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Abstract

This paper deals with the class of Q-tensors, that is, a Q-tensor is a real
tensor A such that the tensor complementarity problem (q,A):

finding an x ∈ Rn such that x ≥ 0,q+Axm−1 ≥ 0, and x⊤(q+Axm−1) = 0,

has a solution for each vector q ∈ Rn. Several subclasses of Q-tensors are
given: P-tensors, R-tensors, strictly semi-positive tensors and semi-positive
R0-tensors. We prove that a nonnegative tensor is a Q-tensor if and only if all
of its principal diagonal entries are positive, and so the equivalence of Q-tensor,
R-tensors, strictly semi-positive tensors was showed if they are nonnegative
tensors. We also show that a tensor is an R0-tensor if and only if the tensor
complementarity problem (0,A) has no non-zero vector solution, and a tensor
is a R-tensor if and only if it is an R0-tensor and the tensor complementarity
problem (e,A) has no non-zero vector solution, where e = (1, 1 · · · , 1)⊤.
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complementarity problem
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1 Introduction

Throughout this paper, we use small letters x, u, v, α, · · · , for scalars, small bold
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letters x,y,u, · · · , for vectors, capital letters A,B, · · · , for matrices, calligraphic

letters A,B, · · · , for tensors. All the tensors discussed in this paper are real. Let

In := {1, 2, · · · , n}, Rn := {(x1, x2, · · · , xn)⊤;xi ∈ R, i ∈ In}, Rn
+ := {x ∈ Rn;x ≥

0}, Rn
− := {x ∈ Rn;x ≤ 0}, Rn

++ := {x ∈ Rn;x > 0}, e = (1, 1, · · · , 1)⊤, and
x[m] = (xm1 , xm2 , · · · , xmn )⊤ for x = (x1, x2, · · · , xn)⊤, where R is the set of real

numbers, x⊤ is the transposition of a vector x, and x ≥ 0 (x > 0) means xi ≥ 0

(xi > 0) for all i ∈ In.

Let A = (aij) be an n× n real matrix. A is said to be a Q-matrix iff the linear

complementarity problem, denoted by (q, A),

finding a z ∈ Rn such that z ≥ 0,q+Az ≥ 0, and z⊤(q+Az) = 0, (1.1)

has a solution for each vector q ∈ Rn. We say that A is a P-matrix iff for any

nonzero vector x in Rn, there exists an i ∈ In such that xi(Ax)i > 0. It is well-known

that A is a P-matrix if and only if the linear complementarity problem (q, A) has

a unique solution for all q ∈ Rn. Xiu and Zhang [1] also gave the necessary and

sufficient conditions of P-matrices. A good review of P-matrices and Q-matrices can

be found in the books by Berman and Plemmons [2], and Cottle, Pang and Stone [3].

Q-matrices and P(P0)-matrices have a long history and wide applications in

mathematical sciences. Pang [4] showed that each semi-monotone R0-matrix is a Q-

matrix. Pang [5] gave a class of Q-matrices which includes N-matrices and strictly

semi-monotone matrices. Murty [6] showed that a nonnegative matrix is a Q-matrix

if and only if all its diagonal entries are positive. Morris [7] presented two coun-

terexamples of the Q-Matrix conjectures: a matrix is Q-matrix solely by considering

the signs of its subdeterminants. Cottle [8] studied some properties of complete

Q-matrices, a subclass of Q-matrices. Kojima and Saigal [9] studied the number of

solutions to a class of linear complementarity problems. Gowda [10] proved that a

symmetric semi-monotone matrix is a Q-matrix if and only if it is an R0-matrix.

Eaves [11] obtained the equivalent definition of strictly semi-monotone matrices, a

main subclass of Q-matrices.

On the other hand, motivated by the discussion on positive definiteness of mul-

tivariate homogeneous polynomial forms [12-14], in 2005, Qi [15] introduced the

concept of positive (semi-)definite symmetric tensors. In the same time, Qi also in-

troduced eigenvalues, H-eigenvalues, E-eigenvalues and Z-eigenvalues for symmetric

tensors. It was shown that an even order symmetric tensor is positive (semi-)definite

if and only if all of its H-eigenvalues or Z-eigenvalues are positive (nonnegative)

([15, Theorem 5]). Various structured tensors have been studied well, such as, Zhang,

Qi and Zhou [16] and Ding, Qi and Wei [17] for M-tensors, Song and Qi [18] for P-

(P0)tensors and B-(B0)tensors, Qi and Song [19] for positive (semi-)definition of
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B-(B0)tensors, Song and Qi [20] for infinite and finite dimensional Hilbert tensors,

Song and Qi [33] for structure properties and an equivalent definition of (strictly)

copositive tensors, Chen and Qi [22] for Cauchy tensor, Song and Qi [23] for E-

eigenvalues of weakly symmetric nonnegative tensors and so on. Beside automa-

tical control, positive semi-definite tensors have been applied in magnetic resonance

imaging [24-27] and spectral hypergraph theory [28-30]. Recently, Song and Qi [31]

extended the linear complementarity problem to the tensor complementarity prob-

lem, a special class of nonlinear complementarity problems, denoted by TCP(q,A):

finding an x ∈ Rn such that

TCP(q,A) x ≥ 0, q+Axm−1 ≥ 0, and x⊤(q+Axm−1) = 0

or showing that no such vector exists.

Very recently, an n-person noncooperative game was converted by Huang and Qi

[32] to a tensor complementarity problem. Furthermore, they gave the equivalence

between a Nash equilibrium point of the multilinear game and a solution of the

tensor complementarity problem. The equivalence between (strictly) semi-positive

tensors and (strictly) copositive tensors in the case of symmetry was showed by

Song and Qi [33]. The existence and uniqueness of solution to TCP(q,A) with some

special tensors were discussed by Che, Qi, Wei [34]. The boundedness of the solution

set of the TCP(q,A) was studied by Song and Yu [35]. The sparsest solutions to

TCP(q,A) with a Z-tensor and its method to calculate were obtained by Luo, Qi

and Xiu [36]. The equivalent conditions for solution to TCP(q,A) were showed by

Gowda, Luo, Qi and Xiu [37] for a Z-tensor A. The global uniqueness of solution

of TCP(q,A) was considered by Bai, Huang and Wang [38] for a strong P-tensor

A. The solvability of TCP(q,A) was given by Wang, Huang and Bai [39] for a class

of exceptionally regular tensors A. The properties of TCP(q,A) was studied by

Ding, Luo and Qi [40] for a new class of P-tensor A. The nice properties of the

several classes of Q-tensors were presented by Suo and Wang [41]. The properties

and algorithm of the tensor eigenvalue complementarity problem were studied by

Song and Qi [42], Ling, He, Qi [43,44], Chen, Yang, Ye [45], respectively.

The following questions are natural. Can we extend the concept of Q-matrices

to Q-tensors? If this can be done, are those nice properties of Q-matrices still true

for Q-tensors?

In this paper, we introduce the concept of Q-tensors (Q-hypermatrices) and

study some subclasses and nice properties of such tensors.

In Section 2, we extend the concept of Q-matrices to Q-tensors. Serval main

subclasses of Q-matrices also are extended to the corresponding subclasses of Q-

tensors: R-tensors, R0-tensors, semi-positive tensors, strictly semi-positive tensors.



No.3 Y.S. Song, etc., Properties of Tensor Complementarity Problem 311

We give serval examples to verify that the class of R-(R0-)tensors properly contains

strictly semi-positive tensors as a subclass, while the class of P-tensors is a subclass

of strictly semi-positive tensors. Some basic definitions and facts also are given in

this section.

In Section 3, we study some properties of Q-tensors. Firstly, the equivalent

definition of R-tensors is given: a tensor is an R0-tensor if and only if the tensor

complementarity problem (0,A) has not non-zero vector solution and a tensor is an

R-tensor if and only if it is an R0-tensor and the tensor complementarity problem

(e,A) has not non-zero vector solution, where e = (1, 1 · · · , 1)⊤. Subsequently, we

prove that each R-tensor is certainly a Q-tensor and each semi-positive R0-tensor is

an R-tensor. Thus, we show that every P-tensor is a Q-tensor. We will show that a

nonnegative tensor is a Q-tensor if and only if all of its principal diagonal elements

are positive, and so the relationship of several structured sensors are given. It will be

proved that 0 is the unique feasible solution to the tensor complementarity problem

(q,A) for q ≥ 0 if A is a non-negative Q-tensor.

2 Preliminaries

In this section, we define the notation and collect some basic definitions and

facts, which will be used later on.

A real mth order n-dimensional tensor (hypermatrix) A = (ai1···im) is a multi-

array of real entries ai1···im , where ij ∈ In for j ∈ Im. Denote the set of all real mth

order n-dimensional tensors by Tm,n. Then Tm,n is a linear space of dimension nm.

Let A = (ai1···im) ∈ Tm,n. If the entries ai1···im are invariant under any permutation

of their indices, then A is called a symmetric tensor. The zero tensor in Tm,n is

denoted by O. Let A = (ai1···im) ∈ Tm,n and x ∈ Rn. Then Axm−1 is a vector in

Rn with its ith component as

(
Axm−1

)
i
:=

n∑
i2,··· ,im=1

aii2···imxi2 · · ·xim

for i ∈ In. We now give the definition of Q-tensors, which are natural extensions of

Q-matrices.

Definition 2.1 Let A = (ai1···im) ∈ Tm,n. We say that A is a Q-tensor iff the

tensor complementarity problem, denoted by (q,A),

finding an x ∈ Rn such that x ≥ 0, q+Axm−1 ≥ 0, and x⊤(q+Axm−1) = 0,

(2.1)

has a solution for each vector q ∈ Rn.

Definition 2.2 Let A = (ai1···im) ∈ Tm,n. We say that A is
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(i) an R-tensor iff the following system is inconsistent
0 ̸= x ≥ 0, t ≥ 0,(
Axm−1

)
i
+ t = 0 if xi > 0,(

Axm−1
)
j
+ t ≥ 0 if xj = 0;

(2.2)

(ii) an R0-tensor iff system (2.2) is inconsistent for t = 0.

Clearly, Definition 2.2 is a natural extension of the definition of Karamardian’s

class of regular matrices [46].

Definition 2.3 Let A = (ai1···im) ∈ Tm,n. A is said to be

(i) semi-positive iff for each x≥0 and x̸=0, there exists an index k∈In such that

xk > 0 and
(
Axm−1

)
k
≥ 0;

(ii) strictly semi-positive iff for each x ≥ 0 and x ̸= 0, there exists an index

k ∈ In such that

xk > 0 and
(
Axm−1

)
k
> 0;

(iii) a P-tensor (Song and Qi [18]) iff for each x in Rn and x ̸= 0, there exists an

i ∈ In such that

xi
(
Axm−1

)
i
> 0;

(iv) a P0-tensor(Song and Qi [18]) iff for every x in Rn and x ̸= 0, there exists

an i ∈ In such that xi ̸= 0 and

xi
(
Axm−1

)
i
≥ 0.

Clearly, each P0-tensor is certainly semi-positive. The concept of P-(P0-)tensor

is introduced by Song and Qi [18]. Furthermore, Song and Qi [18] studied some nice

properties of such a class of tensors. The definition of (strictly) semi-positive tensor

is a natural extension of the concept of (strictly) semi-positive (or semi-monotone)

matrices [11,47].

It follows from Definitions 2.2 and 2.3 that each P-tensor must be strictly semi-

positive and every strictly semi-positive tensor is certainly both R-tensor and R0-

tensor. Now we give several examples to demonstrate that the above inclusions are

proper.

Example 2.1 Let Â = (ai1···im) ∈ Tm,n and ai1···im = 1 for all i1, i2, · · · , im ∈ In.

Then (
Âxm−1

)
i
= (x1 + x2 + · · ·+ xn)

m−1

for all i ∈ In and hence Â is strictly semi-positive. However, Â is not a P-tensor

(for example, xi
(
Âxm−1

)
i
= 0 for x = (1,−1, 0, · · · , 0)⊤ and all i ∈ In).
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Example 2.2 Let Ã = (ai1i2i3) ∈ T3,2 and a111 = 1, a122 = −1, a211 = −2,

a222 = 1 and all other ai1i2i3 = 0. Then

Ãx2 =

(
x21 − x22

−2x21 + x22

)
.

Clearly, Ã is not strictly semi-positive (for example,
(
Ãx2

)
1
= 0 and

(
Ãx2

)
2
= −1

for x = (1, 1)⊤).

Ã is an R0-tensor. In fact,

(i) if x1 > 0,
(
Ãx2

)
1
= x21 − x22 = 0, then x22 = x21, so x2 > 0, but

(
Ãx2

)
2
=

−2x21 + x22 = −x21 < 0;

(ii) if x2 > 0,
(
Ãx2

)
2
= −2x21 + x22 = 0, then x21 = 1

2x
2
2 > 0, but

(
Ãx2

)
1
=

x21 − x22 = −1
2x

2
2 < 0.

Ã is not an R-tensor. In fact, if x1 > 0,
(
Ãx2

)
1
+ t = x21 − x22 + t = 0, then

x22 = x21+ t > 0, so x2 > 0,
(
Ãx2

)
2
+ t = −2x21+x22+ t = −x21+2t. Take x1 = a > 0,

t = 1
2a

2 and x2 =
√
6
2 a. That is, x = a(1,

√
6
2 )⊤ and t = 1

2a
2 solve system (2.2).

Example 2.3 Let A = (ai1i2i3) ∈ T3,2 and a111 = −1, a122 = 1, a211 = −2,

a222 = 1 and all other ai1i2i3 = 0. Then

Ax2 =

(
−x21 + x22

−2x21 + x22

)
.

Clearly, A is not strictly semi-positive (for example, x = (1, 1)⊤).

A is an R-tensor. In fact,

(i) if x1 > 0,
(
Ax2

)
1
+ t = −x21 + x22 + t = 0, then x22 = x21 − t, but

(
Ax2

)
2
+ t =

−2x21 + x22 + t = −x21 < 0;

(ii) if x2 > 0,
(
Ax2

)
2
+ t = −2x21 + x22 + t = 0, then x21 = 1

2(x
2
2 + t) > 0, but(

Ax2
)
1
+ t = −x21 + x22 + t = 1

2(x
2
2 + t) > 0.

A is an R0-tensor. In fact,

(i) if x1 > 0,
(
Ax2

)
1
= −x21 + x22 = 0, then x22 = x21, so x2 > 0, but

(
Ax2

)
2
=

−2x21 + x22 = −x21 < 0;

(ii) if x2 > 0,
(
Ax2

)
2
= −2x21 + x22 = 0, then x21 = 1

2x
2
2 > 0, but

(
Ax2

)
1
=

−x21 + x22 =
1
2x

2
2 > 0.

Lemma 2.1[2] Let S =
{
x ∈ Rn+1

+ ;
n+1∑
i=1

xi = 1
}
. Assume that F : S → Rn+1 is
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continuous on S. Then there exists an x ∈ S such that

x⊤F (x) ≥ x⊤F (x) for all x ∈ S, (2.3)

(F (x))k = min
i∈In+1

(F (x))i = ω if xk > 0, (2.4)

(F (x))k ≥ ω if xk = 0. (2.5)

Recall that a tensor C ∈ Tm,r is called a principal sub-tensor of a tensor

A = (ai1···im) ∈ Tm,n (1 ≤ r ≤ n) iff there is a set J that composed of r elements in

In such that

C = (ai1···im), for all i1, i2, · · · , im ∈ J.

The concept was first introduced and used in [15] for symmetric tensor. We denote

by AJ
r the principal sub-tensor of a tensor A ∈ Tm,n such that the entries of AJ

r are

indexed by J ⊂ In with |J | = r (1 ≤ r ≤ n), and denote by xJ the r-dimensional

sub-vector of a vector x ∈ Rn, with the components of xJ indexed by J . Note that

for r = 1, the principal sub-tensors are just the diagonal entries.

Definition 2.4 Let A = (ai1···im) ∈ Sm,n. A is said to be

(i) copositive if Axm ≥ 0 for all x ∈ Rn
+;

(ii) strictly copositive if Axm > 0 for all x ∈ Rn
+ \ {0}.

The concept of (strictly) copositive tensors was first introduced by Qi in [48].

Song and Qi [33] showed their equivalent definition and some special structures. The

following lemma is one of the structure conclusions of (strictly) copositive tensors

in [33].

Lemma 2.2[33] Let A = (ai1···im) ∈ Sm,n. Then:

(i) If A is copositive, then aii···i ≥ 0 for all i ∈ In;

(ii) if A is strictly copositive, then aii···i > 0 for all i ∈ In.

Definition 2.5 Given a function F : Rn
+ → Rn, the nonlinear complementarity

problem, denoted by NCP(F ), is to

find a vector x ∈ Rn such that x ≥ 0, F (x) ≥ 0, and x⊤F (x) = 0. (2.6)

It is well known that the nonlinear complementarity problems have been wide-

ly applied to the field of transportation planning, regional science, socio-economic

analysis, energy modeling, and game theory. So over the past decades, the solutions

of nonlinear complementarity problems have been rapidly studied in its theory of

existence, uniqueness and algorithms.

Definition 2.6[49,50] A mapping F : K ⊂ Rn → Rn is said to be
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(i) pseudo-monotone on K if for all vectors x,y ∈ K,

(x− y)⊤F (y) ≥ 0 ⇒ (x− y)⊤F (x) ≥ 0;

(ii) monotone on K if

(F (x)− F (y))⊤(x− y) ≥ 0, for any x, y ∈ K;

(iii) strictly monotone on K if

(F (x)− F (y))⊤(x− y) > 0, for any x, y ∈ K and x ̸= y;

(iv) strongly monotone on K if there exists a constant c > 0 such that

(F (x)− F (y))⊤(x− y) ≥ c∥x− y∥2;

(v) a P0 function on K if for all pairs of distinct vectors x and y in K, there exists

a k ∈ In such that

xk ̸= yk and (xk − yk)(F (x)− F (y))k ≥ 0;

(vi) a P function on K if for all pairs of distinct vectors x and y in K,

max
k∈In

(xk − yk) (F (x)− F (y))k > 0;

(vii) a uniformly P function on K if there exists a constant c > 0 such that for all

pairs of vectors x and y in K,

max
k∈In

(xk − yk) (F (x)− F (y))k ≥ c∥x− y∥2.

It follows from the above definition of the monotonicity and P properties that the

following relations hold (see [49,50] for more details):

strongly monotone ⇒ strictly monotone ⇒ monotone ⇒ pseudo-monotone

⇓ ⇓ ⇓
uniformly P function ⇒ P function ⇒ P0 function

Now we give an example to certify the function deduced by an R-tensor is neither

pseudo-monotone nor a P0 function.

Example 2.4 LetA be an R-tensor defined by Example 2.3 and F (x) = Ax2+q,

where q = (12 ,
1
2)

⊤. Then F is neither pseudo-monotone nor a P0 function. In fact,

F (x) = Ax2 + q =

(
−x21 + x22 +

1
2

−2x21 + x22 +
1
2

)
.

Let x = (1, 0)⊤ and y = (0, 14)
⊤. Then
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x− y =

(
1
−1

4

)
, F (x) =

(
−1

2

−3
2

)
and F (y) =

(
9
16
9
16

)
.

Clearly, we have

(x− y)⊤F (y) = 1× 9

16
− 1

4
× 9

16
> 0.

However,

(x− y)⊤F (x) = −1

2
− 1

4
×
(
− 3

2

)
< 0,

hence F is not pseudo-monotone.

Take x = (1, 1)⊤ and y = (0, 14)
⊤. Then

x− y =

(
1

−1
4

)
, F (x) =

(
1
2

−1
2

)
and F (y) =

(
9
16
9
16

)
.

Clearly, we have

(x1 − y1) (F (x)− F (y))1 = 1×
(1
2
− 9

16

)
< 0

and
(x2 − y2) (F (x)− F (y))2 =

3

4
×
(
− 1

2
− 9

16

)
< 0,

hence F is not a P0 function.

Remark 2.1 Let A ∈ Tm,n and F (x) = Axm−1. Taking y = 0 and x ∈ Rn
+ in

Definition 2(vi), we obtain that A is a P-tensor if F is a P function. So A must be

an R-tensor if F (x) = Axm−1 is a P function. Example 2.1 means that the inverse

implication is not true.

Next we will show our main result: Each R-tensor A is a Q-tensor. That is, the

nonlinear complementarity problem:

finding an x ∈ Rn such that x ≥ 0, F (x) = Axm−1 + q ≥ 0, and x⊤F (x) = 0,

(2.7)

has a solution for each vector q ∈ Rn.

3 Tensor Complementarity Problem and Some Classes
of Structured Tensors

We first give the equivalent definition of R0-tensor (R-tensor) by means of the

tensor complementarity problem.

Theorem 3.1 Let A = (ai1···im) ∈ Tm,n. Then:

(i) A is an R0-tensor if and only if the tensor complementarity problem (0,A)

has a unique solution 0;

(ii) A is an R-tensor if and only if it is an R0-tensor and the tensor complemen-

tarity problem (e,A) has a unique solution 0, where e = (1, 1 · · · , 1)⊤.
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Proof (i) The tensor complementarity problem (0,A) has not non-zero vector

solution if and only if the system
0 ̸= x = (x1, · · · , xn)⊤ ≥ 0,(
Axm−1

)
i
= 0 if xi > 0,(

Axm−1
)
i
≥ 0 if xi = 0

has no solution. So the conclusion is proved.

(ii) It follows from Definition 2.2 that the necessity is obvious (t = 1).

Conversely suppose A is not an R-tensor. Then there exists an x ∈ Rn
+ \ {0}

satisfying the system (2.2). That is, the tensor complementarity problem (te,A) has

non-zero vector solution x for some t ≥ 0. We have t > 0 since A is an R0-tensor.

So the tensor complementarity problem (e,A) has non-zero vector solution
x

m−1
√
t
,

a contradiction. The proof is completed.

Now we give the following result which can be obtained by Theorem 3.1 together

with the main results of Karamardian [51]. For completeness, we give another proof

using the similar proof technique in Berman and Plemmons [2, Theorem 3.6].

Corollary 3.1 Let A = (ai1···im) ∈ Tm,n be an R-tensor. Then A is a Q-tensor.

That is, the tensor complementarity problem (q,A) has a solution for all q ∈ Rn.

Proof Let the mapping F : Rn+1
+ → Rn+1 be defined by

F (y) =

(
Axm−1 + sq+ se

s

)
, (3.1)

where y = (x, s)⊤, x ∈ Rn
+, s ∈ R+ and e = (1, 1, · · · , 1)⊤ ∈ Rn, q ∈ Rn. Obviously,

F : S → Rn+1 is continuous on the set S =
{
x ∈ Rn+1

+ ;
n+1∑
i=1

xi = 1
}
. It follows from

Lemma 2.1 that there exists a ỹ = (x̃, s̃)⊤ ∈ S such that

y⊤F (ỹ) ≥ ỹ⊤F (ỹ) for all y ∈ S, (3.2)

(F (ỹ))k = min
i∈In+1

(F (ỹ))i = ω if ỹk > 0, (3.3)

(F (ỹ))k ≥ ω if ỹk = 0. (3.4)

We claim s̃ > 0. Suppose s̃ = 0. Then the fact that ỹn+1 = s̃ = 0 together with

(3.4) implies that

ω ≤ (F (ỹ))n+1 = s̃ = 0,

and so for k ∈ In,
(F (ỹ))k =

(
Ax̃m−1

)
k
= ω if x̃k > 0,

(F (ỹ))k =
(
Ax̃m−1

)
k
≥ ω if x̃k = 0.
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That is, for t = −ω ≥ 0, (
Ax̃m−1

)
k
+ t = 0 if x̃k > 0,(

Ax̃m−1
)
k
+ t ≥ 0 if x̃k = 0.

This obtains a contradiction with the definition of R-tensor A, which completes the

proof of the claim.

Now we show that the tensor complementarity problem (q,A) has a solution for

all q ∈ Rn. In fact, if q ≥ 0, clearly z = 0 and w = Azm−1 + q = q solve (q,A).

Next we consider q ∈ Rn/Rn
+. It follows from (3.1), (3.3) and (3.4) that

(F (ỹ))n+1 = min
i∈In+1

(F (ỹ))i = ω = s̃ = ỹn+1 > 0,

and for i ∈ In,

(F (ỹ))i =
(
Ax̃m−1

)
i
+ s̃qi + s̃ = ω = s̃ if ỹi = x̃i > 0,

(F (ỹ))i =
(
Ax̃m−1

)
i
+ s̃qi + s̃ ≥ ω = s̃ if ỹi = x̃i = 0.

Thus for z = x̃

s̃
1

m−1
and i ∈ In, we have(

Azm−1
)
i
+ qi = 0 if zi > 0,(

Azm−1
)
i
+ qi ≥ 0 if zi = 0,

hence,

z ≥ 0, w = q+Azm−1 ≥ 0, and z⊤w = 0.

So we obtain a feasible solution (z,w) of the tensor complementarity problem (q,A),

and then A is a Q-tensor. The theorem is proved.

Corollary 3.2 Each strictly semi-positive tensor is a Q-tensor, and so is P-

tensor. That is, the tensor complementarity problem (q,A) has a solution for all

q ∈ Rn if A is either a P-tensor or a strictly semi-positive tensor.

Theorem 3.2 Let an R0-tensor A(∈ Tm,n) be semi-positive. Then A is an

R-tensor, and hence A is a Q-tensor.

Proof Suppose that A is not an R-tensor. Let system (2.2) have a solution

x ≥ 0 and x ̸= 0. If t = 0, this contradicts the assumption that A is an R0-tensor.

So we must have t > 0. Then for i ∈ In, we have(
Axm−1

)
i
+ t = 0 if xi > 0,

hence, (
Axm−1

)
i
= −t < 0 if xi > 0,

which contradicts the assumption that A is semi-positive. So A is an R-tensor, and

hence A is a Q-tensor by Corollary 3.1. The proof is completed.
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So, the following relationship of several classes of structured sensors hold:

Semi-positive R0-Tensors

⇓
P-Tensors ⇒ Strictly Semi-positive Tensors ⇒ R-Tensors ⇒ Q-Tensors

⇓ ⇓ ⇓
P0-Tensors ⇒ Semi-positive Tensors R0-Tensors

Theorem 3.3 Let A = (ai1···im) ∈ Tm,n with A ≥ O (ai1···im ≥ 0 for all

i1 · · · im ∈ In). Then A is a Q-tensor if and only if aii···i > 0 for all i ∈ In.

Proof Sufficiency If aii···i > 0 for all i ∈ In and A ≥ O, then it follows from

Definition 2.3 of the strictly semi-positive tensor that A is strictly semi-positive,

hence A is a Q-tensor by Corollary 3.2.

Necessity Suppose that there exists a k ∈ In such that akk···k = 0. Let q =

(q1, · · · , qn)⊤ with qk < 0 and qi > 0 for all i ∈ In and i ̸= k. Since A is a Q-tensor,

the tensor complementarity problem (q,A) has at least one solution. Let z be a

feasible solution to (q,A). Then

z ≥ 0, w = Azm−1 + q ≥ 0 and z⊤w = 0. (3.5)

Clearly, z ̸= 0. Since z ≥ 0 and A ≥ 0 together with qi > 0 for each i ∈ In with

i ̸= k, we must have

wi =
(
Azm−1

)
i
+ qi =

n∑
i2,··· ,im=1

aii2···imzi2 · · · zim + qi > 0 for i ̸= k and i ∈ In.

It follows from (3.5) that

zi = 0 for i ̸= k and i ∈ In.

Thus, we have

wk =
(
Azm−1

)
k
+ qk =

n∑
i2,··· ,im=1

aki2···imzi2 · · · zim + qk = akk···kz
m−1
k + qk = qk < 0,

since akk···k = 0. This contradicts the fact that w ≥ 0, so aii···i > 0 for all i ∈ In.

The proof is completed.

Corollary 3.3 Let a non-negative tensor A be a Q-tensor. Then all principal

sub-tensors of A are also Q-tensors.

Corollary 3.4 Let a non-negative tensor A be a Q-tensor. Then 0 is the unique

feasible solution to the tensor complementarity problem (q,A) for q ≥ 0.

Proof It follows from Theorem 3.3 that aii···i > 0 for all i ∈ In, and hence
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(
Axm−1

)
i
=

n∑
i2,··· ,im=1

aii2···imxi1 · · ·xim =aii···ix
m−1
i +

∑
(i2,··· ,im) ̸=(i,··· ,i)

aii2···imxi1 · · ·xim .

If x = (x1, · · · , xn)⊤ is any feasible solution to the tensor complementarity prob-

lem (q,A), then we have

x ≥ 0, w = Axm−1 + q ≥ 0 and x⊤w = Axm + x⊤q = 0. (3.6)

Suppose xi > 0 for some i ∈ In. Then

wi =
(
Axm−1

)
i
+ qi = aii···ix

m−1
i +

∑
(i2,··· ,im) ̸=(i,··· ,i)

aii2···imxi1 · · ·xim + qi > 0,

hence, x⊤w = xiwi +
∑
k ̸=i

xkwk > 0. This contradicts the fact that x⊤w = 0.

Consequently, xi = 0 for all i ∈ In. The proof is completed.

Following the above conclusions together with Theorems 3.2 and 3.4 of Song and

Qi [33], the following results are obvious.

Corollary 3.5 Let A be a non-negative tensor. Then the following are equiva-

lent:

(i) A is a Q-tensor;

(ii) A is a R-tensor;

(iii) A is a strictly semi-positive tensor;

(iv) aii···i > 0 for all i ∈ In.

Corollary 3.6 Let A be a symmetric and non-negative tensor. Then the fol-

lowing are equivalent:

(i) A is a Q-tensor;

(ii) A is a R-tensor;

(iii) A is a strictly semi-positive tensor;

(iv) A is a strictly copositive tensor;

(v) aii···i > 0 for all i ∈ In.

Question 3.1 Let A be a Q-tensor.

• Whether or not a nonzero solution x to Tensor Complementarity Problem

(0,A) contains at least two nonzero components if A is a semi-positive Q-

tensor;

• Whether or not there are some relation between the eigenvalue of (symmetric)

Q-tensor and the feasible solution of Tensor Complementarity Problem (q,A).
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