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Abstract

In this paper, we investigate the semiclassical limit of the generalized
nonlinear Schrödinger equation for initial data with Sobolev regularity. Al-
so, we will analyze the structure of the fluid dynamical system with quan-
tum effect corresponding to the semiclassical limit of the generalized nonlinear
Schrödinger equation.
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1 Introduction

Hydrodynamics equations with quantum effect describe the hydrodynamical

properties and states of some important physical phenomena such as semiconductor,

superconductor and superflow. This kind of equations have theoretical significance

and practical value. From the semiclassical limit of the nonlinear Schrodinger (NLS)

equation with Plank constant h, we can derive various hydrodynamics equations with

quantum effect when h→ 0.

It is well known that the quantum hydrodynamics equations (QHD) can be

derived based on the moment method, which is analogous to the derivation of the

compressible Euler equation from the Boltzmann equation by taking the zeroth,

first and second order velocity moments of the quantum Boltzmann equation and
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resulting in a hydrodynamical model which then has to be closed in an approximate

way, that is, a reasonable macroscopic approximation for the quantum heat flow

tensor has to be derived by using additional (quantum) physical properties of the

particle ensembles. Moreover, in the case of high electric fields, small mean-free-path

asymptotics have been used to derive QHD-models.

When the time and distance scales are large enough relative to the Plank constant

h, the system will approximately obey the laws of classical, Newtonian mechanics.

That is, quantum mechanics becomes Newtonian mechanics as h→ 0. The asymp-

totics of quantum variables as h → 0 are known as semiclassical expressing this

limiting behavior.

In the semiclassical limit or WKB limit and when ∇x and ∂t scale like ϵ as ϵ→ 0

(ϵ is the scaled Planck constant), the quantum-mechanical pressure becomes negligi-

ble. The isentropic compressible Euler equation can be formally recovered from the

nonlinear Schrödinger equation in this limit. This fact was proven rigorously by Jin,

Levermore and McLaughlin [5, 6] for the one-dimensional integrable case using the

inverse scattering technique and by Grenier [3] for higher dimensions in situations

where no vortices are involved.

Very similar model equations have been used for quite a while in other areas of

theoretical and computational physics, for instance, in superfluidity [11, 12] and in

superconductivity [2].

2 Semiclassical Limit to the Nonlinear Schrödinger
Equation in Short Time Range

In this section, we consider the following nonlinear Schrödinger (NLS) equation

with rapidly oscillating data

ih∂tψh +
h2

2
∆xψh + f(|ψh|2)ψh = 0, (2.1)

ψh(0, x) = a0(x, h) exp
( iS0(x)

h

)
, (2.2)

where f ∈ C∞(R+,R), S0(x) ∈ Hs(Rd) for s large enough. And a0 is a function,

polynomial in h with coefficients of Sobolev regularity in x. h is the Plank constant

and ψh is the wave function.

We will study the semiclassical limit of equation (2.1)-(2.2) and determine the

limiting dynamics of any function of the field ψh as h→ 0.

Remark 2.1 When f(x) = x, equation (2.1) appears in the phenomenological

description of superfluidity of an almost ideal Bose gas [10]. In this case, the squared

modulus of the wave function ψψ̄ is interpreted as the particle number density in the
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condensate state, while the gradient of the phase is proportional to the superfluid

velocity u = ∇argψ. Moreover, the nonlinear Schrödinger equation is very helpful

for the mathematical analysis of the isentropic irrotational QHD-system [4–6,15].

Employing the WKB method, we will look for the solution to (2.1)-(2.2) having

the following form

ψh(x, t) = a(x, t, h) exp
( iS(x, t)

h

)
, (2.3)

where

a(x, t, h) =
+∞∑
j=0

aj(x, t)h
j , (2.4)

and aj(x, t) satisfies certain equations so that we could solve (2.1) locally in time.

Let

v = ∇xS +
h

2iρ
(ā∇xa− a∇xā),

ρ = |a|2,

then (2.1) is transformed to

∂tρ+∇x · (ρv) = 0, (2.5)

∂t v +∇x

( |v|2
2

+ f(ρ)
)
=
h2

2
∇x

( 1
√
ρ
∆x

√
ρ
)
. (2.6)

The above equation is a perturbation of the following isentropic compressible Euler

equation

∂tρ+∇x · (ρv) = 0, (2.7)

∂t v +∇x

( |v|2
2

+ f(ρ)
)
= 0. (2.8)

If f ′ > 0, then equation (2.7)-(2.8) admits a local smooth solution in [0, T ∗] for T ∗

sufficiently small. In fact, we have the following theorems.

Theorem 2.1 Suppose f ∈ C∞(R+,R), f ′ > 0. s > d
2 + 2. Let S0(x) ∈

Hs(Rd) and a0(x, h) be uniformly bounded in Hs(Rd) with respect to x. Then

there exists a constant T > 0 such that equation (2.1)-(2.2) admits a solution

ψh = ah(x, t) exp(iSh(x, t)/h), where ah and Sh are bounded in L∞([0, T ];Hs).

Theorem 2.2 Under the assumption of Theorem 2.1, assume further a0(x, h)
Hs(Rd)−−−−→ a0 as h → 0 and equation (2.7)-(2.8) with initial data (ρ(0, x), v(0, x)) =
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(|a0(x)|2,∇xS
0(x)) admits a solution (ρ, v) ∈ L∞([0, T ],Hs+2). Then, equation

(2.1) admits a formal solution ψh(x, t) = ah(x, t) exp(iSh(x, t)/h) on [0, T ] satisfying

the initial condition (2.2) for h small enough, where ah and Sh are uniformly bounded

in L∞([0, T ],Hs) with respect to h.

Theorem 2.3 Under the assumption of Theorem 2.2, if a0(x, h) admits the

following expansion

a0(x, h) =
N∑
j=0

a0j (x)h
j + hNrN (x, h), (2.9)

where N ∈ N, s− 2N − 2− d/2 > 0 and rN satisfy

lim
h→0

||rN ||Hs(Rd) = 0. (2.10)

Then for interval [0, T ] given in Theorem 2.2, one has as h→ 0

ah(x, t) exp
( iSh(x, t)

h

)
=

N∑
j=0

aj(x, t)h
j exp

( iSh(x, t)
h

)
+ hNrN (x, t), (2.11)

where S and aj are determined by the WKB method and

lim
h→0

||rN ||L∞([0,T ],Hs−2N−2−d/2(Rd)) = 0. (2.12)

Proof of Theorem 2.1 Suppose

ψh(x, t) = ah(x, t) exp
( iSh(x, t)

h

)
. (2.13)

Substituting (2.13) into (2.1) yields

−ih∂tah+∂tShah−
h2

2
∆xah−ih∇xSh ·∇xah−

ih

2
ah∆xSh+

1

2
ah|∇xSh|2+ahf(|ah|2)=0,

which can be rewritten as

∂tSh +
1

2
|∇xSh|2 + f(|ah|2) = 0,

∂tah −
ih

2
∆xah +∇xSh · ∇xah +

1

2
ah∆xSh = 0.

Setting ωh = ∇xSh, we have

∂tωh + ωh · ∇xωh + f ′(|ah|2)∇x|ah|2 = 0,

∂tah + ωh · ∇xah +
1

2
ah∇xωh =

ih

2
∆xah.

Let ah = a1h + ia2h. One obtains
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∂ta
1
h +

d∑
j=1

ωj
h∂ja

1
h +

1

2
a1h

d∑
j=1

∂jω
j
h = −h

2
∆xa

2
h,

∂ta
2
h +

d∑
j=1

ωj
h∂ja

2
h +

1

2
a2h

d∑
j=1

∂jω
j
h =

h

2
∆xa

1
h,

∂tω
i
h + f ′(|a1h|2 + |a2h|2)(2a1h∂ia1h + 2a2h∂ia

2
h) +

d∑
j=1

ωj
h∂jω

i
h = 0,

where ωi
h is the i-th component of ωh. We can rewritten the above equation as

∂tuh +
d∑

i=1

Ai(uh)∂iuh = hL(uh), (2.14)

where

uh =



a1h
a2h
ω1
h

ω2
h
...
ωd
h


, L(uh) =



−1
2∆xa

2
h

1
2∆xa

1
h

0
0
...
0


,

A(u, ξ) =

d∑
j=1

ξjA
j(uh) =



d∑
i=1

ξiω
i
h 0 1

2ξ1a
1
h

1
2ξ2a

1
h ...

0
d∑

i=1
ξiω

i
h

1
2ξ1a

2
h

1
2ξ2a

1
h ...

2ξ1a
1
hf

′ 2ξ1a
2
hf

′
d∑

i=1
ξiω

i
h 0 ...

2ξ2a
1
hf

′ 2ξ2a
2
hf

′ 0
d∑

i=1
ξiω

i
h ...

... ... ... ... ...


.

The matrix A(uh, ξ) can be symmetrized for f ′ > 0 by

S =


1 0 0 ... 0
0 1 0 ... 0
0 0 1

4f
′ ... 0

...
...

...
. . .

...
0 0 0 · · · 1

4f
′

 .

Let uh = (a1h, a
2
h, ωh) be a solution of (2.14). The classical energy estimate

(S∂αxuh, ∂
α
xuh) leads to

∂t(S∂
α
xuh, ∂

α
xuh) = (∂tS∂

α
xuh, ∂

α
xuh) + 2(S∂t∂

α
xuh, ∂

α
xuh)
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with S symmetry.

For the first term, we have

(∂tS∂
α
xuh, ∂

α
xuh) ≤ |∂tS|L∞ ||∂αxuh||2L2 .

Since

|∂tS|L∞ ≤ C(|uh|L∞)|∂tuh|L∞ ,

employing the Sobolev embedding and the equation (2.14) yield

|∂tuh|L∞ ≤ C(||uh||s)||uh||s,

where s > d
2 + 2, ||uh||2s =

∑
|α|≤s

||∂αxuh||2L2 .

For the second term, one easily obtains

(S∂t∂
α
xuh, ∂

α
xuh) = h(SL(∂αxuh), ∂

α
xuh)−

(
S∂αx

(
d∑

i=1

Ai(uh)∂iuh

)
, ∂αxuh

)
. (2.15)

Using integration by parts leads to

h(SL(∂αxuh), ∂
α
xuh) = −h

2

∫
(∂αx a

1
h∆x∂

α
x a

2
h − ∂αx a

2
h∆x∂

α
x a

1
h) = 0.

The second term on the right hand side of (2.15) can be written as(
S∂αx

(
d∑

i=1

Ai(uh)∂iuh

)
, ∂αxuh

)

=

(
S

d∑
i=1

Ai(uh)∂i∂
α
xuh, ∂

α
xuh

)

+

(
S

(
∂αx

(
d∑

i=1

Ai(uh)∂iuh

)
−

d∑
i=1

Ai(uh)∂i∂
α
xuh

)
, ∂αxuh

)
.

Invoking the symmetry of SAi(uh) yields(
S

d∑
i=1

Ai(uh)∂i∂
α
xuh, ∂

α
xuh

)

= −
d∑

i=1

(∂i(SA
i(uh))∂

α
xuh, ∂

α
xuh)−

d∑
i=1

(SAi(uh)∂i∂
α
xuh, ∂

α
xuh),

therefore, one finds
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∣∣∣∣∣
(
S

d∑
i=1

Ai(uh)∂i∂
α
xuh, ∂

α
xuh

)∣∣∣∣∣ ≤ C(|uh|L∞)||∂αxuh||2L2 |∇xuh|L∞

≤ C(|uh|L∞)||∂αxuh||2L2 ||uh||s.

By the commutator estimates, there holds∣∣∣∣∣
(
S

(
∂αx

(
d∑

i=1

Ai(uh)∂iuh

)
−

d∑
i=1

Ai(uh)∂i∂
α
xuh

)
, ∂αxuh

)∣∣∣∣∣ ≤ C(||uh||s)||uh||2s.

Consequently, we find

∂t
∑
|α|≤s

(S∂αxuh, ∂
α
xuh) ≤ C(||uh||s)||uh||2s,

where s > d
2 + 2. We thus complete the proof by use of the Gronwall inequality.

Proof of Theorem 2.2 Assume there exists a solution (ρ, v) ∈ L∞([0, T ],

Hs+2(Rd)) of (2.7)-(2.8) on [0, T ] with s > d
2 + 2 and the initial condition

ρ = | lim
h→0

a0h|2, v = ∇xS
0.

We will prove there exists a solution of (2.14) in a interval [0, T ) with T independent

of h for h small enough and the solution is uniformly bounded in L∞([0, T ];Hs).

The formal limit of equation (2.14) is

∂tu+

d∑
i=1

Ai(u)∂iu = 0, (2.16)

where u = (a1, a2, ω) admits a solution in the maximal interval [0, T ′] with T ′ ≥ T .

Set vh = uh − u, then we find

∂tvh +
d∑

i=1

Ai(u+ vh)∂ivh +
d∑

i=1

(Ai(u+ vh)−Ai(u))∂iu = hL(vh) + hL(u).

The matrix
d∑

i=1
Ai(u+vh)ξi is symmetrizable and we can do similar energy estimates.

The term
d∑

i=1
Ai(u+ vh)∂ivh can be handled by∣∣∣∣∣

(
S

(
∂αx

(
d∑

i=1

Ai(u+ vh)−Ai(u)

)
∂iu

)
, ∂αx vh

)∣∣∣∣∣ ≤ C(||vh||s, ||u||s)||vh||2s.

Note that

(hSL(∂αx vh) + hSL(∂αxu), ∂
α
x vh) = (hL(∂αxu), ∂

α
x vh) ≤ h||u||α+2||vh||α,
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so

∂t
∑
|α|≤s

(S∂αx vh, ∂
α
x vh) ≤ C(||vh||s, ||u||s+2)||vh||2s + h||u||s+2||vh||s,

where s > d
2 + 2. ||vh(t = 0)||s → 0, h→ 0. Therefore

||vh||s ≤ C(h), t ∈ [0, T ],

where C(h) → 0 and h→ 0. We thus complete the proof of Theorem 2.2.

Proof of Theorem 2.3 We prove the theorem in four steps.

1. Zero order approximation

From Theorem 2.2, we know that ah and ωh are uniformly bounded in L∞([0, T ];

Hs(Rd)). Therefore, ∂tah and ∂tωh are bounded in L∞([0, T ];Hs−2(Rd)). We

can extract subsequences of ah and ωh converging to a′0 and ω′
0, respectively in

L∞([0, T ];Hs−2(Rd)) and the limits are the unique solution of

∂tω
′
0 + ω′

0 · ∇xω
′
0 + f ′(|a′0|2)∇x|a′0|2 = 0,

∂ta
′
0 + ω′

0 · ∇xa
′
0 +

1

2
a′0∇xω

′
0 = 0

satisfying a′0 = lim
h→0

a0(h), ω′
0 = ∇S0.

2. First order approximation

Let vh = uh − u, we can prove the following energy estimates

||vh||Hs−2 ≤ hC(||u||L∞([0,T ],Hs)), for any t ≤ T.

Set ṽh = vh/h. Then ṽh is bounded in L∞([0, T ],Hs−2) and ∂tṽh is bounded in

L∞([0, T ],Hs−4). If necessary, we can extract subsequences of ṽh converging strongly

to u′1 in L
∞([0, T ],Hs−4). Taking the limit equation of ṽh, one finds that u

′
1 satisfies

the linear equation:

∂tu
′
1 +

d∑
i=1

Ai(u′0)∂iu
′
1 +

d∑
i=1

(∇Ai(u′0)u
′
1)∂iu

′
0 = L(u′0),

and the initial condition

u′1 = lim
h→0

uh(0)− u′0
h

.

The solution to this problem is unique. In fact, there exists a subsequence of ṽh
converge to u′1.

3. Higher order approximation

Assume the N -th approximation to be
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uh =

N∑
j=0

u′jh
j + o(hN ),

where the function u′j ∈ L∞([0, T ],Hs−2j(Rd)). Set ũh =
N∑
j=0

u′jh
j , vh = uh −

N∑
j=0

u′jh
j , one finds

∂tvh +

d∑
i=1

Ai(ũh + vh)∂ivh −
d∑

i=1

(Ai(ũh)−Ai(ũh + vh))∂iũh = hL(vh) + hN+1BN
h ,

where BN
h is a function of ũh and bounded with respect to h in L∞([0, T ],Hσ) for

σ = s−2N−2. Assume the initial data h−N−1vh(0) is bounded in Hs. Similar to the

energy estimates in the former cases, one can obtain the boundedness of h−N−1vh
in L∞([0, T ],Hσ).

Let ṽh = vh/h
N+1, then we obtain ṽh → u′N+1, h→ 0. u′N+1 can be obtained by

solving the following equation

∂t(ũh + hN+1ωh) +
d∑

i=1

Ai(ũh + hN+1ωh)∂i(ũh + hN+1ωh)− hL(ũh) = 0.

4. WKB expansion

We have expanded the formal solution ah and Sh to any order. To return to the

WKB expansion, one can write the following two formal series

+∞∑
j=0

aj(x, t)h
j exp

( iS(x, t)
h

)
=

(
+∞∑
k=0

a′kh
k

)
exp

(
i

∞∑
k=0

S′
kh

k

)
.

For instance, S = S′
0, a0 = a′0e

iS′
1 , a1 = eiS

′
1(a′1 + iS′

2a
′
0). We thus complete the

proof of Theorem 2.3.

3 Semiclassical Limit to the Derivative Schrödinger
equation

Now, let us consider the following derivative Schrödinger equation (GDNLS)

ihψt +
h2

2
ψxx + ih(f(|ψ|2)ψ)x = 0, (3.1)

ψh(x, 0) = ψh
0 (x) = Ah

0 exp
( i
h
S0(x)

)
, (3.2)

where f ∈ C∞(R+,R), S0 ∈ Hs(R) for s large enough, Ah
0 is a polynomial in h with

coefficients of Sobolev regularity in x. We consider the limit of (3.1)-(3.2) when

h→ 0, for −∞ < x < +∞ and 0 ≤ t ≤ T with T being finite.
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When f(x) = x in equation (3.1), the resulting equation is used to describe the

nonlinear propagation of magnetosonic wave trains parallel to the magnetic field in

a hot or collisionless ideal plasma with dispersion due to Hall currents [7, 13].

Suppose ψ(x, t) = A(x, t)exp
(
i
hS(x, t)

)
, where A and S are real-valued functions

representing the amplitude and the classical action, respectively. Substituting this

to (3.1) leads to

∂tA+
1

2
(ASxx + 2AxSx) + (f(A2)A)x = 0, (3.3)

∂tS +
1

2
(Sx)

2 + f(A2)Sx =
h2

2

Axx

A
. (3.4)

Introducing the new variables ρ = A2 = |ψ|2, u = Sx, we have

∂tρ+ ∂x(ρu+Q(ρ)) = 0, (3.5)

∂tu+ uux + ∂x(f(ρ)u) =
h2

2

∂

∂x

(
∂2x

√
ρ

√
ρ

)
, (3.6)

where

Q(ρ) = 2ρf(ρ)− 1

2
Φ(ρ), Φ′(ρ) = 2f(ρ). (3.7)

Thus, equation (3.5)-(3.6) can be regarded as a perturbation to the following com-

pressible Euler equation

∂tρ+ ∂x(ρu+Q(ρ)) = 0, (3.8)

∂tu+ ∂x

(1
2
u2 + f(ρ)u

)
= 0. (3.9)

Multiplying (3.6) by ρ and using (3.5) lead to

∂tµ+ ∂x(µ(u+ f) + uP ′∂xρ) =
h2

2
∂x(ρ∂

2
x log ρ), (3.10)

where µ = ρu is the momentum and P ′(ρ) = 2ρf ′(ρ) = ρΦ′′(ρ). From (3.5), using

P (ρ) = ρΦ′(ρ)− Φ(ρ), one finds

Φ′(∂tρ+ u∂xP ) + ρΦ′∂xu+Φ′Q′ρx = 0, (3.11)

or

∂tΦ+ ∂x(Φu) + P∂xu+ π′ρx = 0, (3.12)

where

π′ = π′(ρ) = Φ′(ρ)Q′(ρ) = 2f(ρ)(2ρf ′(ρ) + f(ρ)) =
d

dρ
[2ρf2(ρ)].
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Thus, there holds

π(ρ) = 2ρf2(ρ). (3.13)

Adding (3.10) and (3.12) leads to

∂t(µ+Φ) + ∂x((µ+Φ)u) + ∂x(µf + Pu) + ∂xπ =
h2

4
∂x(ρ∂

2
x log ρ).

As in [1], we denote by M = µ+Φ(ρ) the noncanonical momentum. Using Q(ρ) =

2ρf(ρ)− 1
2Φ(ρ), equation (3.5)-(3.6) can be written as

∂tρ+ ∂x(M +Q− Φ) = 0, (3.14)

∂tM + ∂x

[M
ρ
(M + P − Φ+ ρf) +

P

ρ
(ρf − Φ)

]
=
h2

4
∂x(ρ∂

2
x log ρ), (3.15)

and this can be rewritten as the local conservation laws of ρ,M,Φ

∂tρ+ ∂x

(
M + ρΦ′ − 3

2
Φ
)
= 0, (3.16)

∂tM + ∂x

[M
ρ

(
M + ρΦ′ − 3

2
Φ′ − 3

2
Φ +

1

2
(ρΦ′ − Φ)

)]
+∂x

[1
ρ
(ρΦ′ − Φ)

(1
2
ρΦ′ − Φ

)]
=
h2

2
∂x(ρ∂

2
x log ρ). (3.17)

Collecting the above arguments, we obtain the following theorem.

Theorem 3.1 Equation (3.1) is equivalent to the dispersive perturbation of the

quasilinear hyperbolic equation (3.14)-(3.15) or (3.16)-(3.17). The density ρ and the

noncanonical momentumM are the conserved quantities of the GDNLS equation. In

particular, when f(ρ) = ±ργ, Φ(ρ) = ± 2
γ+1ρ

γ+1 andM = µ± 2
γ+1ρ

γ+1, (3.16)-(3.17)

is equivalent to

∂tρ+ ∂x

(
M ± 2γ − 1

γ + 1
ργ+1

)
= 0, (3.18)

∂tM + ∂x

[M
ρ

(
M ± 3γ − 1

γ + 1
ργ+1

)
+

2γ(γ − 1)

(γ + 1)2
ρ2γ+1

]
=
h2

4
∂x(ρ∂

2
x log ρ). (3.19)

In addition, we will prove the following theorem.

Theorem 3.2 Let ∗ be the complex conjugate. The GDNLS equation admits

the following conserved quantities∫ +∞

−∞
ρdx = const. = C1, (3.20)∫ +∞

−∞
ũdx = const. = C2, (3.21)∫ +∞

−∞
M̃dx = const. = C3, (3.22)
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where the fluid dynamical variables ρ, ũ, M̃ can be represented by the wave function

ψ as

ρ = |ψ|2 = |A|2, (3.23)

ũ =
µ̃

ρ
=
ih

2

(ψ∗
x

ψ∗ − ψx

ψ

)
= Sx +

ih

2

(
log

A∗

A

)
x
, (3.24)

M̃ = µ̃+Φ(ρ) =
ih

2
(ψψ∗

x − ψ∗ψx) + Φ(|ψ|2). (3.25)

Proof Obviously, the theorem can be deduced directly by (3.14)-(3.15). Here,

we will derive it from (3.1) and thus we can better understand the relation between

the classical mechanics and the quantum mechanics.

Note that we have the following equality

∂

∂t
(ψψ∗) +

∂

∂x

[ ih
2
(ψψ∗

x − ψ∗ψx)
]
+ [f(ψψ∗) + 2ψψ∗f ′(ψψ∗)]

∂

∂x
(ψψ∗) = 0. (3.26)

Because the third term in (3.26) only depends on ψψ∗ = |ψ|2, we can integrate it

with respect to x to obtain

d

dt

∫ +∞

−∞
ρdx =

d

dt

∫ +∞

−∞
|ψ|2dx = 0. (3.27)

This proves (3.20).

Multiplying (3.1) by ψ∗
x and ψx, respectively, and then adding together, one finds

i(ψtψ
∗
x − ψ∗

tψx) +
h

2

∂

∂x
(ψxψ

∗) + i[(ψψ∗)xf
′(|ψ(x)|2)(ψ∗

xψ − ψxψ
∗)] = 0. (3.28)

Also, one easily deduces

i(ψ∗ψxt − ψψ∗
xt) +

h

2

∂

∂x
((ψψ∗)xx − 3ψxψ

∗
x) + i

∂

∂x
[f(ψ∗ψx − ψψ∗

x)] = 0. (3.29)

Subtracting (3.28) from (3.29), we obtain

∂tµ̃+ ∂x(fµ̃) + 2f ′ρxµ̃µ̃ =
h2

2
∂x[(ψψ

∗)xx − 4ψxψ
∗
x]. (3.30)

Next, note that the following equality

∂tũ+ ∂x

(1
2
ũ2 + fũ

)
=
h2

2
∂x

(∂2x√ρ√
ρ

)
(3.31)

is equivalent to (3.5)-(3.6) with

h2

4

1

|ψ|2
∂x[(ψψ

∗)xx − 4ψxψ
∗
x] =

h2

2
∂x

(∂2x√ρ√
ρ

)
. (3.32)
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Integrating (3.31) yields

d

dt

∫ +∞

−∞
ũdx = 0. (3.33)

Multiplying (3.28) by Φ′(ρ) leads to

∂tΦ+ Φ′∂xµ̃+Φ′(f + ρf ′)ρx = 0. (3.34)

Adding (3.30) and (3.34) and using

∂x(Φ
′µ̃) = Φ′′ρxµ̃+Φ′µ̃x = 2f ′ρxµ̃+Φ′µ̃x, (3.35)

we obtain

∂t(µ̃+Φ) + ∂x[(f +Φ′)µ̃] + Φ′(f + ρf ′)ρx =
h2

2
∂x

(∂2x√ρ√
ρ

)
, (3.36)

which leads to

d

dt

∫ +∞

−∞
M̃dx =

d

dt

∫ +∞

−∞
(µ̃+Φ(ρ))dx = 0. (3.37)

This complete the proof.

For the GDNLS equation

iψh
t +

h

2
ψh
xx + i(f(|ψh|2)ψh)x = 0 (3.38)

with the initial condition

ψh(x, 0) = ψh
0 (x) = A0(x)exp

( i
h
S0(x)

)
, (3.39)

where the amplitude A0(x) is nonnegative, the phase S0(x) is real-valued and smooth

and is independent of h. One can take

ρh(0, x) = |A0(x)|2, Mh(0, x) = |A0(x)|2∂xS0(x) + Φ(|A0(x)|2). (3.40)

We can prove that ψh is a dispersive perturbation with O(h2) error as h→ 0 to

the following deformed Euler equation

∂tρ+ ∂x

(
M + ρΦ′ − 3

2
Φ
)
= 0, (3.41)

∂tM+∂x

[M
ρ

(
M+ρΦ′−3

2
Φ′−3

2
Φ+

1

2
(ρΦ′−Φ)

)]
+∂x

[1
ρ
(ρΦ′−Φ)

(1
2
ρΦ′−Φ

)]
= 0

(3.42)
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with the initial condition

ρ(0, x) = |A0(x)|2, M(0, x) = |A0(x)|2∂xS0(x) + Φ(|A0(x)|2). (3.43)

Consider

f(ρ) = ±ρ, Φ(ρ) = ±ρ2. M = µ± ρ2. (3.44)

Then (3.18)-(3.19) can be transformed to

∂tρ+ ∂x

(
M ± 1

2
ρ2
)
= 0, (3.45)

∂tM + ∂x

[M2

ρ
± ρM

]
=
h2

2
∂x(ρ∂

2
x log ρ). (3.46)

From

−M
2

2ρ2

[
∂tρ+ ∂x

(
M ± ρ2

2

)]
= 0, (3.47)

M

ρ

[
∂tM + ∂x

(M2

ρ
± ρM

)]
=
h2

4

M

ρ
∂x(ρ∂

2
x log ρ), (3.48)

we have

∂t

(M2

2ρ

)
+ ∂x

(M2

2ρ

M

ρ
± M2

2

)
± M2

2ρ
ρx =

h2

2

M

ρ
∂x(ρ∂

2
x log ρ). (3.49)

On the other hand

1

2

[
∂t(ρM) + ∂x

(3M2

2
± ρ2M

)
− M2

ρ
∂xρ
]
=
h2

8
ρ∂x(ρ∂

2
x log ρ), (3.50)

∂t

(h2
8

ρ2x
ρ

)
+
h2

2
∂x

(ρxMx

ρ
− ρxx

ρ

)
+
h2

8
∂x

[Mρ2x
ρ2

±
(1
2
ρ2x − ρxx

)]
= −h

2

4

M

ρ
∂x(ρ∂

2
x log ρ)−

h2

8
ρ∂x(ρ∂

2
x log ρ). (3.51)

Consequently, one obtains the energy equation

∂tE
h
±+∂x

[M
ρ

(
Eh

±+
ρ3

2
± 3

2
ρM

)]
+
h2

8
∂x

[
2
(ρxMx

ρ
−ρxx

ρ

)
± 1

2
ρ2x−ρxx

]
=0 (3.52)

with

Eh
± =

M2

2ρ
± 1

2
ρM +

h2

8

ρ2x
ρ

=
M2

2ρ
± 3

2
ρM + ρ3 +

h2

8

ρ2x
ρ
. (3.53)

Assume f(ρ) = ρ, then the Euler equation derived by the semiclassical limit is
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∂tρ+ ∂x

(
M +

1

2
ρ2
)
= 0, (3.54)

∂tM + ∂x

(M2

ρ
+ ρM

)
= 0 (3.55)

with initial data

ρ(0, x) = A2(x), M(0, x) = A2(x)Sx +A4(x). (3.56)

Energy equation (3.52) is then

∂t

(M2

2ρ
+
ρM

2

)
+ ∂x

(M2

2ρ

M

ρ
+
ρ2M

2
+

5M2

4

)
= 0. (3.57)

One can rewritten (3.54)-(3.55) as

Vt +BVx = 0, V = (ρ,M)t (3.58)

with

B =

 ρ 1

−M
2

ρ2
+M

2M

ρ
+ ρ

 . (3.59)

The eigenvalues of B are the roots of

λ2 − 2
(
ρ+

M

ρ

)
λ+ ρ2 +M +

M2

ρ2
= 0 (3.60)

or

λ = λ± = ρ+
M

ρ
±

√
M, M ≥ 0, (3.61)

the corresponding right and left eigenvector are respectively

r± =
(
1,
M

ρ
±

√
M
)t
, l± =

(
− M

ρ
±M, 1

)t
. (3.62)

The Riemann invariants is

R± =

√
M

ρ
±√

ρ. (3.63)

The eigenvalues λ+, λ− can be represented by the Riemann invariants as

λ+ =
3

4
R2

+ +
1

4
R2

−, λ− =
1

4
R2

+ +
3

4
R2

−. (3.64)

The equation can be rewritten by the Riemann invariants as

∂tR+ +
(3
4
R2

+ +
1

4
R2

−

)
∂xR+ = 0, (3.65)
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∂tR− +
(1
4
R2

+ +
3

4
R2

−

)
∂xR− = 0 (3.66)

with initial data

R±(x) =
√
Sx +A(x)2 ±A(x). (3.67)

Theorem 3.3 The blowup time tb can be estimated as

tb = min{t+,b, t−,b}

with

t±,b ≤ inf
x0∈Ω±

{t : G±(t, x0) = 0}, Ω± = {x0 : ∂xR±(x0) ≤ 0},

where

G± = 1 +
3

2

∂xR±(x)√
R2

+(x)−R2
−(x)

∫ t

0
R±(τ, x±(τ))

√
R2

+(τ, x±(τ))−R2
−(τ, x±(τ))dτ

and x±(t) satisfying

dx±
dt

=
1

2
R2

±(t, x±) +
1

4
[R2

+(t, x±) +R2
−(t, x±)− 1], x±(0) = x.

Proof The break-time tb can be estimated by Laxs recipe [8, 14].

From (3.65), we obtain

R′
+ = ∂tR+ +

(3
4
R2

+ +
1

4
R2

−

)
∂xR+ = 0, (3.68)

where “ ′” indicates the differentiation along the characteristic direction, then

dx+(t)

dt
= λ+(t, x+(t)) =

(3
4
R2

+ +
1

4
R2

−

)
(t, x+(t)).

Similarly,

Ṙ− = ∂tR− +
(1
4
R2

+ +
3

4
R2

−

)
∂xR− = 0, (3.69)

where “·” indicates the differentiation is along the characteristic direction, then

dx−(t)

dt
= λ−(t, x−(t)) =

(1
4
R2

+ +
3

4
R2

−

)
(t, x−(t)).

Differentiating (3.68) with respect to x and setting Z+ = ∂xR+, we obtain

∂tZ+ =
(3
2
Z2
+R+ +

1

2
Z+R−∂xR−

)
+
(3
4
R2

+ +
3

4
R2

−

)
∂xZ+ = 0. (3.70)



No.3 B.L. Guo, etc., Generalized Nonlinear Schrödinger Equation 237

(3.69) leads to

R′
− = ∂tR− +

(3
4
R2

+ +
1

4
R2

−

)
∂xR−. (3.71)

Therefore

∂xR− =
2R′

−
R2

+ −R2
−
. (3.72)

Substituting (3.72) into (3.70) yields

Z ′
+ +

R−R
′
−

R2
+ −R2

−
Z+ +

3

2
R+Z

2
+ = 0. (3.73)

Let h = h(R+, R−) satisfy h′ =
R−−R′

−
R2

+−R2
−

and h = 1
2 log

1
R2

+−R2
−
. Multiplying

(3.73) by eh = 1√
R2

+−R2
−

and defining

q+ = ehZ+ =
∂xR+√
R2

+ −R2
−

, k+ =
3

2
R+e

−h =
3

2
R+

√
R2

+ −R2
−, (3.74)

one can derive the standard Raccati equation

q′+ + k+q
2
+ = 0. (3.75)

The solution to (3.75) is

q+(x, t) =
q0+

1 + q0+K+(t)
, q0+ = q+(0, x(0)), (3.76)

where

K+(t) =

∫ t

0
k+(τ, x+(τ))dτ =

3

2

∫ t

0
R+(τ, x+(τ))

√
R2

+(τ, x+(τ))−R2
−(τ, x+(τ))dτ.

The integration is along the characteristic of λ+ and the sign of q0K(t) impact its

singularity essentially. If the initial data satisfies ∂xR+(0, x(0)) = ∂xR+(x(0)) < 0,

namely, q0 < 0, then q+(x, t) will tend to infinity in finite time, which implies that

q+(x, t) certainly will blowup and 1+ q0K(t) = 0. Therefore, the blowup time tb can

be estimated as follows.

Let t+,b satisfy

t+,b ≤ inf
x0∈Ω

{t : G+(t, x0) = 0}, Ω = {x0 : ∂xR+(x0) ≤ 0}

with

G+ = 1 +
3

2

∂xR+(x)√
R2

+(x)−R2
−(x)

∫ t

0
R+(τ, x+(τ))

√
R2

+(τ, x+(τ))−R2
−(τ, x+(τ))dτ.
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The particle trajectory x = x+(t) satisfies

dx+(t)

dt
=

1

2
R2

+(t, x+(t)) +
1

4
[R2

+(t, x+(t)) +R2
+(t, x−(t))], x+(0) = x.

Similarly, to estimate t−,b, we consider the characteristic of λ−. When f(ρ) = −ρ,
we have

∂tρ+ ∂x

(
M − ρ2

2

)
= 0, (3.77)

∂tM + ∂x

(M2

ρ
− ρM

)
= 0, (3.78)

and the energy equation is

∂t

(M2

2ρ
− ρM

2

)
+ ∂x

(M2

2
· M
ρ

+
ρ2M

2
− 5

4
M2
)
= 0. (3.79)

(3.77), (3.78) can be write as a matrix form as follows

Ṽt + B̃Ṽx = 0, Ṽ = (ρ,M)t, (3.80)

where

B̃ ≡

 −ρ 1

−M
2

ρ2
−M

2M

ρ
− ρ

 , (3.81)

of which the eigenvalues are the roots of

λ2 − 2
(M
ρ

− ρ
)
λ+ ρ2 +

M2

ρ2
−M = 0, (3.82)

that is,

λ = λ± =
M

ρ
− ρ±

√
−M, M ≤ 0, (3.83)

then the corresponding eigenvector are

r̃± =
(
1,
M

ρ
±

√
−M

)t
, l̃± =

(
− M

ρ
±

√
−M, 1

)t
. (3.84)

The Riemann invariants are

R̃± =

√
−M
ρ

∓√
ρ. (3.85)

The two eigenvalues λ̃+, λ̃− can be represented by the Riemann invariants as

λ̃+ = −3

4
R̃2

+ − 1

4
R̃2

−, λ̃− = −1

4
R̃2

+ − 3

4
R̃2

−. (3.86)



No.3 B.L. Guo, etc., Generalized Nonlinear Schrödinger Equation 239

The equation can be written as

∂tR̃+ −
(3
4
R̃2

+ +
1

4
R̃2

−

)
∂xR̃+ = 0, (3.87)

∂tR̃− −
(1
4
R̃2

+ +
3

4
R̃2

−

)
∂xR̃− = 0, (3.88)

with the initial data

R̃±(x) =
√
−Sx +A(x)2 ∓A(x). (3.89)

This completes the proof.

Similarly, we can derive the estimate of the blowup time t̃b.

Theorem 3.4 The blowup time t̃b can be estimated as

t̃b = min{t̃+,b, t̃−,b},

where

t̃±,b = inf
x0∈Ω̃±

{t : G̃±(t, x0) = 0}, Ω̃± = {x0 : ∂xR̃±(x0) ≤ 0},

and

G̃± = 1− 3

2

∂xR̃±(x)√
R̃2

+(x)− R̃2
−(x)

∫ t

0
R̃±(τ, x̃±(τ))

√
R̃2

−(τ, x̃±(τ))− R̃2
+(τ, x̃±(τ))dτ,

with x̃±(t) satisfying

dx̃±
dt

= −1

2
R̃2

±(t, x̃±)−
1

4
[R̃2

+(t, x̃±) + R̃2
−(t, x̃±)], x̃±(0) = x.

4 Semiclassical Limit to the Generalized NLS:
Subsonic, Supersonic, Transonic

Consider the generalized NLS

iϵϕt +
1

2
ϵ2
∂2ϕ

∂t2
+ |ϕ|2ϕ+ iαϵ

∂

∂x
(|ϕ|2ϕ) = 0, α, ϵ > 0. (4.1)

Setting

ρϵ(x, t) = |ϕϵ(x, t)|2, uϵ(x, t) = ϵIm
{ ∂

∂x
log(ϕϵ(x, t))

}
, (4.2)

ϕϵ(x, 0) = A0(x) exp
( iS0(x)

ϵ

)
, (4.3)
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one obtains

∂ρϵ
∂t

+
∂

∂x

(
ρϵuϵ +

3

2
αρ2ϵ

)
= 0,

∂uϵ
∂t

+
∂

∂x

(1
2
u2ϵ − ρϵ + αρϵuϵ

)
=

1

2
ϵ2
∂F [ρϵ]

∂x
, (4.4)

where

F [ρϵ] =
1

2ρϵ

∂2ρϵ
∂x2

−
( 1

2ρϵ

∂ρϵ
∂x

)2
. (4.5)

When ϵ = 0, the MNLS is

∂ρ

∂t
+

∂

∂x

(
ρu+

3

2
αρ2

)
= 0,

∂u

∂t
+

∂

∂x

(1
2
u2 − ρ+ αρu

)
= 0. (4.6)

Suppose α ̸= 0, and equation (4.6) is of mixed type. If Q > 0, the equation is

of hyperbolic; if Q < 0, the equation is of elliptic. When Q(x) changes sign, the

domain is of transonic. Here,

Q = α2ρ+ αu− 1, (4.7)

where we define the sonic

c(x, t) =
1

α
− αρ(x, t). (4.8)

We consider the inverse scattering method to MNLS.

To do so, we first consider the initial condition of (4.6),

ρϵ(x, 0) = A0(x)
2, uϵ(x, 0) = u0(x) = S′

0(x). (4.9)

Assume ρ0(x) and u
′
0(x) are real-valued Schwartz functions for x ∈ R and ρ0(x) ̸= 0.

In addition, suppose u0(x) → u± for x→ ±∞. Then

S0(x) = S0(0) +

∫ x

0
u0(y)dy ⇒ S0(x) = u±x+ S± + o(1), x→ ±∞,

S+ = S0(0) +

∫ ∞

0
[u0(y)− u+]dy, S− = S0(0)−

∫ 0

−∞
[u0(y)− u−]dy.

In particular, choose u0(x) and S0(x) as

A0(x) = νsech(x), S0(x) = S0(0) + δx+ µlog(cosh(x)), (4.10)
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where S0(0), δ and µ are real-valued parameters and ν ̸= 0. Therefore,

ρ0(x) = ν2sech2(x), u0(x) = δ + µ tanh(x). (4.11)

Without loss of generality, let ν = 1, S0(0) = 0.

When ν = 1, Q in the definition of (4.7) becomes (t ̸= 0):

Q(x) = α2sech2(x) + αδ + αµ tanh(x)− 1 = −α2T 2 + αµT + α2 + αδ − 1,

T = tanh(x). (4.12)

In the transonic domain, Q(x) will necessarily change sign. From (4.12), it is easy

to see that Q(x) is a quadratic equation of T (x) and has two roots. For simplicity,

suppose T has only one root for T ∈ (−1, 1). For this, assume

α|µ| > |1− αµ|, (4.13)

µ2 > 4(1− αδ) (4.14)

and

µ > 0. (4.15)

According to inequalities (4.13)-(4.15), (4.12) has a unique solution in (−1, 1),

T = Tc = 2B −
√

4B2 − 4A+ 1. (4.16)

Consequently, when t = 0, x < xc , α < 0 and the domain is of elliptic, α > 0, and

the domain is of hyperbolic, x > xc = arctanh(Tc). Next we present our main result.

Theorem 4.1 Let ϕϵ(x, t) be a solution of Cauchy problem to the MNLS

equation (4.1) with the initial data (4.3), where A0(x) and S0(x) are given by (4.10).

Then there exists a smooth curve x = xc(t), t ≥ 0, xc(0) = xc, such that for all t ≥ 0

and x < xc(t), there holds

ϕϵ(x, t) = A(x, t) exp
( i
ϵ
S(x, t)

)
+O(ϵ), ϵ→ 0, ϵ > 0. (4.17)

Proof We use Riemann-Hilbert method to solve this problem. Assume the

unknown matrix M(k;x, t) admits a discontinuous matrix in the complex plane,

M(−k;x, t) = iσ3M(k;x, t)i−σ3 , M(−k∗;x, t)∗ = σ1M(k;x, t)σ1. (4.18)

For instance, Im(k2) = 0, M±(k;x, t) represent M with the boundary data from

±Im(k2) < 0.

M+(k;x, t)=M−(k;x, t)exp
(iθ(k2;x, t)σ3

ϵ

)(1± |r(k)|2 r(k)
±|r(k)|2 1

)
exp
(−iθ(k2;x, t)σ3

ϵ

)
,

±k2 > 0, (4.19)
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where

σ1 =
(0 1
1 0

)
, σ2 =

(0 −i
i 0

)
, σ3 =

(1 0
0 −1

)
(4.20)

are the Pauli spin matrices.

abσ3 =
(ab 0
0 a−b

)
, a, b ∈ C, (4.21)

θ(z) = θ(z;x, t) = − 2

α

(
z − 1

4

)
x− 4

α2

(
z − 1

4

)2
t,

where r(k) = −r(−k) is the reflection coefficient, and

lim
k→∞

M(k;x, t) = I. (4.22)

Then the solution to the MNLS equation can be derived from M(k;x, t)

ϕϵ(x, t) = lim
k→∞

2k

α

M12(k;x, t)

M22(k;x, t)
. (4.23)

We thus complete the proof.

Remark 4.1 Here, the error term holds uniformly in any compact subset of

(x, t). A(x, t) and S(x, t) are smooth real-valued functions, independent of ϵ and

satisfy A(x, 0) = A0(x) and S(x, 0) = S0(x). When x < xc(t), there holds Q < 0.

And when Q→ 0, we have x→ xc(t), x < xc(t). At last, when x < xc(t) and t > 0,

ρ(x, t) = A(x, t)2, u(x, t) =
∂S

∂x
(x, t) (4.24)

satisfy the MNLS equation (4.6).
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