4.4)

Remark 4.1 Notice that in this theorem only the basic H™ regularity is needed
for the exact solution u,,. See [7,9,13] for some related references on this aspect.

Proof of Theorem 4.1 By (4.1), we only need to analyze the consistent error
term. Given any sy, p, Ump € Vin(Th), let IS vy, € VS (Th) be defined in (4.3).
Then,

(vmum7 Vznvm,h)_(fy Urmh) = (V;Ln(um - 5m7h)7 vZ’L(’Um,h - Hinvm,h))
+(V?8m,h, VZ” (Um,h_anUm,h)) - (fa (Um,h_ﬂycnvm,h))

=1+ Iy + Is. (45)
By (4.3), the first term I; can be bounded as
I < CIV3 (tm = sm) o V5 0m o (4.6)
while the third term I3 has the following estimate
2 1/2 m
Iy < C( &) ¥ vmallo (4.7)
KeTy,

Next, we analyze the second term Is. A series of integration by part leads to
(v;lnsm hs V?(Um h — 11, mUm h))
-y /{vh sman} 1 s [V (O — T v )] ds

e€Ey

+ Z /vhsmh] n: VT (o — 1T 0m,0) Yds

e€&L(N)

- Z /{divvznsm,h} ‘nc: [V;Z”_Q(vmh — IIS, v 1) ds

e€Ey €

Z /dlvvhsmh] n:{V;'" 2(Umh 105, v, n) yds
e€&p(

—i—Z/{dlvdlvvh Smp} 1t [V (0 — TS vy )| ds

e€Ey



No.3 J. Hu, etc., Nonconforming Finite Element 283

+ Z /dlvdlvvh Smp) -m: {Vy'T 3(Umh I vy p) bds
eegh(ﬂ

ymt Z /{dlv ~divVi'smpton: (U n — 15,0 1) ]ds

eeép
CDY U/ézgvgyzvh&nu B (0 — 1100 s
ec&n () m—1
+ Z "div- .- div Vs h, U — 5 0m0)0, K- (4.8)
KeTy m

In the rest proof, we estimate the terms on the right-hand side of (4.8). First, the
trace theorem and the inverse estimate yield, for £ > 2,

/e{div o divy Vi) n [V (g — TS, 0,0)]ds
01

/{dlv ~div(Visn — OV un) ) -n: [V (v — TS 0.0)]ds
-1
< Ch Y|V sy — TIOV™

This and (4.3) show that

Z /{dlv ~divVy'sp,ptonc: [V?_Z(Um,h — 1015, vm p)]ds

IV (vmp = 15, 0m,1)

Eegh —1
= Z {dlv d1v(V,Z S — I°V™ )} - n: [V?_é(vm’h —II5, v, 1)) ds
ec&p
< Ol Vh'smph — HOVmUmHO!!V?Um,h\IO- (4.9)
Similarly,

Z /le ~div Vs, p] -n: {Vy'T (Umh 07, vm,n) bds
e€&R(Q) l—1

< C|\Vitsyp — IOV™ (4.10)

It remains to analyze the first two terms and the last term on the right hand—side of
(4.8). For the first term, it follows from the trace theorem and the inverse estimate
that

/ {(Vitsmnt -0 [V (v — T vm0)]ds
=/W%m—meymW$wm—%%mm

< Ch YV smp — V™ U [l0.w. IV 7 (U — T 0m0) llo.we -
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Here we use the fact that
[Vzl_lvm,h]ds =0.

[

Together with (4.3), it states that

Z / (VPsmn} -0 VP v — TS0 5)]ds

ecép €
< CIIVismp — OV um o] Vi vm

0- (4.11)

Since [II), V™u,,] = 0 for any internal edge e, the trace theorem and the inverse
estimate lead to

/[V;Lnsmh] ‘n: {V’}?—l(vmyh — 10 v 1) Fds

[
= /[ WSmh — ngvmum] ‘n: {Vznfl(vmh — IIS v 1) Fds
€

< Ch M |V sy = T, V|

0,we H V;Ln_l (Um,h - H%’L'Umyh) Houwe7
which, plus (4.3), yields
S Vsl 0 {9 = v ) b
e€&L () ¢

1/2
<> IVRsmn =0,V unlBe ) Vvl (412)
eeé’h(ﬂ)

We turn to the last term which can be bounded by the element-wise inequality and
(4.3) as follows

Z (=)™ div---div V™8 py Vmn — 15, 0m.n)0,K

KeTy, m
= Z (=)™ div- - div(V™smp — IOV U ), v — v n)o, 5
KeTy, m
< OIV™ s, — IOV ™ o] Vv, b lo- (4.13)

Since s, is arbitrary, the desired estimate follows from (4.6), (4.7), (4.8)-(4.13),
and the triangle inequality. The proof is completed.

5 Numerical Tests

5.1 Numerical test 1 We apply H? non-conforming finite element method (2.2)
to solve the tri-harmonic equation
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(_A)?)u = f in (07 1) x (07 1)7
2
U= gz = gr:; =0 on the boundary,
with exact solution
u= 2%z -2 (y - y*)*. (5.1)

We use the nested refined, uniform grids shown in Figure 5. The errors and the
orders of convergence are displayed in Table 1. The optimal order convergence is
achieved, under the consistent error limitation.

Figure 5: The first three levels of grids, 71,72, 75 -

Table 1: The error e;, = u — up, and the order of convergence,
by V3 element (2.2), for solution (5.1).

llenllo A" lenlin ™| lenlan  R™ | lenlsn A"
0.54397 0.0 | 2.47921 0.0 | 8.4032 0.0 | 40.666 0.0
0.03064 4.1 | 0.15218 4.0 | 1.0941 2.9 9.654 2.1
0.01403 1.1 | 0.07170 1.1 | 0.5084 1.1 6.967 0.5
0.00430 1.7 | 0.02190 1.7 | 0.1508 1.8 3.948 0.8
0.00115 1.9 | 0.00585 1.9 | 0.0401 1.9 2.051 0.9
0.00029 2.0 | 0.00149 2.0 | 0.0102 2.0 1.036 1.0

o Ut w o =

5.2 Numerical test 2 We apply H* non-conforming finite element method (2.3)
to solve the 4-harmonic equation

(_A)4u =f in (0,1) x (0,1),
_Ou Pu D

U= = o T s 0 on the boundary,

with exact solution
u=2" —a?)(y — )" (5.2)
The errors and the orders of convergence are displayed in Table 2. The optimal
order convergence is achieved, under the consistent error limitation.

5.3 Numerical test 3 We apply H® non-conforming finite element method (2.4)
to solve the 5-harmonic (order 10 PDE) equation
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Table 2: The error e, = u — uy, and the order of convergence, by Vj element (2.3),
for 4-harmonic solution (5.2).

lenllo 2™ | lenlin A" | lenlon  B™ | lenlsn  A™ lenlan R
0.00484 0.0 | 0.02699 0.0 | 0.2743 0.0 | 2.242 0.0 | 35.90807 0.0
0.00394 0.3 | 0.02406 0.2 | 0.2474 0.1 2.634 0.0 | 40.65954 0.0
0.00271 0.5 | 0.01553 0.6 | 0.1221 1.0 1.287 1.0 | 27.77417 0.5
0.00089 1.6 | 0.00508 1.6 | 0.0399 1.6 | 0.416 1.6 | 14.01396 1.0
0.00024 1.9 | 0.00136 1.9 | 0.0107 19| 0.110 1.9 | 6.91730 1.0
0.00006 2.0 | 0.00035 2.0 | 0.0027 2.0 | 0.028 2.0 | 343714 1.0
0.00002 2.0 | 0.00009 2.0 | 0.0007 2.0 0.007 2.0 1.71544 1.0

N oG w o~

(=A)Su=f in(0,1) x (0,1),
o'

= o 0 on the boundary, i =1,2,3,4,
n

U

with exact solution
u=2"(z—2*)’(y - v*)°. (5.3)
The errors and the orders of convergence are displayed in Table 3. The optimal
order convergence is achieved, under the consistent error limitation.

Table 3: The error e, = u — up, and the order of convergence, by
Vs (Pr) element (2.4), for 5-harmonic solution (5.3).
lenllo A" lenli,n R | lenl2,n A" | lenls,n A"
0.00440 0.0 0.06001 0.0 | 0.2842 0.0 | 2.655 0.0
0.00214 1.0 | 0.88918 0.0 | 0.2433 0.2 | 3.590 0.0
0.00212 0.0 0.00019 — | 0.1215 1.0 | 1363 14
0.00077 1.5 | 0.00485 0.0 | 0.0424 1.5 | 0.449 1.6
0.00020 1.9 0.00126 19 | 0.0111 19| 0.117 1.9
lenla,n A" lenls,n A"
56.7108 0.0 | 590.506 0.0
80.3451 0.0 | 1081.068 0.0
30.7082 14 723.191 0.6
8.0391 1.9 313.370 1.2
2.1981 1.9 149.955 1.1

ISISONOCIICIE e || ES SOOI IS

5.4 Numerical test 4 We apply H° non-conforming finite element method (2.5)
to solve the 6-harmonic (order 12 PDE) equation

(=A)u = f in (0,1) x (0,1),
B o'
~ On’

U =0 on the boundary, ¢t =1,2,---,5,

with exact solution
u=2"%( —2?)%(y - y*)°. (5.4)
The errors and the orders of convergence are displayed in Table 4. The optimal
order convergence is achieved, under the consistent error limitation.
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Table 4: The error e, = u — up, and the order of convergence, by Vs (Py) element
(2.5), for 6-harmonic solution (5.4).

T llenllo A" lenlin R lenlon R lenlsn A"
1 0.1267 0.0 0.4895 0.0 14.7042 0.0 | 295.1211 0.0
2 0.0252 2.3 7.4484 0.0 1.9216 2.9 25.7602 3.5
3 0.0333 0.0 0.0656 6.8 2.2800 0.0 26.4761 0.0
4 0.0083 2.0 0.0638 0.0 0.6696 1.8 8.3561 1.7
5 0.0039 1.1 0.0286 1.2 0.2919 1.2 3.5617 1.2
Tr lenla,, R lenls,n,  R™ lenls,n, A"
1 | 3662.1828 0.0 | 28952.5084 0.0 | 296063.7189 0.0
2 348.0689 3.4 5385.4426 2.4 | 104537.9869 1.5
3 346.8000 0.0 5059.5643 0.1 99668.5074 0.1
4 117.1285 1.6 1783.9195 1.5 30779.2503 1.7
5 49.2540 1.2 758.6861 1.2 13664.7306 1.2
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