Ann. of Appl. Math.
33:4(2017),379-390

PERMANENCE OF AN IMPULSIVE
PREDATOR-PREY SYSTEM WITH MUTUAL
INTERFERENCE AND CROWLEY-MARTIN

RESPONSE FUNCTION*

Qiaoxia Lin?
(College of Math. and Computer Sciences, Fuzhou University,
Fuzhou 350116, Fujian, PR China)

Abstract

In this paper, we investigated an impulsive predator-prey model with mu-
tual interference and Crowley-Martin response function. By the comparison
theorem and the analysis technique of [12,14], sufficient conditions for the per-
manence of the impulsive model are obtained, which generalizes one of main
results of [4].
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1 Introduction

In 1989, Crowley and Martin [1] proposed a functional response which can ac-
commodate interference among predators, for high predator density and handling
or searching of prey by predator individual. The per capita feeding rate in this
formulation can be written as follows:

(21, 22) -
T1,x9) =
P 2 1+exi + fog +efaizy’

where ¢, e, f can be interpreted as the effects of capture rate, handing time, the
magnitude of interference among predators respectively, on the feeding rate. All
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the coefficients c, e, f are positive constants. We can easily obtain that ¢(z1,z9) is
positively correlated with x; and varies inversely with respect to xs.

The following autonomous predator-prey system with Crowley-Martin response
functional was proposed and studied:

. B c1xa(t)
#1(0) = o1(1) (o1 = b () — ex1(f) + fa(t) + gxl(t)xz(t))’ 1)
Cg&?l(t) '

d+ ex1(t) + fxa(t) + g1 (t)xa(t) )’

(1) ::L‘g(t)<—a2—|—

in [2], where the local stability of the equilibria, global asymptotic stability of the
positive equilibrium and permanence were carried out in system (1.1). [3] discussed
a predator-prey model with Crowley-Martin functional response and density depen-
dent predator:

x'l(t) = 1’1(75) (Cll — blﬂ?l(t) - d+ exl(t) + fx;(f) + g1 (t)l‘z(t))’

(1.2)

' B ngl(t)
Ta(t) = xz(t)( —ag — baxa(t) + d+exi(t) + fra(t) + gxl(t)a:g(t))'

They considered the permanence, non-permanence, local asymptotic stability be-
havior of various equilibrium points and global asymptotic stability of positive equi-
librium to understand the dynamics of both delayed and non-delayed model systems.

On account of the fluctuation in many biological or environmental parameters
as time goes on. And the prey has the tendency to leave each other when they meet,
which interferes with predators capture effects. Recently, Tripathi [4] considered and
explored the almost periodic solution and global attractivity of the following two
dimensional non-autonomous, density dependent predator-prey model with mutual
interference and Crowley-Martin response function:

e ()75 (1) )
(t) + ()1 (t) + f()z2(t) + g(t) 21 (t)22(t) )
i ca(t)as ()75 (1)
#a(0) = 228~ 02 = 020+ G+ 0000+ gm0
(1.3)
However, the ecosystem is often deeply perturbed by nature and human exploit ac-

in(t) = o (t) (aa(t) ~ bu(Daa() - 5

tivities such as drought, fire, flooding deforestation, hunting, harvesting, breeding
and so forth. For the sake of accurately describing the real-world phenomena, im-
pulsive differential equations may be a better candidate than ordinary differential
equations or difference equations. Motivated by these facts, we propose the follow-
ing impulsive predator-prey model with mutual interference and Crowley-Martin
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response function:

o e ()75 ()
@1(t) = 21(t) <a1(t) = bi(t)za(t) — d(t) + e(t)z1(t) + f(t)z2(t) + g(t)x (t)m(t))’

. ez (s (1)
a(t) = 22(0)( ~ a2(t) = w0020 + Fr S T F el + SRR

r1(t)) = hwzi(te),  22(t) = hopza(ty), k=1,2,--

(1.4)

The objective of this paper is to analyze the permanence property of system
(1.4) by utilizing the comparison theorem and developing the analysis technique
of [12,14].

This paper is organized as follows: In Section 2, we introduce the assumptions
and preliminary lemmas. In Section 3, we give some conditions for the permanence
of system (1.4). In Section 4, we present numerical simulations to illustrate our
main results.

2 Preliminaries

In this section, we shall state two lemmas and some assumptions which will
be useful for proving our main results. Functions a;(t),b;(t),c;i(t) (i = 1,2) and
d(t),e(t), f(t),g(t) are continuous and bounded above and below by positive con-

stants; for a continuous function y(t), let y; and yys denote inf  y(t) and
te(—o0,+00

sup  y(t), respectively. For impulsive perturbations hg, let hjxr and hgps
te(—o0,+00)
denote 1nf hii and sup h;g, respectively. For the k-th impulse points t;, denote
keZ
O<1nft:1nft —t1) =0 <suptl =n.
kez * keZ( h ) B keg B

Lemma 12 Assume that a@ +1n hyz, > 0, then for any positive solution x(t) of
the following autonomous Logistic system

#(t) = x(t)(a — bx(t)),
x(tlj) = hklt(tk), k= 1,2, ety

where a and b are positive bounded constants,

mo < liminf z(¢) < limsup z(t) < My,
t—+00 t—+o0

with

My = min{an—i- In hpg (a@ +lnhkM)hkM}’

b?]hkM ’ bo
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an + In hgp, (a9 + In hkL)hkL
b?]hkL ’ bo '

Consider the following impulsive logistic system

i(t) = 2(t)(a — baP (t)),

mo = min{

2.1
where a and b are positive bounded constants.
Lemma 2 Suppose that:
Bab + bl > 0. (2.2)

Then for any positive solution x(t) of system (2.1),

< lim1 <1 <
m < ltlgl_&g z(t) < limsupz(t) < M,

t——+o00
where ) )
M — min { an + h;hkM> 5’ ((a@ + lnbf;kM)th> ﬁ}7
bnh
, {<an+1nhkL>é ((ae+1nhkL)h§L>}a}
m = min 5 , o )
bnhy

Proof Let y(t) = 2%(t), then system (2.1) is transformed into
y(t) = y(t)(Ba — Bby(t)),

Note that condition (2.2) implies Saf + In th > 0.
According to Lemma 1, we obtain

{an +1Inhg, (ab +1n hkL)hfL }

liminf y(¢) > min

t—+00 bnth ’ b6
and 5
| 0 +1nhpy)h
lim sup y(¢) gmin{a”+ I;h’“M, (ab +1n hiar) kM}.
t—+o00 bnhkM bo
Hence
1 1
5 /(a0 +Inh)h2 N7 e
lim inf z(t) > min{(an+lr;hkL> 7((@ 1o ) kL) }d:f m,
t—+o0 bnhy,, bo
and

1 1
] B 0+ 1nhya )b, \ 7
limsupx(t)ﬁmin{<an+ I;h’“M> ,<(a T In i) ’“M) }défM.
t—+o00 bnhkM bo
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3 Permanence

Theorem 1 Assume that

M
<a1L - 61M>9 +Inhypr >0, (Hy)
dr,
((IQM — 6)9 <In hgkL < CLQLH, (HQ)

then for any positive solution Y (t) = (x1(t), z2(t))T of system (1.4),

m; < liminfz;(¢) <limsupx;(t) < M;, i=1,2,
t—+o0

t—+o0
where
{G1M77 +Inhigar (@i +1Inhygar) bk }
biznhikn b6 ’
1 _ _1
{ <a2L77 In hsz) A1 <(Q2L<9 —In hsz)hgkLl> p-1 }
My = min , )
/\”hsz A0
min { aip, —x)n+Inhigr ((aip —x)0 +Inhign)hikr }
bivmhikr ’ b0 ’
{ —aonr + )0+ Inhorr, ((—agn +€)0 + Inhogr ) hokr }
= min , ,
bannhakr banr6
with
N con My Y= C1MM25 - CZLmlMgﬁ_l
dr + e My’ dr, dy + enrma + farMa + gyma Mo

Proof By (Hj), it is obvious that
asr,0 —In hopr, > 0, (3.1)
(—agnr +&)0 + In hogr, > 0. (3.2)
From the first equation of system (1.4), we have
i1(t) < w1(t) (a1 — bipzi(t)),

for all t # ty.
Applying the comparison theorem, we can obtain z1(t) < w(t), where w(t) is the
maximal solution of the scalar impulsive differential equation

w(t) = w(t)(a1nm — birw(t)),
(t;:) = hlkw(tk) k= 1, 2, LR
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From (H;), it is easy to see a1p/0 + Inhyr > 0. Using Lemma 1, we obtain

lim sup z1 (t) < min
t—-+o00

{ aipn +Inhigyr (@€ +Inhigar) bk } def M,
bitnhigm b0 :

Therefore, for arbitrary e; > 0 there exists a positive real number 77 such that
r1(t) < My + ey, (3.3)

for all t > T;.
Consider the transformation z(t) = ﬁ(t), and from the second equations of
system (1.4) and (3.3), it is easy to obtain

o 1 co(t
Z(t) = z(t) <a2(t) + by (t) Z(t) B d(t)z(t) + e(t).;l(

com (Mg +€1) -
> (1) <a2L e (L 8l)zl 5(75))7

~
8
[y
—~
~
N—
I
—~
~
S~—

~
~—
N
~~
S~—
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~
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~—~
~
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for all t > 17 and t # t.
Setting €1 — 0, in the above expression, we have

. cop M _
i(t) > 2(t) (CLQL - #21 B(t)),

1
Z(t;:) = T%Z(tk)7 k= 1,2, LRI

According to the comparison theorem, we can obtain z(t) > u(t), where p(t) is any
positive solution of the following system

) comMy g
1) = u(t oM ),
) = (0 (a2 — 520000

1

Applying Lemma 2 and inequality (3.1), we have

1 1
-1 5 0 —1n hojr)hb, \ T8
liminf z(¢) > lim inf x(¢) > min { <W> ’ <(a2L 0 hokr )Ry, > }’
t——+o00 t——+o0 /\nhgk_L \0

here A = d?—f-‘é %\1/[1, which further gives that

1 _ _1
azrn — In h2kL> B-1 ((a2L9 —1In hgkL)h§k£> -1 } af

lim sup z2(t) < min { < -
My, AY

t——4o00

(3.4)
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In view of (3.4), for any £2 > 0 small enough, there exists a T, > T such that
z2(t) < Ms + e, (3.5)

for all t > T5.
Furthermore, from the first equation of system (1.4), we have

B ClM(MQ + 82)B>
dir,

= x1(t) Kam - W) + blMxl(t)],

for all t > Ty and t # t;. Setting €2 — 0 in the above expression, we have

@1(t) > w1 (t) ((arr — x) — biuza (1)),
:cl(t,j) :hlkxl(tk)a k= 1,2,"' 5

i1(t) > 21(1) <a1L Sa—

8
where x = %. From (H;), according to the comparison theorem and Lemma 1,

we obtain

liminf 21 (¢) > min
t—4o00

{ (e —x)n+Inhigr, ((a1r — x)0 + Inhigr)hakr et

biymhikr ’ b0 56
3.6

Hence, from (3.6), for any €3 > 0 small enough, there exists a T3 > T5 such that
z1(t) > my — €3, (3.7)

for all ¢ > T3. Using (3.5) and (3.7) in the second equation of system (1.4) one

obtains that

) car,(m1—e3)(Mateq)? ! > ]
) >20 ()|~ aon+ b 1),

faB)ze )[( e dy+enr (mi—ez)+far (Ma+ea)+gar (mi—es) (Ma+ea) 20a2(t)

for all t > T3 and t # t.
From the second and forth equation of system (1.4), and by setting 3,63 — 0

in the above expression, we have

Bo(t) > wo(t) ((—aom + &) — banrza(t)),
:1:2(75;) = hopxa(ty), k=1,2,--+,

Co2r, M1 M2671
dpyrt+enmi+far Ma+gnrma Mo
Lemma 1, the above inequality implies that

{ (—aom + &)+ 1Inhogr, ((—aans +€)0 + Inhogr) hokr } dof
banrnhokr ’ ban 0 '

where £ =

According to inequality (3.2) and applying

liminf z9(t) > min
t—+o00

The proof is completed.
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Theorem 2 When hyy = hor, = 1 for all t > 0 in system (1.4), system (1.4) is
reduced to (1.3). Suppose that the following inequalities:

61]\/[]\4é8 CnglMg_l

aip > ) >
dr, dyr + enma + farMa + gayrma Mo

Q20

then system (1.3) is permanent.
That is one of main results in [4].

4 Numeric Simulations

In the following, we give a numerical example to illustrate the feasibilities of our
analytical results.
Example 4.1 Consider system (1.4) with the following coefficients:

hip =2.25, hop=1.05, B=0.2, ai(t) =225, bi(t)=2.2+ 0.01cos(v3t),
c1(t) = 0.005, as(t) = 0.1667 + 0.0001 sin(V/4t), by(t) = 3.8 4 0.01sin(t),
co(t) = 1.01, d(t) = 0.54 — 0.001 cos(V/4t), e(t) = 3.38 + 0.001sin(t),

f(t) = 0.005 4 0.001 cos(v2t), g(t) = 0.01 + 0.001 sin(t).

It is obvious that

1 1 2.2 In2.2
M, = min a1y + nhlkM’ (a1p0 +Inhagar)hikns _ 22541225 ~ 0.6212,
birnhiknr b11,0 2.19 x 2.25
M 1.01 x 0.6212
A= M X ~ 0.2378,
dr, +er M 0.539 + 3.379 x 0.6212
1 1o 1
. asrn —Inhogr, \ -1 ([ (@20 —In thL)h'gkLl A1
MQ = min W y o
Al
1
0.1666 —In1.05 \ 08
= ~ 2.2914
<0.2378 X 1.05—0-8> ’
M oo. 2.29140-2
_cwMy 0005 x 2201402
dr, 0.539
. { (a1 —x)n+Inhyr ((airp —x)0+1n hlkL)hlkL}
m1 = min )
binvmhikr b0
2.25 —0.0109 +1n2.25
= ~ (0.6134
2.21 x 2.25 0.6134,
-1
g _ CnglMQ
dyr + eyma + farMa + gyymy Mo
1.01 x 0.6134 x 2.2914708
01 x 0.6134 x 9 ~0.1207,

- 0.54143.381 x0.61344-0.006 x 2.29144-0.011 x 0.6134 x 2.2914
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My = min { (—aom +E)n+1Inhokr, ((—a2n +€)0 +1n thL)thL}

baninhakr ’ bons 6
—0.1668 4 0.1207 + In 1.05
= ~ 0.0007.
3.81 x 1.05
And so,
MP 0.005 x 2.29140-2
arp — M2 Vg npy, = (2,25 - s +1n2.25 ~ 3.0500 > 0,

dr 0.539

(aznr — €)0 = (0.1668 — 0.1207) x 1 = 0.0461 < In hoyy,
= In1.05 ~ 0.0488 < ayr6 = 0.1666.

All the conditions of Theorem 1 hold, then it follows from Theorem 1 that system
(1.4) is permanent. Figures 1 and 2 support this results.

4 0.25
asl A 0.245} %2
0.24
al
0.235
257 0.23
<2 >N 0.225
sl 0.22
0.215
1
0.21 H
05 0.205
c)O 16 2‘0 3‘0 4b 5‘0 0.20 1‘0 26 36 4‘0 E;O
Fiugue 1: Dynamic behavior of prey z; in Figure 2: Dynamic behavior of predator x4
system (1.4) with the initial in system (1.4) with the initial
points (1,0.25), (2.0.22) and points (1,0.25), (2,0.22) and
(3,0.205). (3,0.205).

5 Discussion

Tripathi [4] considered the non-autonomous, density dependent predator-prey
model with mutual interference and Crowley-Martin response function, the author
probed into the system which admits a unique almost periodic solution. In this
paper, we first generalize system (1.3) to the impulsive case, then under assump-
tions (Hp) and (Hz), by utilizing the theory of differential impulsive inequality and
applying the analysis technique of He [14], the system is also permanent.

We would like to point out here that in this paper we do not obtain the results
on the extinction, global attractivity of the system, the existence and uniqueness of
positive periodic solutions, bifurcation and dynamical complexity and so forth. We
leave this for future work.
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