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Abstract

In this paper, we investigated an impulsive predator-prey model with mu-
tual interference and Crowley-Martin response function. By the comparison
theorem and the analysis technique of [12,14], sufficient conditions for the per-
manence of the impulsive model are obtained, which generalizes one of main
results of [4].
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1 Introduction

In 1989, Crowley and Martin [1] proposed a functional response which can ac-

commodate interference among predators, for high predator density and handling

or searching of prey by predator individual. The per capita feeding rate in this

formulation can be written as follows:

φ(x1, x2) =
cx1

1 + ex1 + fx2 + efx1x2
,

where c, e, f can be interpreted as the effects of capture rate, handing time, the

magnitude of interference among predators respectively, on the feeding rate. All
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the coefficients c, e, f are positive constants. We can easily obtain that φ(x1, x2) is

positively correlated with x1 and varies inversely with respect to x2.

The following autonomous predator-prey system with Crowley-Martin response

functional was proposed and studied:

ẋ1(t) = x1(t)
(
a1 − b1x1(t)−

c1x2(t)

d+ ex1(t) + fx2(t) + gx1(t)x2(t)

)
,

ẋ2(t) = x2(t)
(
− a2 +

c2x1(t)

d+ ex1(t) + fx2(t) + gx1(t)x2(t)

)
,

(1.1)

in [2], where the local stability of the equilibria, global asymptotic stability of the

positive equilibrium and permanence were carried out in system (1.1). [3] discussed

a predator-prey model with Crowley-Martin functional response and density depen-

dent predator:

ẋ1(t) = x1(t)
(
a1 − b1x1(t)−

c1x2
d+ ex1(t) + fx2(t) + gx1(t)x2(t)

)
,

ẋ2(t) = x2(t)
(
− a2 − b2x2(t) +

c2x1(t)

d+ ex1(t) + fx2(t) + gx1(t)x2(t)

)
.

(1.2)

They considered the permanence, non-permanence, local asymptotic stability be-

havior of various equilibrium points and global asymptotic stability of positive equi-

librium to understand the dynamics of both delayed and non-delayed model systems.

On account of the fluctuation in many biological or environmental parameters

as time goes on. And the prey has the tendency to leave each other when they meet,

which interferes with predators capture effects. Recently, Tripathi [4] considered and

explored the almost periodic solution and global attractivity of the following two

dimensional non-autonomous, density dependent predator-prey model with mutual

interference and Crowley-Martin response function:

ẋ1(t) = x1(t)
(
a1(t)− b1(t)x1(t)−

c1(t)x
β
2 (t)

d(t) + e(t)x1(t) + f(t)x2(t) + g(t)x1(t)x2(t)

)
,

ẋ2(t) = x2(t)
(
− a2(t)− b2(t)x2(t) +

c2(t)x1(t)x
β−1
2 (t)

d(t) + e(t)x1(t) + f(t)x2(t) + g(t)x1(t)x2(t)

)
,

(1.3)

However, the ecosystem is often deeply perturbed by nature and human exploit ac-

tivities such as drought, fire, flooding deforestation, hunting, harvesting, breeding

and so forth. For the sake of accurately describing the real-world phenomena, im-

pulsive differential equations may be a better candidate than ordinary differential

equations or difference equations. Motivated by these facts, we propose the follow-

ing impulsive predator-prey model with mutual interference and Crowley-Martin
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response function:

ẋ1(t) = x1(t)
(
a1(t)− b1(t)x1(t)−

c1(t)x
β
2 (t)

d(t) + e(t)x1(t) + f(t)x2(t) + g(t)x1(t)x2(t)

)
,

ẋ2(t) = x2(t)
(
− a2(t)− b2(t)x2(t) +

c2(t)x1(t)x
β−1
2 (t)

d(t) + e(t)x1(t) + f(t)x2(t) + g(t)x1(t)x2(t)

)
,

x1(t
+
k ) = h1kx1(tk), x2(t

+
k ) = h2kx2(tk), k = 1, 2, · · · .

(1.4)

The objective of this paper is to analyze the permanence property of system

(1.4) by utilizing the comparison theorem and developing the analysis technique

of [12,14].

This paper is organized as follows: In Section 2, we introduce the assumptions

and preliminary lemmas. In Section 3, we give some conditions for the permanence

of system (1.4). In Section 4, we present numerical simulations to illustrate our

main results.

2 Preliminaries
In this section, we shall state two lemmas and some assumptions which will

be useful for proving our main results. Functions ai(t), bi(t), ci(t) (i = 1, 2) and

d(t), e(t), f(t), g(t) are continuous and bounded above and below by positive con-

stants; for a continuous function y(t), let yL and yM denote inf
t∈(−∞,+∞)

y(t) and

sup
t∈(−∞,+∞)

y(t), respectively. For impulsive perturbations hik, let hikL and hikM

denote inf
k∈Z

hik and sup
k∈Z

hik, respectively. For the k-th impulse points tk, denote

0 < inf
k∈Z

t1k = inf
k∈Z

(tk+1 − tk) = θ ≤ sup
k∈Z

t1k = η.

Lemma 1[2] Assume that aθ+lnhkL > 0, then for any positive solution x(t) of

the following autonomous Logistic system

ẋ(t) = x(t)(a− bx(t)),

x(t+k ) = hkx(tk), k = 1, 2, · · · ,

where a and b are positive bounded constants,

m0 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M0,

with

M0 = min

{
aη + lnhkM

bηhkM
,
(aθ + lnhkM )hkM

bθ

}
,
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m0 = min

{
aη + lnhkL

bηhkL
,
(aθ + lnhkL)hkL

bθ

}
.

Consider the following impulsive logistic system

ẋ(t) = x(t)(a− bxβ(t)),

x(t+k ) = hkx(tk), k = 1, 2, · · · ,
(2.1)

where a and b are positive bounded constants.

Lemma 2 Suppose that:

βaθ + lnhβkL > 0. (2.2)

Then for any positive solution x(t) of system (2.1),

m ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤ M,

where

M = min

{(
aη + lnhkM

bηhβkM

) 1
β

,

(
(aθ + lnhkM )hβkM

bθ

) 1
β
}
,

m = min

{(
aη + lnhkL

bηhβkL

) 1
β

,

(
(aθ + lnhkL)h

β
kL

bθ

) 1
β
}
.

Proof Let y(t) = xβ(t), then system (2.1) is transformed into

ẏ(t) = y(t)(βa− βby(t)),

y(t+k ) = hβky(tk), k = 1, 2, · · · .

Note that condition (2.2) implies βaθ + lnhβkL > 0.

According to Lemma 1, we obtain

lim inf
t→+∞

y(t) ≥ min

{
aη + lnhkL

bηhβkL
,
(aθ + lnhkL)h

β
kL

bθ

}
,

and

lim sup
t→+∞

y(t) ≤ min

{
aη + lnhkM

bηhβkM
,
(aθ + lnhkM )hβkM

bθ

}
.

Hence

lim inf
t→+∞

x(t) ≥ min

{(
aη + lnhkL

bηhβkL

) 1
β

,

(
(aθ + lnhkL)h

β
kL

bθ

) 1
β
}

def
= m,

and

lim sup
t→+∞

x(t) ≤ min

{(
aη + lnhkM

bηhβkM

) 1
β

,

(
(aθ + lnhkM )hβkM

bθ

) 1
β
}

def
= M.
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3 Permanence
Theorem 1 Assume that(

a1L − c1MMβ
2

dL

)
θ + lnh1kL > 0, (H1)

(a2M − ξ)θ < lnh2kL < a2Lθ, (H2)

then for any positive solution Y (t) = (x1(t), x2(t))
T of system (1.4),

mi ≤ lim inf
t→+∞

xi(t) ≤ lim sup
t→+∞

xi(t) ≤ Mi, i = 1, 2,

where

M1 = min

{
a1Mη + lnh1kM

b1Lηh1kM
,
(a1Mθ + lnh1kM )h1kM

b1Lθ

}
,

M2 = min

{(
a2Lη − lnh2kL

ληhβ−1
2kL

) 1
β−1

,

(
(a2Lθ − lnh2kL)h

β−1
2kL

λθ

) 1
β−1

}
,

m1 = min

{
(a1L − χ)η + lnh1kL

b1Mηh1kL
,
((a1L − χ)θ + lnh1kL)h1kL

b1Mθ

}
,

m2 = min

{
(−a2M + ξ)η + lnh2kL

b2Mηh2kL
,
((−a2M + ξ)θ + lnh2kL)h2kL

b2Mθ

}
,

with

λ =
c2MM1

dL + eLM1
, χ =

c1MMβ
2

dL
, ξ =

c2Lm1M
β−1
2

dM + eMm1 + fMM2 + gMm1M2
.

Proof By (H2), it is obvious that

a2Lθ − lnh2kL > 0, (3.1)

(−a2M + ξ)θ + lnh2kL > 0. (3.2)

From the first equation of system (1.4), we have

ẋ1(t) ≤ x1(t)(a1M − b1Lx1(t)),

for all t ̸= tk.

Applying the comparison theorem, we can obtain x1(t) ≤ ω(t), where ω(t) is the

maximal solution of the scalar impulsive differential equation

ω̇(t) = ω(t)(a1M − b1Lω(t)),

ω(t+k ) = h1kω(tk), k = 1, 2, · · · .
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From (H1), it is easy to see a1Mθ + lnh1kL > 0. Using Lemma 1, we obtain

lim sup
t→+∞

x1(t) ≤ min

{
a1Mη + lnh1kM

b1Lηh1kM
,
(a1Mθ + lnh1kM )h1kM

b1Lθ

}
def
= M1.

Therefore, for arbitrary ε1 > 0 there exists a positive real number T1 such that

x1(t) < M1 + ε1, (3.3)

for all t > T1.

Consider the transformation z(t) = 1
x2(t)

, and from the second equations of

system (1.4) and (3.3), it is easy to obtain

ż(t) = z(t)

(
a2(t) + b2(t)

1

z(t)
− c2(t)x1(t)z(t)

d(t)z(t) + e(t)x1(t)z(t) + f(t) + g(t)x1(t)
z1−β(t)

)
≥ z(t)

(
a2L − c2M (M1 + ε1)

dL + eL(M1 + ε1)
z1−β(t)

)
,

for all t > T1 and t ̸= tk.

Setting ε1 → 0, in the above expression, we have

ż(t) ≥ z(t)

(
a2L − c2MM1

dL + eLM1
z1−β(t)

)
,

z(t+k ) =
1

h2k
z(tk), k = 1, 2, · · · .

According to the comparison theorem, we can obtain z(t) ≥ µ(t), where µ(t) is any

positive solution of the following system

µ̇(t) = µ(t)

(
a2L − c2MM1

dL + eLM1
µ1−β(t)

)
,

µ(t+k ) =
1

h2k
µ(tk), k = 1, 2, · · · .

Applying Lemma 2 and inequality (3.1), we have

lim inf
t→+∞

z(t)≥ lim inf
t→+∞

µ(t)≥min

{(
a2Lη− lnh2kL

ληhβ−1
2kL

) 1
1−β

,

(
(a2Lθ− lnh2kL)h

β−1
2kL

λθ

) 1
1−β

}
,

here λ = c2MM1
dL+eLM1

, which further gives that

lim sup
t→+∞

x2(t) ≤ min

{(
a2Lη − lnh2kL

ληhβ−1
2kL

) 1
β−1

,

(
(a2Lθ − lnh2kL)h

β−1
2kL

λθ

) 1
β−1

}
def
= M2.

(3.4)
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In view of (3.4), for any ε2 > 0 small enough, there exists a T2 > T1 such that

x2(t) < M2 + ε2, (3.5)

for all t > T2.

Furthermore, from the first equation of system (1.4), we have

ẋ1(t) ≥ x1(t)

(
a1L + b1Mx1(t)−

c1M (M2 + ε2)
β

d1L

)
= x1(t)

[(
a1L − c1M (M2 + ε2)

β

dL

)
+ b1Mx1(t)

]
,

for all t > T2 and t ̸= tk. Setting ε2 → 0 in the above expression, we have

ẋ1(t) ≥ x1(t)
(
(a1L − χ)− b1Mx1(t)

)
,

x1(t
+
k ) = h1kx1(tk), k = 1, 2, · · · ,

where χ =
c1MMβ

2
dL

. From (H1), according to the comparison theorem and Lemma 1,

we obtain

lim inf
t→+∞

x1(t) ≥ min

{
(a1L − χ)η + lnh1kL

b1Mηh1kL
,
((a1L − χ)θ + lnh1kL)h1kL

b1Mθ

}
def
= m1.

(3.6)

Hence, from (3.6), for any ε3 > 0 small enough, there exists a T3 > T2 such that

x1(t) > m1 − ε3, (3.7)

for all t > T3. Using (3.5) and (3.7) in the second equation of system (1.4) one

obtains that

ẋ2(t)≥x2(t)

[(
−a2M+

c2L(m1−ε3)(M2+ε2)
β−1

dM+eM (m1−ε3)+fM (M2+ε2)+gM (m1−ε3)(M2+ε2)

)
−b2Mx2(t)

]
,

for all t > T3 and t ̸= tk.

From the second and forth equation of system (1.4), and by setting ε2, ε3 → 0

in the above expression, we have

ẋ2(t) ≥ x2(t)
(
(−a2M + ξ)− b2Mx2(t)

)
,

x2(t
+
k ) = h2kx2(tk), k = 1, 2, · · · ,

where ξ =
c2Lm1M

β−1
2

dM+eMm1+fMM2+gMm1M2
. According to inequality (3.2) and applying

Lemma 1, the above inequality implies that

lim inf
t→+∞

x2(t) ≥ min

{
(−a2M + ξ)η + lnh2kL

b2Mηh2kL
,
((−a2M + ξ)θ + lnh2kL)h2kL

b2Mθ

}
def
= m2.

The proof is completed.
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Theorem 2 When h1k = h2k = 1 for all t ≥ 0 in system (1.4), system (1.4) is

reduced to (1.3). Suppose that the following inequalities:

a1L >
c1MMβ

2

dL
,

c2Lm1M
β−1
2

dM + eMm1 + fMM2 + gMm1M2
> a2M ,

then system (1.3) is permanent.

That is one of main results in [4].

4 Numeric Simulations
In the following, we give a numerical example to illustrate the feasibilities of our

analytical results.

Example 4.1 Consider system (1.4) with the following coefficients:

h1k = 2.25, h2k = 1.05, β = 0.2, a1(t) = 2.25, b1(t) = 2.2 + 0.01 cos(
√
3t),

c1(t) = 0.005, a2(t) = 0.1667 + 0.0001 sin(
√
4t), b2(t) = 3.8 + 0.01 sin(t),

c2(t) = 1.01, d(t) = 0.54− 0.001 cos(
√
4t), e(t) = 3.38 + 0.001 sin(t),

f(t) = 0.005 + 0.001 cos(
√
2t), g(t) = 0.01 + 0.001 sin(t).

It is obvious that

M1 = min

{
a1Mη + lnh1kM

b1Lηh1kM
,
(a1Mθ + lnh1kM )h1kM

b1Lθ

}
=

2.25 + ln 2.25

2.19× 2.25
≈ 0.6212,

λ =
c2MM1

dL + eLM1
=

1.01× 0.6212

0.539 + 3.379× 0.6212
≈ 0.2378,

M2 = min

{(
a2Lη − lnh2kL

ληhβ−1
2kL

) 1
β−1

,

(
(a2Lθ − lnh2kL)h

β−1
2kL

λθ

) 1
β−1

}

=

(
0.1666− ln 1.05

0.2378× 1.05−0.8

)− 1
0.8

≈ 2.2914,

χ =
c1MMβ

2

dL
=

0.005× 2.29140.2

0.539
≈ 0.0109,

m1 = min

{
(a1L − χ)η + lnh1kL

b1Mηh1kL
,
((a1L − χ)θ + lnh1kL)h1kL

b1Mθ

}
=

2.25− 0.0109 + ln 2.25

2.21× 2.25
≈ 0.6134,

ξ =
c2Lm1M

β−1
2

dM + eMm1 + fMM2 + gMm1M2

=
1.01× 0.6134× 2.2914−0.8

0.541+3.381×0.6134+0.006×2.2914+0.011×0.6134×2.2914
≈0.1207,
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m2 = min

{
(−a2M + ξ)η + lnh2kL

b2Mηh2kL
,
((−a2M + ξ)θ + lnh2kL)h2kL

b2Mθ

}
=

−0.1668 + 0.1207 + ln 1.05

3.81× 1.05
≈ 0.0007.

And so,(
a1L − c1MMβ

2

dL

)
θ + lnh1kL =

(
2.25− 0.005× 2.29140.2

0.539

)
+ ln 2.25 ≈ 3.0500 > 0,

(a2M − ξ)θ = (0.1668− 0.1207)× 1 = 0.0461 < lnh2kL

= ln 1.05 ≈ 0.0488 < a2Lθ = 0.1666.

All the conditions of Theorem 1 hold, then it follows from Theorem 1 that system

(1.4) is permanent. Figures 1 and 2 support this results.
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Fiugue 1: Dynamic behavior of prey x1 in Figure 2: Dynamic behavior of predator x2

system (1.4) with the initial in system (1.4) with the initial

points (1, 0.25), (2.0.22) and points (1, 0.25), (2, 0.22) and

(3, 0.205). (3, 0.205).

5 Discussion
Tripathi [4] considered the non-autonomous, density dependent predator-prey

model with mutual interference and Crowley-Martin response function, the author
probed into the system which admits a unique almost periodic solution. In this
paper, we first generalize system (1.3) to the impulsive case, then under assump-
tions (H1) and (H2), by utilizing the theory of differential impulsive inequality and
applying the analysis technique of He [14], the system is also permanent.

We would like to point out here that in this paper we do not obtain the results
on the extinction, global attractivity of the system, the existence and uniqueness of
positive periodic solutions, bifurcation and dynamical complexity and so forth. We
leave this for future work.
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