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Abstract

Based on the idea of local polynomial double-smoother, we propose an
estimator of a conditional cumulative distribution function with dependent
and left-truncated data. It is assumed that the observations form a stationary
α-mixing sequence. Asymptotic normality of the estimator is established. The
finite sample behavior of the estimator is investigated via simulations.
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1 Introduction
Estimation of a conditional distribution function has many important applica-

tions. For example, estimation of a conditional quantile function can be obtained

by inverting the estimation of the conditional distribution function. In addition,

as [4] pointed out, conditional distribution estimation can be applied to construct

prediction intervals for the next value in stationary time series.

The nonparametric estimation of a conditional distribution function has received

much attention. For instance, in the independent and identically distributed (i.i.d.)

case, [4] proposed two single-smoothing estimators (smoothing the covariates only)

of the conditional distribution function, while [15,5,6] considered the local linear

double-smoothing (smoothing the dependent variable and covariates) estimator of

the conditional distribution function. [14] considered the local polynomial double-

smoothing estimator of the conditional distribution function in time series data,
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which extended the results of [15]. As [14] pointed out, compared with the single-

smoothing estimator, the double-smoothing estimator not only appears closer to a

distribution function, but also has more flexibility to reduce the mean-squared error

when the optimal bandwidths are selected. In these papers, it is supposed that data

is complete.

In some fields as reliability and survival analysis, the lifetime variables may not be

completely observable, right-censored or left-truncated data are often encountered.

In this paper we consider the case where the response variable is left-truncated. Left-

truncated data often occurs in astronomy, epidemiology, biometry and economics,

see [11,12]. For left-truncated data, [7] first proposed the kernel estimator (that

is, the local constant double-smoothing estimator) of the conditional distribution

function in the i.i.d. setting, and then obtained the kernel estimator of conditional

quantile function by inversion. [7] also investigated asymptotic properties of two

kernel estimators. [13] extended the results of [7] to dependent and left-truncated

data. [8] proposed the local polynomial single-smoothing estimator of the conditional

distribution function with dependent and left-truncated data and established the

asymptotic normality of the estimator. Recently, in view of the advantage of local

linear fitting and double-smoothing, [16] extended the local linear double-smoothing

method of [15] to the left-truncated model. They proposed the local linear double-

smoothing estimator of the conditional distribution function in the i.i.d. setting, and

then obtained the local linear double-smoothing estimator of conditional quantile

function by inversion. And they obtained the asymptotic normality of two local

linear double-smoothing estimators.

Since the scenario with dependent data is an important one in lots of applications

with survival data (see [1,13]), in this paper, we will consider the local polynomial

double-smoothing (LPDS) estimator of the conditional distribution function in the

dependent and left-truncated data, which extends the LPDS estimator of the con-

ditional distribution function in [14] to the left-truncation model. Furthermore, the

LPDS estimator here not only smooths the local polynomial single-smoothing esti-

mator of [8], but also generalizes the local linear double-smoothing estimator of [16]

in the i.i.d. setting to the LPDS estimator in the dependent data case. When left-

truncated data is stationary and α-mixing, we establish the asymptotic normality

of the LPDS estimator.

The rest of the paper is organized as follows. Section 2 recalls the random left-

truncation model and introduces the LPDS estimator of the conditional distribution

function. The asymptotic normality of the estimator is stated in Section 3, while the

proof is given in Section 5. Finite-sample performance of the estimator is investigated

by a simulation study in Section 4.
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2 Estimator

2.1 Background for the left-truncation model
Let {(Xi, Yi, Ti), 1 ≤ i ≤ N} be a sequence of random vectors from (X,Y, T ),

where T is the truncation random variable and T is independent of (X,Y ). In

the random left-truncation model, for i = 1, · · · , N , the observation of (Xi, Yi) is

interfered by the variable Ti such that all three quantities Xi, Yi and Ti are observed

if Yi ≥ Ti, and nothing is observable if Yi < Ti. As a consequence of left-truncation,

only a part of the original (or potential) sample {(Xi, Yi, Ti), 1 ≤ i ≤ N} can be

observed. Such data are often encountered in many application fields including

astronomy, medical studies and economics (see e.g., [11,12]). It should be noted

that n, the size of the actually observed sample, is known but random, and N , the

potential sample size, is unknown. Obviously, n and N satisfy that n ≤ N .

Since statistical inference is based on the observed n-sample, in what follows, the

actually observed n-sample is denoted again by {(Xi, Yi, Ti), 1 ≤ i ≤ n}, which will

not lead to possible confusion. In addition, the results will not be stated with respect

to the probability measure P (related to the N -sample) but will be stated with

respect to the conditional probability measure P (related to the actually observed

n-sample). In the same manner, E and E denote the respective expectation operators

related to P and P respectively. Let θ = P (Y ≥ T ), then θ is the probability that

Y can be observed. It is obvious that θ = 0 implies that no data can be observed,

thus we suppose throughout the paper that θ > 0.

In the following, the actually observed sample {(Xi, Yi, Ti), 1 ≤ i ≤ n} is assumed

to be a stationary and α-mixing sequence. Recall that a sequence {Zi, i ≥ 1} is called
to be an α-mixing (or strongly mixing) sequence, if the α-mixing coefficient

α(n) := sup
k≥1

sup
A∈Fk

1 ,B∈F+∞
k+n

|P (AB)− P (A)P (B)|

converges to 0 as n → ∞, where Fk
j = σ{Zi, j ≤ i ≤ k} denotes the σ-algebra

generated by Zj , Zj+1,· · · , Zk. There are many practical applications on the α-

mixing condition, and more details can be found in [1,2].

Let F (·) and G(·) be continuous distribution functions of Y and T , respectively.

For any distribution function D(·), we use aD = inf{y : D(y) > 0} and bD = sup{y :

D(y) < 1} to denote its lower and upper endpoints, respectively. [11] pointed out

that F and G can be completely estimated only when

aG ≤ aF , bG ≤ bF , and

∫ ∞

aF

dF

G
< ∞. (2.1)

And the well-known nonparametric maximum likelihood estimators of F and G,

which were proposed by [9], are given by
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Fn(y) = 1−
∏

i:Yi≤y

[nCn(Yi)− 1

nCn(Yi)

]
and Gn(t) =

∏
i:Ti>t

[nCn(Ti)− 1

nCn(Ti)

]
, (2.2)

respectively, where Cn(s) = n−1
n∑

i=1
I(Ti ≤ s ≤ Yi).

Let f(·, ·) be the joint density function of (X,Y ). In what follows, the star

notation (∗) relates to any characteristic function of the actually observed data.

Due to the independence of T and (X,Y ), [10] derived the relationship between

f(·, ·) and f∗(·, ·), which is expressed as

f(x, y) = θG−1(y)f∗(x, y) for y > aG. (2.3)

2.2 Estimator
Let F (·|x) and f(·|x) be the conditional distribution and density functions of Y

given X = x, respectively. It is of interest to estimate the conditional distribution

function F (·|x)
By conditions (A1)-(A3) in Section 3 and (2.3), we have

θE
{
Khn(X − x)G−1(Y )

[
Λ̃
(y − Y

bn

)
− F (y|x)

]}
=

θ

hn

∫
R

∫
R
K
(s− x

hn

)
G−1(t)

(
Λ̃
(y − t

bn

)
− F (y|x)

)
f∗(s, t)dsdt

=

∫
R

∫
R
K(u)

[
Λ̃
(y − t

bn

)
− F (y|x)

]
f(x+ hnu, t)dudt

=

∫
R
K(u)fX(x+ hnu)du

∫
R

(∫ y−t
bn

−∞
Λ(v)dv − F (y|x)

)
f(t|x+ hnu)dt

=

∫
R
K(u)fX(x+ hnu)du

∫
R
Λ(v)

(
F (y − bnv|x+ hnu)− F (y|x)

)
dv

→ 0, (2.4)

where K(·) is a kernel function defined on R, and Λ̃(·) is a distribution function

defined on R, whose density function is Λ(·), Khn(·) = K(·/hn)/hn, 0 < hn →
0 and 0 < bn → 0 as n → ∞.

Assume that F (y|s) (with respect to s) has (p + 1)th continuous derivative at

point x. In a small neighborhood of x, one can approximate F (y|s) locally by a

pth-order polynomial

F (y|s) ≈ F (y|x) + · · ·+ F (p,0)(y|x)(s− x)p

p!
≡ β0 + · · ·+ βp(s− x)p,

where F (i,j)(y|x) = ∂(i+j)

∂xi∂yj
F (y|x). It follows from (2.4) that F (y|x) can be viewed

as an asymptotic nonparametric regression of Λ̃
(y−Yi

bn

)
on Xi and G−1(Yi). Then,

based on the idea of the local polynomial fitting, the LPDS estimator of F (y|x) is
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defined as F̂LPDS(y|x) = β̂0, where

β̂=(β̂0, · · · , β̂p)T= argmin
βj , j=0,··· ,p

n∑
i=1

(
Λ̃
(y − Yi

bn

)
−

p∑
j=0

βj(Xi−x)j

)2

Khn(Xi−x)G−1
n (Yi).

(2.5)

As mentioned above, the estimator F̂LPDS(y|x) is the smoothing estimator of the

local polynomial estimation of E[I(Y ≤ y)|X = x] in [8]. By calculation similar to

that of [8] and taking the same notations to those of [8], β̂ can be expressed as

β̂ = H−1
n S−1

n tn,

where Hn = diag(1, hn, · · · , hpn), and

Sn =

sn,0 · · · sn,p
...

. . .
...

sn,p · · · sn,2p

 , tn =

tn,0
...

tn,p

 ,

with

sn,j =
θ

n

n∑
i=1

(Xi − x

hn

)j
Khn(Xi − x)G−1

n (Yi),

tn,j =
θ

n

n∑
i=1

(Xi − x

hn

)j
Khn(Xi − x)G−1

n (Yi)Λ̃
(y − Yi

bn

)
.

Indeed, β̂ can also be expressed as

β̂ =
θ

nhn

n∑
i=1

H−1
n S−1

n

(
1,

Xi − x

hn
, · · · ,

(Xi − x

hn

)p)τ
K
(Xi − x

hn

)
G−1

n (Yi)Λ̃
(y − Yi

bn

)
,

(2.6)

then F̂LPDS(y|x) (that is, β̂0) can be written as

F̂LPDS(y|x) =
n∑

i=1

Wpi(x)Λ̃
(y − Yi

bn

)
, (2.7)

where

Wpi(x) =
θ

nhn
eT1 H

−1
n S−1

n

(
1,

Xi − x

hn
, · · · ,

(Xi − x

hn

)p)T
K
(Xi − x

hn

)
G−1

n (Yi),

1 ≤ i ≤ n, (2.8)

and e1 is a (p+1)-dimension vector (1, 0, · · · , 0)T. It follows from the expression of

Wpi(x) that Wpi(x) is independent of θ. In addition, it can be shown that

n∑
i=1

Wpi(x) = 1. (2.9)
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Hence, that is, F̂LPDS(y|x) is a weighted local average of the Λ̃
(y−Yi

bn

)
values.

Remark 2.1 By (2.5), when p = 0, F̂LPDS(y|x) is the kernel estimator proposed

by [7] with

W0i(x) =

[
n∑

j=1

G−1
n (Yj)K

(Xj − x

hn

)]−1

G−1
n (Yi)K

(Xi − x

hn

)
.

When p = 1, F̂LPDS(y|x) is the local linear double-smoothing estimator proposed

by [16] with

W1i(x) =
[
sn,0sn,2 − s2n,1

]−1 θ

n
G−1

n (Yi)Khn(Xi − x)
[
sn,2 −

(Xi − x

hn

)
sn,1

]
.

3 Assumptions and the Main Result

In what follows, we will use U(x) to denote a neighborhood of x, and use C to

denote some finite and positive constant, which may change from place to place. Set

σ2(x, y) = E[(I(Y ≤ y)− F (y|X))2G−1(Y )|X = x].

To establish the asymptotic result, we need the following conditions.

(A0) aG < aF and bG < bF .

(A1) K(·) and Λ(·) are both bounded density functions with bounded support

on R;
(A2) The density function of X, fX(·) is continuous at x with fX(x) > 0.

(A3) (i) For any y ∈ R, F (·|·) has continuous second partial derivatives in U(x)×
U(y).

(ii) For any y ∈ R, F (y|·) has continuous (p+ 1)th derivative in U(x).

(A4) For any y ∈ R, the function σ2(·, y) is continuous at x with σ2(x, y) > 0.

(A5) For any integer j ≥ 1, the joint density function f∗
j (·, ·) of (X1, Xj+1) w.r.t

P exists on R× R and satisfies f∗
j (s1, s2) ≤ C for (s1, s2) ∈ U(x)× U(x).

(A6) Assume that nhn → ∞, and for the sequence α(n) satisfies, there exist

positive integers qn such that qn = o((nhn)
1/2) and lim

n→∞
(n(hn)

−1)1/2α(qn) = 0.

Remark 3.1 As [16] pointed out, condition aG < aF in (A0) implies that

G(Y ) ≥ G(aF ) > 0 almost surely, which ensures that Gn(Yi) ̸= 0 almost surely, then

the resulting estimators can be well defined for enough large n. Conditions (A1)-

(A3) are often used in the literature. Condition (A4) is an adaption of condition (A5)

of [8] by replacing ϕ(Y ) with I(Y ≤ y) here. Condition (A5) is mainly technical.

Condition (A6) means that the convergence rates of α-mixing coefficients relate to

the selection of bandwidth. In fact, as [8] pointed out, condition (A6) can be easily

satisfied. For instance, assume that α(n) = n−γ for some γ, and take hn = Cn−η



370 ANN. OF APPL. MATH. Vol.33

for some 0 < η < 1, qn = (nhn/ log n)
1/2, then condition (A6) holds when γ >

(1 + η)/(1 − η). In addition, if the α-mixing coefficients decay exponentially, then

condition (A6) is redundant.

Take the same notations to those of [8] again. Set

uj =

∫
R
tjK(t)dt, vj =

∫
R
tjK2(t)dt, Λ̃2 =

∫
t2Λ(t)dt

and

S =

u0 · · · up
...

. . .
...

up · · · u2p

 , V =

v0 · · · vp
...

. . .
...

vp · · · v2p

 , U =

 up+1
...

u2p+1

 .

Theorem 3.1 Let α(n) = O(n−γ) for some γ > 3. Suppose that conditions

(A0)-(A6) hold, then√
nhn

{
F̂LPDS(y|x)− F (y|x)−B(x, y)

} D−→ N(0, VF (x, y)), (3.1)

where

B(x, y) =
1

2
Λ̃2F

(0,2)(y|x)b2n+oP (b
2
n)+

1

(p+ 1)!
F (p+1,0)(y|x)eT1 S−1Uhp+1

n +oP (h
p+1
n ),

VF (x, y) = θf−1
X (x)σ2(x, y)eT1 S

−1VS−1e1.

Remark 3.2 Theorem 3.1 extends Lemma 1 of [14] to the left-truncation

model. If there exists no left-truncation, then θ = 1 and G(y) = 1 for y > aF . In

this situation, σ2(x, y) = F (y|x)[1−F (y|x)], thus Theorem 3.1 reduces to Lemma 1

of [14]. As [14] pointed out, higher-order local polynomial double-smoothing reduces

the bias in the Xi direction but not the one in the Yi direction.

Remark 3.3 When p = 1, the estimator F̂LPDS(y|x) reduces to the local linear

double-smoothing (LLDS) estimator F̂LLDS(y|x) proposed by [16]. In this case,

VF (x, y) = θf−1
X (x)σ2(x, y)

∫
R
K2(t)dt

and

B(x, y) =
1

2
u2F

(2,0)(y|x)h2n +
1

2
Λ̃2F

(0,2)(y|x)b2n + oP (h
2
n + b2n).

It follows from Theorem 3.1 that√
nhn

{
F̂LLDS(y|x)−F (y|x)−1

2
u2F

(2,0)(y|x)h2n−
1

2
Λ̃2F

(0,2)(y|x)b2n+oP (h
2
n+b2n)

}
D−→N

(
0, θf−1

X (x)σ2(x, y)

∫
R
K2(t)dt

)
, (3.2)

which extends Theorem 3.1 of [16] to the dependent case.
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4 Simulation

In this section, a simulation is carried out to investigate the finite sample perfor-

mance of the LPDS estimator of the conditional distribution function. In particular,

we compare the mean squared errors (MSE) of the local constant single-smoothing

(LCSS) estimator, the local constant double-smoothing (LCDS) estimator, the local

linear single-smoothing (LLSS) estimator and the the local linear double-smoothing

(LLDS) estimator of the conditional distribution function. First we get an α-mixing

observed sequence {(Xi, Yi, Ti)| 1 ≤ i ≤ n} after left-truncation. We generate the

sequence by the same approach used by [13], and details are as follows:

(1) Generate the observed sample (X1, Y1, T1).

Step 1 Simulate e1 ∼ N(0, 1) and take X1 = e1;

Step 2 Simulate ϵ1 ∼ N(0, 1), and take Y1 = 2.5 + sin(2X1) + 2 exp{−16X2
1} +

0.5ϵ1;

Step 3 Simulate T1 ∼ N(µ, 1), where µ is adapted to get different values of θ. If

Y1 < T1, reject the datum (X1, Y1, T1) and return to Step 2, continue like this until

Y1 ≥ T1. Thus, we can get the observed sample (X1, Y1, T1).

(2) Generate the observed sample (X2, Y2, T2).

Step 4 Simulate e2 ∼ N(0, 1) and take X2 = 0.5X1 + e2, which is an AR(1)

model;

Step 5 Simulate ϵ2 ∼ N(0, 1), and take Y2 = 2.5 + sin(2X2) + 2 exp{−16X2
2} +

0.5ϵ2;

Step 6 Simulate T2 ∼ N(µ, 1). If Y2 < T2, reject the datum (X2, Y2, T2) and

return to Step 5, continue like this until Y2 ≥ T2. Thus, we can get the observed

sample (X2, Y2, T2).

(3) Repeating the process (2), we can generate the observed data {(Xi, Yi, Ti), i =

1, · · · , n}.
It follows from the heredity of the α-mixing property and the fact that the

(Xi) is α-mixing that the (Xi, Yi, Ti) is α-mixing. And the (Xi, Yi, Ti) satisfies that

Xi = 0.5Xi−1 + ei, Yi = 2.5 + sin(2Xi) + 2 exp{−16X2
i }+ 0.5ϵi and Yi ≥ Ti, where

ei ∼ N(0, 1), ϵi ∼ N(0, 1), Ti ∼ N(µ, 1), and µ is adapted to get different values of

θ. Then the conditional density function is

f(y|x) = 1

0.5
√
2π

exp
{
− (y − 2.5− sin(2x)− 2 exp{−16x2})2

2× 0.52

}
,

and the conditional distribution function is

F (y|x) =
∫ y

−∞
f(s|x)ds = Φ

(y − 2.5− sin(2x)− 2 exp{−16x2}
0.5

)
,

where Φ(·) is the distribution function of N(0, 1).
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For any estimator F̂ (·|·) among F̂LCSS(·|·), F̂LCDS(·|·), F̂LLSS(·|·) and F̂LLDS(·|·),
the MSE of F̂ (·|·) is given by

MSE =
1

n

n∑
i=1

[
F̂ (Yi|Xi)− F (Yi|Xi)

]2
.

In the following simulation, we take K(s) = Λ(s) = 3
4(1− s2)I(|s| ≤ 1). The band-

widths hn and bn will be selected by the data-driven least-square cross-validation

method proposed by [17]. That is, hn and bn can be determined by minimizing the

following criterion:

CV (hn, bn) =
1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

[
I(Yi ≤ Yj)− F̂−i(Yj |Xi)

]2
,

where F̂−i(Yj |Xi) is the leave-one-out estimator of F (Yj |Xi), which can be obtained

by using the data points {(Xk, Yk, Tk) : 1 ≤ k ≤ n, k ̸= i} to compute F̂ (Yj |Xi).

For different values of the percentage of truncated data: θ ≈ 30%, 60% and

90%, we generate the observed data {(Xi, Yi, Ti), i = 1, · · · , n} with the sample size

n = 100 and 200, respectively. The simulation results are reported in Table 1. The

quantity in Table 1 is the average MSE based on 500 replications.

Table 1: The average MSE of F̂LCSS(·|·), F̂LCDS(·|·), F̂LLSS(·|·) and F̂LLDS(·|·).

θ(%) n F̂LCSS(·|·), F̂LCDS(·|·) F̂LLSS(·|·) F̂LLDS(·|·)

30 100 0.7253 0.6905 0.6832 0.6548

200 0.6357 0.6258 0.6081 0.5802

60 100 0.6719 0.6569 0.6411 0.6204

200 0.5721 0.5503 0.5477 0.5226

90 100 0.5814 0.5601 0.5487 0.5275

200 0.4736 0.4511 0.4432 0.4206

Table 1 shows that: (i) In all cases, the LLDS estimator outperforms the LCSS,
LCDS and LLSS estimators. In each case, the local linear estimation performs
better than the local constant estimation, and the double-smoothing estimation
performs better than the single-smoothing estimation. (ii) The MSE decrease as n
or θ increases. It is just as we expect, since the sampling information becomes more
when n or θ increases.

5 Proof of the Main Result
Lemma 5.1(Davydov’s lemma) Suppose that X and Y are random variables

such that E|X|p < ∞, E|Y |q < ∞, where p, q > 1, p−1 + q−1 < 1. Then
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|EXY − EXEY |

≤ 8(E|X|p)1/p(E|X|q)1/q
(

sup
A∈σ(X),B∈σ(Y )

|P (AB)− P (A)P (B)|
)1−(p−1+q−1)

.

Lemma 5.2[8] Suppose that α(n) = O(n−γ) for some γ > 3. Then under (A0)
we have sup

y≥aF

|Gn(y)−G(y)| = Op(n
−1/2).

Lemma 5.3 Suppose that conditions (A1) and (A3)(i) hold. If |Xi−x| ≤ Chn,
then

E
[
Λ̃
(y − Yi

bn

)∣∣∣Xi

]
= F (y|Xi) +

1

2
Λ̃2F

(0,2)(y|Xi)b
2
n + o(b2n), (5.1)

E
[
Λ̃2
(y − Yi

bn

)∣∣∣Xi

]
= F (y|Xi)− 2

∫
R
tΛ̃(t)Λ(t)dtF (0,1)(y|Xi)bn +O(b2n), (5.2)

E
[
Λ̃
(y − Yi

bn

)
I(Yi≤y)

∣∣∣Xi

]
= F (y|Xi)−bnF

(0,1)(y|Xi)

∫ +∞

0
tΛ̃(t)dt+O(b2n). (5.3)

(5.1) and (5.2) follow from Lemma A.5 of [6], and (5.3) can be easily shown by
the similar proof approach used in Lemma A.5 of [6].

Lemma 5.4 Under the conditions of Theorem 3.1, we have√
nhn

{
n∑

i=1

Wpi(x)I(Yi≤y)−F (y|x)− 1

(p+1)!
F (p+1,0)(y|x)eT1 S−1Uhp+1

n +oP (h
p+1
n )

}
D−→ N(0, VF (x, y)).

By taking Φ(Y ) = I(Y ≤ y) and comparing the conditions of Lemma 5.4 with
the conditions of Theorem 3.2 of [8], Lemma 5.4 follows from Theorem 3.2 of [8].

Now consider the proof of Theorem 3.1, which is similar to that of Lemma 1 of
[14].

Proof of Theorem 3.1 It follows from (2.7) that√
nhn

(
F̂LPDS(y|x)− F (y|x)

)
=
√
nhn

[
n∑

i=1

Wpi(x)Λ̃
(y − Yi

bn

)
− F (y|x)

]

=
√
nhn

n∑
i=1

Wpi(x)
[
Λ̃
(y − Yi

bn

)
− I(Yi ≤ y)

]
+
√

nhn

[
n∑

i=1

Wpi(x)I(Yi ≤ y)− F (y|x)

]
:=
√
nhnAn +

√
nhnBn. (5.4)

From (5.4) and Lemma 5.4, Theorem 3.1 follows if we can prove that

An =
1

2
b2nF

(0,2)(y|x)Λ̃2 + o(b2n) + oP

( 1√
nhn

)
+OP (n

−1/2). (5.5)
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It follows from Lemma 5.1 of [8] that

Sn
P−→ fX(x)S,

then Wpi(x) can be written as

Wpi(x) = [1 + oP (1)]f
−1
X (x)

θ

nhn
G−1

n (Yi)K
∗
(Xi − x

hn

)
, 1 ≤ i ≤ n, (5.6)

where K∗(u) = eT1 S
−1(1, u, · · · , up)TK(u) and the oP (1) part does not depend on

u. It follows from [3, p.237-238] that the function K∗(·) satisfies∫
R
K∗(u)du = 1 and

∫
R
[K∗(u)]2du = eT1 S

−1VS−1e1. (5.7)

Then, An can be written as

An = [1 + oP (1)]f
−1
X (x)

θ

nhn

n∑
i=1

G−1
n (Yi)K

∗
(Xi − x

hn

)[
Λ̃
(y − Yi

bn

)
− I(Yi ≤ y)

]
:= [1 + op(1)]f

−1
X (x)Qn. (5.8)

From (5.8), (5.5) holds if we can prove that

Qn =
1

2
fX(x)Λ̃2F

(0,2)(y|x)b2n + o(b2n) + oP

( 1√
nhn

)
+OP (n

−1/2). (5.9)

Note that,

Qn =
θ

nhn

n∑
i=1

G−1(Yi)K
∗
(Xi − x

hn

)[
Λ̃
(y − Yi

bn

)
− I(Yi ≤ y)

]
+

θ

nhn

n∑
i=1

(
G−1

n (Yi)−G−1(Yi)
)
K∗
(Xi − x

hn

)[
Λ̃
(y − Yi

bn

)
− I(Yi ≤ y)

]
:= Q1n +Q2n. (5.10)

First we consider the order of Q2n. It follows from (A0) and Lemma 5.2 that

|Q2n| ≤
sup
y≥aF

|Gn(y)−G(y)|

G(aF )− sup
y≥aF

|Gn(y)−G(y)|
θ

nhn

n∑
i=1

G−1(Yi)K
∗
(Xi − x

hn

)

= Op(n
−1/2)

θ

nhn

n∑
i=1

G−1(Yi)K
∗
(Xi − x

hn

)
. (5.11)

By (2.3), (A1), (A2) and the expression of the function K∗(·),
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E

[
θ

nhn

n∑
i=1

G−1(Yi)K
∗
(Xi − x

hn

)]
=

1

hn

∫
R

∫
R
K∗
(s− x

hn

)
f(s, t)dsdt

=

∫
R
K∗(u)fX(x+ uhn)dv = O(1),

which implies that

θ

nhn

n∑
i=1

G−1(Yi)K
∗
(Xi − x

hn

)
= OP (1).

Again by (5.11), we have

Q2n = OP (n
−1/2). (5.12)

From (5.9), (5.10) and (5.12), (5.9) holds if one can prove that

E[Q1n] =
1

2
fX(x)Λ̃2F

(0,2)(y|x)b2n + o(b2n), (5.13)

V ar[Q1n] = o
( 1

nhn

)
. (5.14)

Let

Zi =
θ

hn
G−1(Yi)K

∗
(Xi − x

hn

)[
Λ̃
(y − Yi

bn

)
− I(Yi ≤ y)

]
, 1 ≤ i ≤ n.

Then

Q1n =
1

n

n∑
i=1

Zi.

By stationarity of {Xi, Yi},

E[Q1n] = E[Z1], (5.15)

V ar[Q1n] =
1

n
V ar(Z1) +

2

n

n−1∑
k=1

(
1− k

n

)
Cov(Z1, Zk+1). (5.16)

To calculate E[Z1]. It follows from (2.3), (5.1), (A2), (A3)(i) , (A0), and (5.7) that

E[Z1] =
1

hn

∫
R

∫
R
K∗
(s− x

hn

)[
Λ̃
(y − t

bn

)
− I(t ≤ y)

]
f(s, t)dsdt

= E
{ 1

hn
K∗
(X1 − x

hn

)[
Λ̃
(y − Y1

bn

)
− I(Y1 ≤ y)

]}
= E

{ 1

hn
K∗
(X1 − x

hn

)
E
[
Λ̃
(y − Y1

bn

)
− I(Y1 ≤ y)

∣∣∣X1

]}
= E

{ 1

hn
K∗
(X1 − x

hn

)[1
2
Λ̃2F

(0,2)(y|X1)b
2
n + o(b2n)

]}
=

1

2
b2nΛ̃2

∫
R
K∗(t)F (0,2)(y|x+hnt)fX(x+hnt)dt+o(b2n)

∫
R
K∗(t)fX(x+hnt)dt

=
1

2
fX(x)Λ̃2F

(0,2)(y|x)b2n + o(b2n). (5.17)
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Then (5.13) follows from (5.15) and (5.17).
To calculate V ar(Z1) and Cov(Z1, Zk+1), from (5.17), (2.3), (A0), (5.2), (5.3),

(5.7) and (A2),

V ar(Z1) = E[Z2
1 ] +O(b4n)

= E
{
θG−1(Y1)

1

h2n
K∗2

(X1 − x

hn

)[
Λ̃
(y − Y1

bn

)
− I(Y1 ≤ y)

]2}
+O(b4n)

≤ θG−1(aF )E
{ 1

h2n
K∗2

(X1−x

hn

)
E
[(

Λ̃
(y−Y1

bn

)
−I(Y1≤y)

)2∣∣∣X1

]}
+O(b4n)

= θG−1(aF )E
[ 1

h2n
K∗2

(X1 − x

hn

)
O(bn)

]
+O(b4n)

=
O(bn)

hn

∫
R
K∗2(t)fX(x+ hnt)dt+O(b4n)

= O
( bn
hn

)
. (5.18)

By (A0), (A2) and (A5),

|Cov(Z1, Zk+1)| ≤ E|Z1Zk+1|+ (E|Z1|)2

= E
[ θ2
h2n

G−1(Y1)G
−1(Yk+1)

∣∣∣K∗
(X1 − x

hn

)∣∣∣∣∣∣K∗
(Xk+1 − x

hn

)∣∣∣
·
∣∣∣Λ̃(y − Y1

bn

)
− I(Y1 ≤ y)

∣∣∣∣∣∣Λ̃(y − Yk+1

bn

)
− I(Yk+1 ≤ y)

∣∣∣]
+E2

[ θ

hn
G−1(Y1)

∣∣∣K∗
(X1 − x

hn

)∣∣∣∣∣∣Λ̃(y − Y1
bn

)
− I(Y1 ≤ y)

∣∣∣]
≤ 4θ2

G2(aF )
E
[ 1

h2n

∣∣∣K∗
(X1 − x

hn

)∣∣∣∣∣∣K∗
(Xk+1 − x

hn

)∣∣∣]
+4E2

[ θ

hn
G−1(Y1)

∣∣∣K∗
(X1 − x

hn

)∣∣∣]
= 4θ2G−2(aF )

∫
R

∫
R
|K∗(u)||K∗(v)|f∗

k (x+ hnu, x+ hnv)dudv

+4
[ ∫

R
|K∗(u)|fX(x+ hnu)du

]2
= O(1). (5.19)

On the other hand, from (2.3), (A0), (A1) and (A2),

E|Z1|2γ = Eθ2γ−1G1−2γ(Y1)h
−2γ
n

∣∣∣K∗
(X1 − x

hn

)[
Λ̃
(y − Y1

bn

)
− I(Y1 ≤ y)

]∣∣∣2γ
≤ θ2γ−1G1−2γ(aF )h

−2γ
n

∫
R

∣∣∣K∗
(s− x

hn

)[
Λ̃
(y − t

bn

)
− I(t ≤ y)

]∣∣∣2γf(s, t)dsdt
≤ 22γθ2γ−1G1−2γ(aF )h

−2γ
n

∫
R

∣∣∣K∗
(s− x

hn

)∣∣∣2γfX(s)ds
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= 22γθ2γ−1G1−2γ(aF )h
1−2γ
n

∫
R

∣∣∣K∗(u)
∣∣∣2γfX(x+ hnu)du

= O(h1−2γ
n ),

then it follows from Lemma 5.1 and α(k) = O(k−γ) that

|Cov(Z1, Zk+1)| ≤ C[α(k)]
1− 1

γ (E|Z1|2γ)
1
γ ≤ Ck−γ+1h

1
γ
−2

n . (5.20)

Let dn = [h
−(1−1/γ)/η
n ] for 1− 1

γ < η < γ − 2. By (5.19) and (5.20),

hn

n−1∑
k=1

|Cov(Z1, Zk+1)| = O(1) +

(
dn∑
k=1

+

n−1∑
k=dn+1

)
min

{
hn, k

−γ+1h
−1+ 1

γ
n

}
= O(1)

(
dnhn + h

−1+ 1
γ

n

∞∑
k=dn+1

k−γ+1

)

≤ O(1)(dnhn + d−γ+2
n h

−1+ 1
γ

n ) −→ 0. (5.21)

Then (5.14) follows from (5.16), (5.18) and (5.21). The proof is completed.
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