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Abstract

A predator-prey system with a constant proportion of prey refuge and
stage-structure for prey species is proposed and studied in this paper. A set of
conditions for the permanence of the system is obtained. The local stability of
the system is discussed by the sign of eigenvalues. Furthermore, by using the
iterative method, some suitable sufficient conditions for the global attractivity
of the interior equilibrium is obtained. Our study shows that the constant
proportion of prey refuge could lead to more complicate dynamic behaviors.
Numerical simulations are also presented to illustrate the feasibility of the main
results.
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1 Introduction

Since the pioneer work of Aiello and Freedman [1] on the single species stage-

structured models, many scholars had done excellent works on the stage-structure

population dynamics. For example, Lin, Xie and Chen [10] studied the convergences

of a stage-structured predator-prey model with modified Leslie-Gower and Holling-

type II schemes. Their study indicated that both the stage-structure and the death

rate of the mature prey play important roles on the permanence or extinction of the

system.

The existence of refuges sometimes plays an important role in the co-existence

of predator and prey species. A prey refuge can be broadly defined as including any
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strategies to reduce the risk of predation, such as spatial or temporal refuges, prey

aggregations, or reducing prey activity. As was pointed out by Devi [11], there are t-

wo types of refuges: refuges protecting a fixed number of prey and refuges protecting

a constant proportion of prey. Chen et al. [12] proposed a Leslie-Gower predator-

prey model incorporating a constant proportion of prey refuge. Their results showed

that refuge leads to more complicate dynamic behaviors.

There are many works on stage-structure population dynamics [1-20], and many

works on the predator prey system incorporate the prey refuge [11-14]. Howev-

er, only recently, Devi [11] proposed a stage-structured predator-prey model with

prey refuge. They considered the refuges protecting a fixed number of prey. Devi

showed that the equilibrium value of mature prey population increases with the

prey refuges, whereas the equilibrium value of predator population decreases with

the prey refuges. The success of Devi [11] motivates us to consider the influence of

a constant proportion of prey refuge and to propose the following model:

ẋi(t) = αxm(t)− γxi(t)− αe−γτxm(t− τ),

ẋm(t) = αe−γτxm(t− τ)− βx2m(t)− (1− p)xm(t)y(t)

(1− p)xm(t) + y(t)
,

ẏ(t) = k
(1− p)xm(t)y(t)

(1− p)xm(t) + y(t)
− dy(t), (1.1)

xm(θ) = ϕm(θ) ≥ 0, −τ ≤ θ < 0, xi(0) > 0, xm(0) > 0, y(0) > 0,

where xi(t) and xm(t) represent the densities of the immature and mature prey

populations, respectively. y(t) is described as the density of predator population at

time t.

System (1.1) satisfies the following assumptions:

(1) The per capita birth rate of the immature popular is α > 0. The per capita

death rate of the immature popular is γ > 0. The per capita death rate of the mature

prey is proportional to the current mature prey population with a proportionality

constant β > 0. τ > 0 is the length of time from birth to maturity. e−γτ denotes the

surviving rate of immaturity to reach maturity. The term αe−γτxm(t−τ) models the

immature individuals who are born at time t− τ and survive and mature at time t;

(2) It is assumed that predators only feed on the mature prey. k > 0 is the

efficiency with which predators convert consumed prey into new predators. d > 0 is

the death rate of predators species. The mature prey using refuges are proportional

to the existing population with a proportionality constant 0 < p < 1.

For the continuity of the solutions to system (1.1), in this paper, we require

xi(0) =

∫ 0

−τ
αeγsϕm(s)ds.
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Now integrating both sides of the first equation of system (1.1) in the interval (0, t),

we obtain that

xi(t) =

∫ t

t−τ
αe−γ(t−s)xm(s)ds. (1.2)

From (1.2), one could easily see that the dynamic behaviors of xi(t) is determined

by xm(t). Hence, we only need to analyse the the following subsystem of system

(1.1)

ẋm(t) = αe−γτxm(t− τ)− βx2m(t)− (1− p)xm(t)y(t)

(1− p)xm(t) + y(t)
,

ẏ(t) = k
(1− p)xm(t)y(t)

(1− p)xm(t) + y(t)
− dy(t), (1.3)

xm(θ) = ϕm(θ) ≥ 0, −τ ≤ θ < 0, xm(0) > 0, y(0) > 0.

2 Permanence

To investigate the persistent property of the system,we need the following lem-

mas.

Lemma 2.1[9] Consider the following equation:

ẋ(t) = ax(t− τ)− bx(t)− cx2(t), (2.1)

where a, b, c, τ > 0 and x(t) > 0, for − τ≤ t≤ 0.

(1) If a > b, then lim
t→∞

x(t) = a−b
c .

(2) If a < b, then lim
t→∞

x(t) = 0.

Lemma 2.2[21]

(1) If a > 0, b > 0, and ẋ(t) ≥ a − bx(t), when t ≥ 0 and x(0) > 0, then

lim inf
t→∞

x(t) ≥ a
b .

(2) If a > 0, b > 0, and ẋ(t) ≤ a − bx(t), when t ≥ 0 and x(0) > 0, then

lim sup
t→∞

x(t) ≤ a
b .

Lemma 2.3[21]

(1) If a > 0, b > 0, and ẋ(t) ≥ x(t)
(
a − bx(t)

)
, when t ≥ 0 and x(0) > 0, then

lim inf
t→∞

x(t) ≥ a
b .

(2) If a > 0, b > 0, and ẋ(t) ≤ x(t)
(
a − bx(t)

)
, when t ≥ 0 and x(0) > 0, then

lim sup
t→∞

x(t) ≤ a
b .

Similar to the proof of Theorem 3.1 in [11], we can obtain:

Lemma 2.4 Assume ϕ(θ) ≥ 0 is continuous on θ ∈ [−τ, 0], xm(0), y(0) > 0,

then the solutions of system (1.3) are positive for all t > 0.
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Theorem 2.1 All solutions of system (1.3) are bounded on Ω, where

Ω = {(xm(t), y(t)) : xm(t) ≤ M1, y(t) ≤ M2}. (2.2)

Proof Consider the first equation of system (1.3):

ẋm(t) ≤ αe−γτxm(t− τ)− βx2m(t). (2.3)

By Lemma 2.1 and the comparison theorem, we obtain

lim sup
t→∞

xm(t) ≤ αe−γτ

β
= M1, (2.4)

and so, for ε > 0 enough small, there exists an enough T such that

xm(t) < M1 + ε.

From the second equation of system (1.3), it follows that

ẏ(t) ≤ k(1− p)(M1 + ε)− dy(t). (2.5)

Applying Lemma 2.2 to (2.5), we obtain

lim sup
t→∞

y(t) ≤ k(1− p)(M1 + ε)

d
= M ε

2 .

Setting ε → 0 leads to

lim sup
t→∞

y(t) ≤ k(1− p)M1

d
= M2. (2.6)

The proof of Theorem 2.1 is completed.

Theorem 2.2 Assume that k > d and αe−γτ > 1 − p, then system (1.3) is

permanent.

Proof From the first equation of system (1.3), one has

ẋm(t) ≥ αe−γτxm(t− τ)− βx2m(t)− (1− p)xm(t). (2.7)

By Lemma 2.1 and the comparison theorem, we can obtain that

lim inf
t→∞

xm(t) ≥ αe−γτ − (1− p)

β
= m1. (2.8)

For ε > 0 small enough, there exists an enough large T ∗ such that

xm(t) > m1 − ε.

Consider the second equation of system (1.3)

ẏ(t) ≥ (k − d)(1− p)(m1 − ε)y(t)− dy2(t)

(1− p)(m1 − ε) + (M2 + ε)
. (2.9)
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By Lemma 2.3, we obtain

lim inf
t→∞

y(t) ≥ (k − d)(1− p)(m1 − ε)

d
= mε

2.

Setting ε → 0 leads to

lim inf
t→∞

y(t) ≥ (k − d)(1− p)m1

d
= m2. (2.10)

Hence, according to (2.4), (2.6), (2.8) and (2.10), we obtain that

m1 ≤ lim inf
t→∞

xm(t) ≤ lim sup
t→∞

xm(t) ≤ M1,

m2 ≤ lim inf
t→∞

y(t) ≤ lim sup
t→∞

y(t) ≤ M2.
(2.11)

This ends the proof of Theorem 2.2.

3 Stability of the Equilibria

According to the equations of system (1.3), we can obtain two nonnegative equi-

librium points:

A

(
αe−γτ

β
, 0

)
, B(x∗m, y∗), (3.1)

where

x∗m =
αe−γτ

β
− (k − d)(1− p)

kβ
,

y∗ =
(k − d)(1− p)αe−γτ

dβ
− (k − d)2(1− p)2

kdβ
.

(3.2)

Clearly, the positive equilibrium point B exists if

k > d, αe−γτ >
(k − d)(1− p)

k
. (3.3)

Now, consider the influence of the prey refuse on the density of both prey and

predator species.

Since x∗m is a continuous function of parameter p, direct computation shows that

dx∗m
dp

=
k − d

kβ
> 0, p ∈ (0, 1).

The above inequality shows that x∗m is a strictly increasing function of p. That is,

increasing the number of refuge can increase prey densities.

On the other hand, since y∗ is a continuous function of p, direct computation

shows that

dy∗

dp
=

(
k − d

)(
2(k − d)(1− p)− αe−γτk

)
kdβ

, p ∈ (0, 1).
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(1) Assume that 2(k − d) ≤ kαe−γτ , then

dy∗

dp
< 0, p ∈ (0, 1).

Therefore, y∗ is a strictly decreasing function of p ∈ (0, 1). That is increasing the

number of prey refuge can decrease the predator densities.

(2) Assume that 2(k − d) > kαe−γτ . Let

f(p) =

(
k − d

)(
2(k − d)(1− p)− αe−γτk

)
kdβ

.

f(p) = 0 has a unique positive solution p∗ = kαe−γτ+2d−2k
2(d−k) . It follows that

dy∗

dp
> 0, for all p ∈ (0, p∗).

That is, there exists a threshold p = p∗ such that for all p ∈ (0, p∗), y∗ is a strictly

increasing function of p, otherwise y∗ is a strictly decreasing function of p, for all

p ∈ (p∗, 1). Hence, when the prey refuge is large enough, increasing the number of

prey refuge can decrease the predator densities. The predator species achieve their

maximum densities at the threshold p = p∗.

Theorem 3.1 Assume that k < d, then the equilibrium point A is locally

asymptotically stable.

Proof The variational matrix of system (1.3) at the equilibrium point A is

V (A) =

(
αe−(γ+λ)τ − 2αe−γτ −1

0 k − d

)
.

We can obtain the following characteristic equation at the equilibrium point A:

(λ− αe−(γ+λ)τ + 2αe−γτ )(λ− k + d) = 0. (3.4)

One solution of characteristic equation at point A is λ = k−d, and other solutions

are given by

λ− αe−(γ+λ)τ + 2αe−γτ = 0, (3.5)

which implies Reλ < 0. We prove it by contradiction. Suppose that Reλ ≥ 0, then

we can obtain

Reλ = αe−γτe−Re(λ)τ cos(Imλ)τ − 2αe−γτ ≤ αe−γτ − 2αe−γτ < 0. (3.6)

It is a contradiction, hence, Reλ < 0. The above analysis shows that A is unstable

if k > d and A is locally asymptotically stable if k < d.

To investigate the stability property of the equilibrium B, we need the following

lemma.
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Lemma 3.2[20] The necessary and sufficient conditions for the equilibrium point

B to be asymptotically stable for τ ≥ 0 is the following conditions:

(1) The real parts of all the eigenvalue are negative in F (λ, 0) = 0.

(2) For all real b and τ ≥ 0, F (ib, τ) ̸= 0, where i = 2
√
−1.

Theorem 3.1 Assume that k > d and k ≥ 2(1− p), then the equilibrium point

B is locally asymptotically stable.

Proof The variational matrix of system (1.3) at the equilibrium point B is

V (B) =

αe−(γ+λ)τ − 2αe−γτ − (k − d)(k + d)(1− p)

k2
−d2

k2

(k − d)(1− p)

k

d2 − kd

k


The characteristic equation at the equilibrium point B is

F (λ, τ) = λ2 + λP1(τ) + P0(τ) + (λQ1(τ) +Q0(τ))e
−λτ = 0, (3.7)

where

P1(τ) = 2αe−γτ +
(k − d)(k + d)(1− p)

k2
+

kd− d2

k
,

P0(τ) = 2αe−γτ kd− d2

k
+

d(k − d)2(k + 2d)(1− p)

k3
,

Q1(τ) = −αe−γτ , Q0(τ) = −αe−γτ kd− d2

k
.

According to Lemma 3.2, we need to take two steps to prove Theorem 3.1.

(1) From equation (3.7), we have

F (λ, 0) = λ2 + λ
(
P1(0) +Q1(0)

)
+
(
P0(0) +Q0(0)

)
= 0. (3.8)

We consider the signs of P1(0) +Q1(0) and P0(0) +Q0(0),

P1(0) +Q1(0) =
(k − d)d

k
+ 2α+

(k − d)(k + d)(1− p)

k2
− α > 0,

P0(0) +Q0(0) =
2α(k − d)d

k
+

d(k − d)2(1− p)(k + 2d)

k3
− α(k − d)d

k

=
α(k − d)d

k
+

d(k − d)2(1− p)(k + 2d)

k3
> 0.

Then all the roots of equation (3.8) have negative real parts. Hence, the equilibrium

point B is locally asymptotically stable at τ = 0.

(2) We consider F (ib0, τ0) = 0, for real b0.

Firstly, when b0 = 0,



296 ANN. OF APPL. MATH. Vol.33

F (0, τ0) = P0(τ0) +Q0(τ0)

= 2αe−γτ kd− d2

k
+

d(k − d)2(k + 2d)(1− p)

k3
− αe−γτ kd− d2

k

= αe−γτ kd− d2

k
+

d(k − d)2(k + 2d)(1− p)

k3
> 0. (3.9)

Secondly, when b0 ̸= 0, depending on the signs of A(τ0) and B(τ0), equation

(3.7) does not have the positive real roots

F (ib0, τ0) = −b20+ib0P1(τ0)+P0(τ)+(ib0Q1(τ0)+Q0(τ0))(cos b0τ0−i sin b0τ0) = 0,

F (ib0, τ0) = FR(ib0, τ0) + iFI(ib0, τ0),

FR(ib0, τ0) = −b20 + P0(τ0) + b0Q1(τ0) sin b0τ0 +Q0(τ0) cos b0τ0,

FI(ib0, τ0) = b0P1(τ0) + b0Q1(τ0) cos b0τ0 −Q0(τ0) sin b0τ0,

F (b0, τ0) = F 2
R(ib0, τ0) + F 2

I (ib0, τ0) = 0.

We obtain

F (b0, τ0) = b4 +A(τ0)b
2 +B(τ0) = 0,

A(τ0) = −2P0(τ0) + P 2
1 (τ0)−Q2

1(τ0), (3.10)

B(τ0) = P 2
0 (τ0)−Q2

0(τ0).

By calculation,

P0(τ0)−Q0(τ0) = 3αe−γτ0 kd− d2

k
+

d(k − d)2(k + 2d)(1− p)

k3
> 0.

First, we consider the sign of B(τ0),

B(τ0) = P 2
0 (τ0)−Q2

0(τ0) = (P0(τ0) +Q0(τ0))(P0(τ0)−Q0(τ0)). (3.11)

From (3.9) and (3.10), P0(τ0) +Q0(τ0) > 0, P0(τ0)−Q0(τ0) > 0. Therefore, we can

obtain B(τ0) > 0.

Next, we discuss the sign of A(τ0),

A(τ0) = −2P0(τ0) + P 2
1 (τ0)−Q2

1(τ0)

= −2
(
2αe−γτ0 kd− d2

k
+

d(k − d)2(k + 2d)(1− p)

k3

)
− (−αe−γτ0)2

+
(
2αe−γτ0 +

(k − d)(k + d)(1− p)

k2
+

kd− d2

k

)2
= −2

(
2αe−γτ0 kd− d2

k

)
− 2

d(k − d)2(k + 2d)(1− p)

k3
− α2e−2γτ0

+
((k − d)(k + d)(1− p)

k2

)2
+
(
2αe−γτ0 +

kd− d2

k

)2
+2

(k − d)(k + d)(1− p)

k2

(
2αe−γτ0 +

kd− d2

k

)
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=
(k − d)2d2

k2
+ 3α2e−2γτ0 +

(k − d)2(k + d)2(1− p)2

k4

−2(k − d)2d2(1− p)

k3
+ 4αe−γτ0 (k − d)(k + d)(1− p)

k2

=
(k − d)2d2

k3
(
k − 2(1− p)

)
+ 4αe−γτ0 (k − d)(k + d)(1− p)

k2

+3α2e−2γτ0 +
(k − d)2(k + d)2(1− p)2

k4
. (3.12)

By the conditions of Theorem 3.1, we have

A(τ0) = −2P0(τ0) + P 2
1 (τ0)−Q2

1(τ0),

=
(k − d)2d2

k3
(
k − 2(1− p)

)
+ 4αe−γτ0 (k − d)(k + d)(1− p)

k2

+3α2e−2γτ0 +
(k − d)2(k + d)2(1− p)2

k4
> 0. (3.13)

Therefore, F (ib0, τ0) ̸= 0 for any real b0. According to Lemma 3.1, the equilibrium

point B is locally asymptotically stable.

4 Global Attractivity

In this section, we study the global stability property of the equilibrium points

A and B. By Theorem 4.9.1 in Kuang [18], we can conclude the following lemma.

Lemma 4.1

v̇(t) = a4v(t− τ)− a3v
2(t)− a1v(t)

v(t) + a2
,

v(t) = φ(t) ≥ 0, t ∈ [−τ, 0],
v(0) > 0.

(4.1)

Assume that a2a4 − a1 > 0, then system (4.1) admits a unique positive equilibrium,

lim
t→∞

v(t) = v∗ =
a4 − a2a3 +

√
(a4 − a2a3)2 + 4a3(a2a4 − a1)

2a3
, (4.2)

which is globally asymptotically stable.

Theorem 4.1 Assume that k < d and αe−γτ > 1−p, then the equilibrium point

A is globally attractive.

Proof From the first equations of system (1.3), we obtain

ẋm(t) ≤ αe−γτxm(t− τ)− βx2m(t). (4.3)

Consider the following system

u̇(t) = αe−γτu(t− τ)− βu(t), t ≥ 0,

u(t) = φ(t), −τ ≤ t ≤ 0.

It follows from Lemma 2.1 that
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lim
t→∞

u(t) =
αe−γτ

β
.

By the comparison theorem, we have xm(t) ≤ u(t), t ≥ 0. Hence, for any sufficiently

small positive number ε, there exists a T ∗
1 > 0 such that

xm(t) ≤ αe−γτ

β
+ ε, t ≥ T ∗

1 . (4.4)

From the second equation of system (1.3), we obtain

ẏ ≤ (k − d)y(t), t ≥ T ∗
1 . (4.5)

Hence

y(t) ≤ exp{(k − d)t}.

Since k < d, one could easily see that y(t) → 0 as t → ∞. Therefore, for any

sufficiently small positive number ε, there exists a T ∗
2 such that

y(t) ≤ ε, t ≥ T ∗
2 . (4.6)

From the first equations of system (1.3) and (4.6), we can obtain

ẋm(t) ≥ α−γτxm(t− τ)− βx2m(t)− xm(t)ε

xm(t) +
ε

1− p

, t ≥ T ∗
2 + τ.

Consider the following system

u̇(t) = α−γτu(t− τ)− βu2(t)− u(t)ε

u(t) +
ε

1− p

,

u(t) = φ(t), T ∗
2 ≤ t ≤ T ∗

2 + τ.

Because of αe−γτ > 1− p, it follows from Lemma 4.1 that

lim
t→∞

u(t) =
αe−γτ

2β
− ε

2(1− p)
+

√(
α−γτ − βε

1− p

)2
+ 4β

(α−γτ

1− p
− 1
)
ε

2β
− ε,

and by the comparison theorem, we obtain xm(t) ≥ u(t), t ≥ T ∗
2 + τ. Hence,

xm(t) ≥ αe−γτ

2β
− ε

2(1− p)
+

√(
α−γτ − βε

1− p

)2
+ 4β

(α−γτ

1− p
− 1
)
ε

2β
− ε

≥ αe−γτ

2β
− ε

2(1− p)
+

α−γτ − βε

1− p

2β
− ε

=
αe−γτ

β
− ε

1− p
− ε. (4.7)
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It follows from (4.4) and (4.7) that

lim
t→∞

xm(t) =
αe−γτ

β
, (4.8)

lim
t→∞

(xm(t), y(t)) =
(αe−γτ

β
, 0
)
. (4.9)

This proof is completed.

Theorem 4.2 If k < 2d and αe−γτ > 1 − p, then the equilibrium point B is

globally attractive.

Proof Consider the first equation of system (1.3),

ẋm(t) ≤ αe−γτxm(t− τ)− βx2m(t). (4.10)

Consider the following system

u̇(t) = αe−γτu(t− τ)− βu2(t), t ≥ 0,

u(t) = φ(t), −τ ≤ t ≤ 0.

It follows Lemma 2.1 that lim
t→∞

u(t) = αe−γτ/β. By the comparison principle, we

obtain xm(t) ≤ u(t), t ≥ 0. Therefore, for any sufficiently small ε > 0, there exists

a T1 > 0 such that

xm(t) ≤ αe−γτ

β
+ ε = ū1, t ≥ T1. (4.11)

From the second equation of system (1.3) and (4.11), we obtain

ẏ(t) ≤ k(1− p)ū1y(t)

(1− p)ū1 + y(t)
− dy(t), t ≥ T1. (4.12)

By using the comparison theorem of the differential equation, there exists a T2 > T1

such that

y(t) ≤ (k − d)(1− p)ū1
d

+ ε = v̄1, t ≥ T2. (4.13)

From (4.13) and the first equation of system (1.3), we obtain

ẋm ≥ α−γτxm(t− τ)− βx2m(t)− xm(t)v̄1

xm(t) +
v̄1

1− p

, t ≥ T2 + τ.
(4.14)

Consider the following system

u̇(t) = α−γτu(t− τ)− βu2(t)− u(t)v̄1

u(t) +
v̄1

1− p

, t ≥ T2 + τ,

u(t) = φ(t), T2 ≤ t ≤ T2 + τ.

It follows from Lemma 4.1 that
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lim
t→∞

u(t) =
αe−γτ

2β
− v̄1

2(1− p)
+

√(
α−γτ − βv̄1

1− p

)2
+ 4β

(α−γτ

1− p
− 1
)
v̄1

2β
.

By the comparison principle, we have xm(t) ≥ u(t), t ≥ T2 + τ. Hence, there exists

a T3 > T2 + τ > 0 such that

xm(t) ≥ αe−γτ

2β
− v̄1

2(1− p)
+

√(
α−γτ − βv̄1

1− p

)2
+ 4β

(α−γτ

1− p
− 1
)
v̄1

2β
− ε = u1.

(4.15)

From (4.15) and the second equation of system (1.3), we obtain

ẏ(t) ≥ k(1− p)u1y(t)− dy2(t)

(1− p)u1 + v1
, t ≥ T3.

By the comparison principle and Lemma 2.3, there exists a T4 > T3 such that

y(t) ≥ (k − d)(1− p)u1
d

− ε = v1, t ≥ T4. (4.16)

By the similar arguments as above and Lemma 4.1, for any sufficiently small ε > 0,

there exists a T5 > T4 + τ > 0 such that

xm(t) ≤ αe−γτ

2β
− v1

2(1− p)
+

√(
α−γτ − βv1

1− p

)2
+ 4β

(α−γτ

1− p
− 1
)
v1

2β
+

ε

2
= u2.

(4.17)

From (4.11) and (4.17), we can have

u1 > u2. (4.18)

From (4.17) and the second equation of system (1.3), we obtain

ẏ(t) ≤ k(1− p)u2y(t)− dy2(t)

(1− p)u2 + v1
, t ≥ T5. (4.19)

By the comparison theorem and Lemma 2.3, there exists a T6 > T5 such that

y(t) <
(k − d)(1− p)u2

d
+

ε

2
= v2, t ≥ T6. (4.20)

From (4.13), (4.16) and (4.20), we obtain

v2 < v1. (4.21)

From (4.20) and the first equation of system (1.3), we obtain

ẋm ≥ α−γτxm(t− τ)− βx2m(t)− xm(t)v2

xm(t) +
v2

1− p

, t > T6 + τ.
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By the similar arguments as above and Lemma 4.1, for any sufficiently small ε > 0,

there exists a T7 > T6 + τ > 0 such that

xm(t) ≥ αe−γτ

2β
− v2

2(1− p)
+

√(
α−γτ − βv2

1− p

)2
+ 4β

(α−γτ

1− p
− 1
)
v2

2β
− ε

2
= u2.

(4.22)

According to (4.15), (4.21) and (4.22), we obtain

u2 > u1. (4.23)

From the above inequality and the second equation of system (1.3), we obtain

ẏ(t) ≥ k(1− p)u2y(t)− dy2(t)

(1− p)u2 + v2
, t ≥ T7.

By the comparison theorem and Lemma 2.3, there exists a T8 > T7 such that

y(t) ≥ (k − d)(1− p)u2
d

− ε

2
= v2, t ≥ T8. (4.24)

From (4.16), (4.23) and (4.24), we obtain

v2 > v1. (4.25)

Repeating the above steps can obtain four sequences (un)
∞
n=1, (un)

∞
n=1, (vn)

∞
n=1,

(vn)
∞
n=1, and T4n > 0. For t ≥ T4n, we can obtain that

0 < u1 < u2 < · · · < un < xm(t) < un < · · · < u2 < u1,

0 < v1 < v2 < · · · < vn < y(t) < vn < · · · < v2 < v1.

Hence, the limits of (un)
∞
n=1, (un)

∞
n=1, (vn)

∞
n=1, (vn)

∞
n=1 exist. Set

u = lim
n→∞

un, v = lim
n→∞

vn, u = lim
n→∞

un, v = lim
n→∞

vn.

Then u ≥ u, v ≥ v.

According to the relationship between un and vn, we can know

vn − vn =
(k − d)(1− p)(un − un)

2βd
. (4.26)

From the definitions of un and un, we obtain

un − un =
vn − vn−1

2(1− p)
+

√(
α−γτ −

βvn−1

1− p

)2
+ 4β

(αe−γτ

1− p
− 1
)
vn−1

2β

−

√(
α−γτ − βvn

1− p

)2
+ 4β

(αe−γτ

1− p
− 1
)
vn

2β
+

2ε

n
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<

(
2α−γτ −

β(vn + vn−1)

1− p

) β

1− p
(vn − vn−1)

2β
(
2α−γτ −

β(vn + vn−1)

1− p

)

−
4β
(αe−γτ

1− p
− 1
)
(vn − vn−1)

2β
(
2α−γτ +

β(vn + vn−1)

1− p

) +
vn − vn−1

2(1− p)
+

2ε

n

<
vn − vn−1

2(1− p)
+

vn − vn−1

2(1− p)
−

2
(α−γτ

1− p
− 1
)
(vn − vn−1)

2αe−γτ +
β(vn + vn−1)

1− p

+
2ε

n

<
vn − vn−1

1− p
+

2ε

n
. (4.27)

Hence,

vn − vn =
(k − d)(1− p)(un − un)

d
+

2ε

n

<
(k − d)(1− p)

d

(vn − vn−1

1− p
+

2ε

n

)
+

2ε

n

<
k − d

d
(vn − vn−1) +

2ε(k − d)(1− p)

nd
+

2ε

n
. (4.28)

Taking the limit at the same time on both sides of the inequality, we can obtain

v − v ≤ k − d

d
(v − v), (4.29)(

1− k − d

d

)
v − v ≤ 0. (4.30)

According to the assumed conditions we have v = v, which implies u = u. Hence,

we obtain when k < 2d and αe−γτ > 1 − p, the equilibrium point B is globally

attractive.

5 Numerical Simulations

The following four examples show the feasibility of main results.

Example 5.1 Consider the following system

ẋm(t) = 3e−2.5xm(t− 10)− x2m(t)− 0.2xm(t)y(t)

0.2xm(t) + y(t)
,

ẏ(t) = 0.4
0.2xm(t)y(t)

0.2xm(t) + y(t)
− 2y(t),

(5.1)



No.3 T.T. Li, A Predator-Prey System 303

where α = 3, γ = 0.25, β = 1, k = 0.4, d = 2, p = 0.8, τ = 10. By direct calculation,

k < d, αe−γτ = 3e−2.5 ≈ 0.246 > 1− p = 0.2. It follows from Theorem 4.1 that the

boundary equilibrium A is globally asymptotically stable.
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Figure 1: Dynamic behaviors of system (5.1) with the

initial conditions (xm(θ), y(θ))=(0.1; 0.5),

(0.6; 0.25) and (0.3; 0.6) for −10 ≤ θ < 0.

Example 5.2 Consider the following system

ẋm(t) = 3e−1xm(t− 5)− x2m(t)− (1− p)xm(t)y(t)

(1− p)xm(t) + y(t)
,

ẏ(t) = 0.8
(1− p)xm(t)y(t)

(1− p)xm(t) + y(t)
− 0.5y(t),

(5.2)

where α = 3, γ = 0.2, β = 1, k = 0.8, d = 0.5, τ = 5. Fixed p = 0.8 by calculation,

3e−1 ≈ 1.103 > 1 − p = 0.2 and d < k < 2d. It follows from Theorem 4.2 that the

positive equilibrium (1.1096, 0.131) of system (5.2) is globally attractive (see Figure

2). Clearly, x∗m and y∗ are the functions of p ∈ (0, 1). Since 0.8 = 2(k − d) >

kαe−γτ = 0.441, it follows from the analysis of Section 3 that increasing the number

of prey refuge can increase the prey densities and decrease the predator densities.

Figure 3 supports our results.
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Figure 2: Dynamic behaviors of system (5.2) with

the initial conditions (0.1, 0.5), (0.6; 0.25)

and (0.3, 0.6) for −5 ≤ θ < 0 .
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Figure 3: Numeric simulations of x∗
m(p), y∗(p), where p ∈ (0, 1).

Example 5.3 Consider the following system

ẋm(t) = 1.5e−1xm(t− 5)− x2m(t)− (1− p)xm(t)y(t)

(1− p)xm(t) + y(t)
,

ẏ(t) = 0.9
(1− p)xm(t)y(t)

(1− p)xm(t) + y(t)
− 0.5y(t),

(5.3)

where α = 1.5, γ = 0.2, β = 1, k = 0.9, d = 0.5, τ = 5, p ∈ [0, 1]. In this case,

0.8 = 2(k − d) ≤ kαe−γτ = 0.441. From the analysis in Section 3, we obtain when

p < p∗ = (kαe−γτ + 2d− 2k)/[2(d− k)] = 0.449, increasing the number of prey

refuge can increase the prey densities and the predator densities. However, when

p > p∗ = (kαe−γτ + 2d− 2k)/[2(d− k)] = 0.449, increasing the number of prey

refuge can decrease the predator densities. Figure 4 supports our results.
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Figure 4: Numeric simulations of x∗
m(p), y∗(p), where p ∈ (0, 1).

Example 5.4 Consider the following system

ẋm(t) = 0.1e−1xm(t− 5)− x2m(t)− 0.2xm(t)y(t)

0.2xm(t) + y(t)
,

ẏ(t) = 0.8
0.2xm(t)y(t)

0.2xm(t) + y(t)
− 0.5y(t),

(5.4)
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where α = 0.1, γ = 0.2, β = 1, k = 0.8, d = 0.5, p = 0.8, τ = 5. In this case,

0.1e−1 ≈ 0.036 < 1− p = 0.2. The numeric simulation (see Figure 5) shows that the

predator and prey species all will be possible driven into extinction.
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Figure 5: Dynamic behaviors of system (5.4) with

the initial conditions (0.1, 0.5), (0.6; 0.25)

and (0.3, 0.6) for −5 ≤ θ < 0.

6 Conclusion

In this paper, we study the dynamic behaviors of the predator-prey system with

a constant proportion of prey refuge and stage-structure for prey species. We study

the permanence, the local stability and global stability of the system. Our results

show that the prey refuge plays an important role in determining the persistence

and the stability property of the system. Theorems 2.2, 3.2 and 4.2 show that if

prey refuge is large enough, then system (1.3) is permanent and the unique positive

equilibrium of the system is locally and globally stable, which means that the two

species of system could be coexistence in a stable state.

Furthermore, compared with the results of Devi [11], we found that the constant

proportion of prey refuge could lead to more complicate dynamic behaviors than the

fixed constant of prey refuges. The equilibrium value of mature prey populations

increases with p, as far as predator species is concerned. If 2(k − d) ≤ kαe−γτ ,

then increasing the number of prey refuge can decrease the predator densities. If

2(k − d) > kαe−γτ , there is a threshold p∗, when the prey refuge smaller than this

threshold, increasing the amount of prey refuge can increase the predator species,

but when the prey refuge is larger than the threshold, increasing the amount of prey

refuge can decrease the predator densities. Numeric simulations also support our

findings.

At the end of the paper, we would like to mention that Theorems 2.2 and 4.2

show that αe−γτ > 1−p plays an important role on the persistent and stability pro-
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perty of the system. Noting that τ represents the period of the prey species from

immature to mature, shorten the period between the mature and immature prey

species will improve the chance of the coexistence of the two species. However, what

would happen under the assumption αe−γτ < 1 − p? Example 5.4 shows that in

this case, both predator and prey species will be driven to extinction. However,

at present we have difficulty in giving its strictly proof, we leave this for future

investigation.
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