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Abstract

In this paper we give six explicit formulae to compute the Kirchhoff index,
the multiplicative degree-Kirchhoff index and the additive degree-Kirchhoff
index of the k-cactus chain and the cactus graph which can be obtained from
a k-cactus chain by expanding each of the cut-vertices to a cut edge.
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1 Introduction

The objects nowadays known as cactus appeared in the scientific literature more

than half a century ago. Motivated by papers of Husimi [28] and Riddell [41], [44]

dealt with cluster integrals in the theory of condensation in statistical mechanics.

Besides statistical mechanics, where cacti and their generalizations serve as simpli-

fied models of real lattices [36, 42], the concept has also found applications in the

theory of electrical and communication networks [56] and in chemistry [25,55]. Many

topological indices have been studied for these structures, including the matching

and independence polynomials [4, 16], the Hosoya indices [1],π-electron energy [52],

the Hosoya polynomials [32], and the subtree numbers [50].

A cactus graph G is a connected graph in which each edge lies on at most one

cycle. Therefore, each block in G is either an edge or a cycle. A k-cactus is a cactus

in which each block is a k-cycle. A k-cactus chain is a k-cactus in which each block

contains at most two cut-vertices and each cut-vertex lies in exactly two blocks. The

number of blocks in a k-cactus chain is the length of the chain. A 6-cactus chain is

also called spiro hexagonal chain, and a polyphenyl chain is a cactus graph which
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can be obtained from a 6-cactus chain by expanding each of the cut-vertices to an

cut edge. For example, see the first graph in Figure 1.
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Figure 1: A spiro hexagonal chain, its corresponding weighted path and polyphenyl chain

Let G be a connected graph. The vertex set and edge set of G are denoted

by V (G) and E(G), respectively. Based on the theory of electrical networks, Klein

and Randić [30] introduced a new distance function named resistance distance. The

resistance distance between a pair of vertices u and v in G, denoted by rG(u, v)

or r(u, v), is the effective resistance between them in the electrical network N con-

structed from G by replacing each edge with a unit resistor. This new intrinsic graph

metric has being recognized as having more nice purely mathematical, chemical and

physical interpretations [7, 12,29–31].

Analogous to distance-based graph invariants, various graph invariants based

on resistance distance have been defined and studied. Among these invariants,

the most famous one is the Kirchhoff index [30], also known as the total effective

resistance [21] or the effective graph resistance [18]. Like many topological indices,

the Kirchhoff index is a structure descriptor and has been found very useful in purely

mathematical, physical and chemical interpretations [30, 31, 54]. If the ordinary

distance is replaced by the resistance distance in the expression for the Wiener

index [47], one arrives at the Kirchhoff index [30].

Definition 1.1 The Kirchhoff index of a graph G is denoted by Kf(G) and

defined as follows:

Kf(G) =
∑

{u,v}⊂V (G)

rG(u, v).
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Recently, two modifications of the Kirchhoff index, which takes the degrees of the

graph into account, have been considered. One is the multiplicative degree-Kirchhoff

index introduced by Chen and Zhang [11]. If the ordinary distance is replaced by

resistance distance in the expression for the Gutman index [22], then one arrives at

the multiplicative degree-Kirchhoff index.

Definition 1.2 The multiplicative degree-Kirchhoff index of a graph G is de-

noted by Kf∗(G) and defined as follows:

Kf∗(G) =
∑

{u,v}⊂V (G)

[degG(u) degG(v)rG(u, v)],

where degG(u) is the degree of u in G.

The other one is the degree resistance distance introduced by Gutman et al. [24].

If the ordinary distance is replaced by resistance distance in the expression for the

degree distance [15,22], then one arrives at the degree resistance distance.

Definition 1.3 The degree resistance distance of a graph G is denoted by

Kf+(G) and defined as follows:

Kf+(G) =
∑

u,v⊂V (G)

[(degG(u) + degG(v))rG(u, v)].

Palacios [38] named the same graph invariant “additive degree-Kirchhoff index”.

The three Kirchhoffian indices have received much attention in recent years.

Much work has been done to compute the three indices of some classes of graphs, or

give some bounds for the three indices of graphs and characterize extremal graphs.

In particular, Yang and Klein [49] gave formulae for the three indices of iterated

subdivisions and triangulations of graphs. Huang et al. [27] gave some relations

among the three indices of a connected graph and extended some results in [49].

In [17,34], the authors determined the first three minimum additive degree-Kirchhoff

indices among all the cacti possessing fixed number of the vertices and cycles and

characterized the corresponding extremal graphs. Deng et al. [14] obtained the

explicit formulae to compute the Kirchhoff indices of spiro and polyphenyl hexagonal

chains, determined the extremal values and characterized the extremal graph with

respect to the Kirchhoff index among all spiro and polyphenyl hexagonal chains with

h hexagons. Palacios [40] reviewed some known facts of the three indices, and found

new relations among them. Motivated by the above results, in this paper we study

the three Kirchhoffian indices of the k-cactus chain.

In this paper we obtain six explicit formulae to compute the Kirchhoff index, the

multiplicative degree-Kirchhoff index and the additive degree-Kirchhoff index of the

k-cactus chain and the cactus graph which can be obtained from a k-cactus chain
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by expanding each of the cut-vertices to a cut edge. Our results extend the main

results in [14]. Moreover it reduces the problems on the three Kirchhoffian indices

of the the graphs in the above two classes to the Winer index of the weighted-path,

which make it trivial to determine the extremal problems on the three indices of the

cactus graphs in the above two classes. The rest of the paper is organized as follows.

We present our results in Section 2 and their proofs in Section 3.

2 Main Results

It is not difficult to see that beginning from a Ck, a k-cactus chain can be obtained

by stepwise additions of a new terminal Ck. Denote by Gh,k = H1c1H2c2 · · · ch−1Hh,

a k-cactus chain with h k-cycles, where Hi is the ith k-cycle of Gh,k and ci is

the common cut vertex of Hi and Hi+1, i = 1, 2, · · · , h − 1. Denote by G′h,k the

corresponding cactus graph obtained by expanding each of the cut-vertices ci of

Gh,k to a cut edge (ui, vi) with ui ∈ Hi and vi ∈ Hi+1. For an example see Figure 1.

Obviously, Gh,k is determined completely by its cut vertex sequence c1, c2, · · · , ch−1.
For a k-cactus chain Gh,k = H1c1H2c2 · · · ch−1Hh, we denote by (Ph−1, ωr) the

corresponding edge-weighted path Ph−1 = c1c2 · · · ch−1 with the weight function

ωr : E(Ph−1)→ R+ such that ωr(ci, ci+1) = rGh,k
(ci, ci+1) (1 ≤ i ≤ h− 1).

Recall that for an edge-weighted graph (G,ω), the length of a path in (G,ω) is

the sum of the weights of all the edges in the path and the distance between u and

v, and denote by dG(u, v) the minimum length of all the (u, v)-path. The Wiener

index of an edge-weighted graph (G,ω) is defined as

W (G,ω) =
∑

{u,v}⊂V (G)

dG(u, v).

Therefore, for a k-cactus chain Gh,k = H1c1H2c2 · · · ch−1Hh,

W (Ph−1, ωr) =

h−1∑
i=1

i∑
j=1

rGh,k
(ci, cj) =

h−2∑
i=1

[i(h− 1− i)rGh,k
(ci, ci+1)].

Theorem 2.1 Let Gh,k be a k-cactus chain with h k-cycles, G′h,k be the corre-

sponding cactus graph obtained by expanding each of the cut-vertices ci of Gh,k to a

cut edge and (Ph−1, ωr) be the corresponding edge-weighted path. Then

(1)

Kf(Gh,k) = (k − 1)2W (Ph−1, ωr) +
1

6
(k − 1)(k2 − 1)h2 +

1

12
(2− k)(k2 − 1)h,

(2)

Kf+(Gh,k) = 4k(k − 1)W (Ph−1, ωr) +
1

3
(2k − 1)(k2 − 1)h2 − 1

3
(k − 1)(k2 − 1)h,
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(3)

Kf∗(Gh,k) = 4k2W (Ph−1, ωr) +
2

3
(k3 − k)h2 − 1

3
(k3 − k)h,

(4)

Kf(G′h,k) = k2W (Ph−1, ωr) +
1

6
k2h3 +

1

6
(k3 − k)h2 +

1

12
(−k3 − 2k2 + k)h,

(5)

Kf+(G′h,k) = (4k2 + 4k)W (Ph−1, ωr) +
2

3
(k2 + k)h3 +

1

3
(2k3 + k2 − 5k − 1)h2

+
1

3
(−k3 − 3k2 + 2k + 1)h,

(6)

Kf∗(G′h,k) = 4(k + 1)2W (Ph−1, ωr) +
2

3
(k + 1)2h3 +

2

3
(k3 + k2 − 4k − 4)h2

+
1

3
(−k3 + k2 − 5k + 9)h− 1,

which imply that

(7)

Kf(G′h,k) =
k2

(k − 1)2
Kf(Gh,k) +

1

6
k2h3 − 1

6
(k2 + k)h2 +

−2k3 + k2 − k
12k − 12

h,

(8)

Kf+(G′h,k) =
k + 1

k − 1
Kf+(Gh,k) +

2

3
(k2 + k)h3 − 1

3
(2k2 + 5k)h2 − 1

3
(2k2 − k)h,

(9)

Kf∗(G′h,k) =
(k + 1)2

k2
Kf∗(Gh,k) +

2

3
(k + 1)2h3 +

2

3k
(k3 + 4k2 + 2k − 1)h2

− 1

3k
(2k4 − 5k3 + 15k2 − 25k + 1)h]− 1.

Let k = 6. Then we have the following corollary.

Corollary 2.1 Suppose that PPCh is a polyphenyl chain with h (h ≥ 2)

hexagons, SPCh is the corresponding 6-cactus chain obtained from PPCh by squeez-

ing off its cut edges and (Ph−1, ωr) is the corresponding edge-weighted path to SPCh.

Then

(1)[14] Kf(SPCh) = 25W (Ph−1, ωr) +
175

6
h2 − 35

3
h,
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(2) Kf+(SPCh) = 120W (Ph−1, ωr) +
385

3
h2 − 175

3
h,

(3) Kf∗(SPCh) = 144W (Ph−1, ωr) + 140h2 − 70h,

(4)[14] Kf(PPCh) = 36W (Ph−1, ωr) + 6h3 + 35h2 − 47

2
h,

(5) Kf+(PPCh) = 168W (Ph−1, ωr) + 28h3 +
437

3
h2 − 311

3
h,

(6) Kf∗(PPCh) = 196W (Ph−1, ωr) +
98

3
h3 +

448

3
h2 − 67h− 1.

Our main results reduce the problems on the Kirchhoff index (or multiplicative

degree-Kirchhoff index, additive degree-Kirchhoff index) of the k-cactus chain and

the corresponding cactus graph, which can be obtained from a k-cactus graph by

expanding each of the cut-vertices to a cut edge to the corresponding problems on

the Wiener index of the weighted path, in which the weight of each edge is in the

set {rCk
(u, v)|u, v ∈ V (Ck)} = { i(k−i)k , 1 ≤ i ≤ bk/2c}.

For example, if k = 6, then extremal problems on the polyphenyl and spiro

chains with h hexagons are determined on the extremal problems on the Wiener of

the weighted path Ph−1, in which the weight of each edge is 5
6 , 4

3 or 3
2 .

Corollary 2.2 Suppose Gh,k = H1c1H2c2 · · · ch−1Hh to be a k-cactus chain

with h k-cycles. Then the Kirchhoff index (or multiplicative degree-Kirchhoff index,

additive degree-Kirchhoff index) of Gh,k receives the maximum value when

rGh,k
(ci, ci+1) =

bk/2c(k − bk/2c)
k

for all 1 ≤ h− 1,

and the minimum value when

rGh,k
(ci, ci+1) =

k − 1

k
for all 1 ≤ h− 1.

Remark 2.1 From the proof of Theorem 2.1, it can be found that, the above

results also hold if we replace “Gh,k a cactus chain” by “Gh,k is a k-cactus graph, in

which any cut vertex is at most in two k-cycles”.

3 The Proof of Main Result

The resistance distance of a vertex v ∈ V (G), denoted by R(v|G), is the sum of

distances between v and all other vertices of G, that is, R(v|G) =
∑

u∈V (G)

rG(u, v).

The degree resistance distance of a vertex v ∈ V (G) is denoted by RD(v|G) =∑
u∈V (G)

degG(u)rG(u, v). Gutman et al. [24] presented the following explicit formulae

for the cycles.
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Lemma 3.1[24] Let Ck be the cycle with k vertices, and v ∈ V (Ck). Then

R(v|Ck) =
1

6
(k2 − 1), RD(v|Ck) =

1

3
(k2 − 1),

Kf(Ck) =
1

12
(k3 − k), Kf∗(Ck) = Kf+(Ck) =

1

3
(k3 − k).

Lemma 3.2[46] Suppose that G1 and G2 are two connected graphs with |V (Gi)| =
ni and |E(Gi)| = mi (i = 1, 2). If we identify any vertex, say x1, of G1 with any

other vertex, say x2, of G2 as a new common vertex x, and obtain a new graph G,

then

(1) rG(a, b) = rG1(a, x1) + rG2(x2, b), for any a ∈ V (G1), b ∈ V (G2),

(2) Kf(G) = Kf(G1) +Kf(G2) + (n1 − 1)R(x2|G2) + (n2 − 1)R(x1|G1),

(3) Kf+(G) = Kf+(G1) +Kf+(G2) + (n2− 1)RD(x1|G1) + (n1− 1)RD(x2|G2)

+2m2R(x1|G1) + 2m1R(x2|G2).

Lemma 3.3 Suppose that G1 and G2 are two connected graphs with |V (Gi)| =
ni, and |E(Gi)| = mi (i = 1, 2). If we identify any vertex, say x1, of G1 with any

other vertex, say x2, of G2 as a new common vertex x, and obtain a new graph G,

then

Kf∗(G) = Kf∗(G1) +Kf∗(G2) + 2m1RD(x2|G2) + 2m2RD(x1|G1).

Proof By the definition of the multiplicative degree-Kirchhoff index of a graph

G, we have

Kf∗(G) =
∑

{y,z}⊂V (G1)

[degG(y) degG(z)rG(y, z)]

+
∑

{y,z}⊂V (G2)

[degG(y) degG(z)rG(y, z)]

+
∑

y∈V (G1)−{x}

∑
z∈V (G2)−{x}

[degG(y) degG(z)rG(y, z)]

= Kf∗(G1) +
∑

y∈V (G1)

[degG(y) degG2
(x)rG(y, x)]

+Kf∗(G2) +
∑

z∈V (G2)

[degG(z) degG1
(x)rG(z, x)]

+
∑

y∈V (G1)−{x}

∑
z∈V (G2)−{x}

[(degG(y) degG(z)(rG(y, x) + rG(x, z))]

= Kf∗(G1) + degG2
(x)

∑
y∈V (G1)

[degG(y)rG(y, x)]

+Kf∗(G2) + degG1
(x)

∑
z∈V (G2)

[degG(z)rG(z, x)]
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+

[ ∑
z∈V (G2)−{x}

degG(z)

] ∑
y∈V (G1)−{x}

[degG(y)rG(y, x)]

+

[ ∑
y∈V (G1)−{x}

degG(y)

] ∑
z∈V (G2)−{x}

[degG(z)rG(x, z)]

= Kf∗(G1) +Kf∗(G2) + 2m1RD(x2|G2) + 2m2RD(x1|G1).

The proof is completed.

Lemma 3.4 Let e = (x1, x2) be a cut edge of G. Suppose that G1 and G2 are

two connected components of G−e with xi ∈ V (Gi), |V (Gi)| = ni and |E(Gi)| = mi

(i = 1, 2). Then

(1) Kf(G) = Kf(G1) +Kf(G2) + n2R(x1|G1) + n1R(x2|G2) + n1n2,

(2) Kf+(G) = Kf+(G1) +Kf+(G2) + n2RD(x1|G1) + n1RD(x2|G2)

+(2m2 + 2)R(x1|G1) + (2m1 + 2)R(x2|G2)

+n1(2m2 + 1) + n2(2m1 + 1),

(3) Kf∗(G) = Kf∗(G1)+Kf∗(G2)+(2m2+2)RD(x1|G1)+(2m1+2)RD(x2|G2)

+(2m1 + 1)(2m2 + 1).

Proof By the definition of the Kirchhoff index and Lemma 3.2, we have

Kf(G) = Kf(G1) +Kf(G2) +
∑

y∈V (G1),z∈V (G2)

rG(y, z)

= Kf(G1) +Kf(G2) +
∑

y∈V (G1),z∈V (G2)

[rG1(y, x1) + rG2(x2, z) + 1]

= Kf(G1) +Kf(G2) + n2R(x1|G1) + n1R(x2|G2) + n1n2.

Similarly,

Kf∗(G) =
∑

{y,z}⊂V (G1)

[degG(y) degG(z)rG(y, z)]

+
∑

{y,z}⊂V (G2)

[degG(y) degG(z)rG(y, z)]

+
∑

y∈V (G1),z∈V (G2)

[degG(y) degG(z)rG(y, z)]

= Kf∗(G1) +
∑

y∈V (G1)

[degG(y)rG(y, x1)]

+Kf∗(G2) +
∑

z∈V (G2)

[degG(z)rG(z, x2)]

+
∑

y∈V (G1)

∑
z∈V (G2)

[degG(y) degG(z)(rG(y, x1) + rG(x2, z) + 1)]
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= Kf∗(G1) +RD(x1|G1) +Kf∗(G2) +RD(x2|G2)

+RD(x1|G1)
∑

z∈V (G2)

degG(z) +RD(x2|G2)
∑

y∈V (G1)

degG(y)

+

[ ∑
y∈V (G1)

degG(y)

][ ∑
z∈V (G2)

degG(z)

]
= Kf∗(G1) +Kf∗(G2) + (2m2 + 2)RD(x1|G1)

+(2m1 + 2)RD(x2|G2) + (2m1 + 1)(2m2 + 1),

Kf+(G) =
∑

{y,z}⊂V (G1)

[(degG(y) + degG(z))rG(y, z)]

+
∑

{y,z}⊂V (G2)

[(degG(y) + degG(z))rG(y, z)]

+
∑

y∈V (G1),z∈V (G2)

[(degG(y) + degG(z))rG(y, z)]

= Kf+(G1) +
∑

y∈V (G1)

rG(y, x1) +Kf+(G2) +
∑

z∈V (G2)

rG(z, x2)

+
∑

y∈V (G1),z∈V (G2)

[(degG(y) + degG(z))(rG(y, x1) + rG(x2, z) + 1)]

= Kf+(G1) +
∑

y∈V (G1)

rG(y, x1) +Kf+(G2) +
∑

z∈V (G2)

rG(z, x2)

+n2
∑

y∈V (G1)

[degG(y)(rG(y, x1)] +

[ ∑
y∈V (G1)

degG(y)

][ ∑
z∈V (G2)

rG(x2, z)

]

+

[ ∑
z∈V (G2)

degG(z)

][ ∑
y∈V (G1)

rG(y, x1)

]
+ n1

∑
z∈V (G2)

[degG(z))rG(x2, z)]

+n2
∑

y∈V (G1)

degG(y) + n1
∑

z∈V (G2)

degG(z)

= Kf+(G1) +Kf+(G2) + n2RD(x1|G1) + n1RD(x2|G2)

+(2m2 + 2)R(x1|G1) + (2m1 + 2)R(x2|G2)

+n2(2m1 + 1) + n1(2m2 + 1).

The proof is completed.

Lemma 3.5 Let Gh,k = H1c1H2c2 · · · ch−1Hh be a k-cactus chain with h k-

cycles and G′h,k be the corresponding cactus graph obtained by expanding each of the

cut-vertices ci of Gh,k to a cut edge (ui, vi) with ui ∈ Hi and vi ∈ Hi+1, as showed
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in Figure 1. Denote by Gh−1,k = H1c1H2c2 · · · ch−2Hh−1 the corresponding subgraph

of Gh,k. Then

R(ch−1|Gh−1,k) = (k − 1)

h−1∑
j=1

rGh,k
(cj , ch−1) +

1

6
(k2 − 1)(h− 1),

RD(ch−1|Gh−1,k) = 2k

h−1∑
j=1

rGh,k
(cj , ch−1) +

1

3
(k2 − 1)(h− 1),

R(uh−1|G′h−1,k) = k

h−1∑
j=1

rG′
h,k

(uj , uh−1) +
1

6
(k2 − 1)(h− 1),

RD(uh−1|G′h−1,k) = 2(k + 1)

h−1∑
j=1

rG′
h,k

(uj , uh−1) +
1

3
(k2 − 4)(h− 1) + 1.

Proof By Lemma 3.1 R(ch−1|Hh−1) = 1
6(k2−1), which implies that in Gh,k the

sum of the resistance distances between ch−1 and all the vertices in V (Hj)−{cj} is

(k − 1)rGh,k
(cj , ch−1) +

1

6
(k2 − 1), j = 1, 2, · · · , h− 1.

Then

R(ch−1|Gh−1,k) =

h−1∑
j=1

[
(k − 1)rGh,k

(cj , ch−1) +
1

6
(k2 − 1)

]

= (k − 1)

h−1∑
j=1

rGh,k
(cj , ch−1) +

1

6
(k2 − 1)(h− 1),

RD(ch−1|Gh−1,k) = 2R(ch−1|Gh−1,k) + 2

h−1∑
j=1

rGh,k
(cj , ch−1)

= 2k

h−1∑
j=1

rGh,k
(cj , ch−1) +

1

3
(k2 − 1)(h− 1).

Similarly,

R(uh−1|G′h−1,k) =

h−1∑
j=1

[
krG′

h,k
(uj , uh−1) +

1

6
(k2 − 1)

]

= k

h−1∑
j=1

rG′
h,k

(uj , uh−1) +
1

6
(k2 − 1)(h− 1),
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RD(uh−1|G′h−1,k) = 2R(uh−1|G′h−1,k) +
h−2∑
j=1

[rG′
h,k

(uj , uh−1) + rG′
h,k

(vj , uh−1)]

= 2R(uh−1|G′h−1,k) +

h−2∑
j=1

[2rG′
h,k

(uj , uh−1)− 1]

= 2(k + 1)
h−1∑
j=1

rG′
h,k

(uj , uh−1) +
1

3
(k2 − 4)(h− 1) + 1.

The proof is completed.

Proof of Theorem 2.1 Suppose Gh,k = H1c1H2c2 · · · ch−1Hh. Define by

Gj,k = H1c1H2c2 · · · cj−1Hj (1 ≤ j ≤ h − 1) the corresponding subgraphs of Gh,k.

Obviously,

|V (Gh−1,k)| = (k − 1)(h− 1) + 1, |E(Gh−1,k)| = k(h− 1),

|V (G′h−1,k)| = k(h− 1), |E(G′h−1,k)| = (k + 1)(h− 1)− 1.

Recall that R(v|Ck) = 1
6(k2 − 1) for any vertex v ∈ V (Ck), Kf(Ck) = 1

12(k3 − k)

and by Lemma 3.5

R(ch−1|Gh−1,k) = (k − 1)
h−1∑
j=1

rGh,k
(cj , ch−1) +

1

6
(k2 − 1)(h− 1).

Then by Lemma 3.2,

Kf(Gh,k) = Kf(Gh−1,k) +Kf(Hh) + (k − 1)R(ch−1|Gh−1,k)

+(k − 1)(h− 1)R(ch−1|Hh)

= Kf(Gh−1,k) + (k − 1)

[
(k − 1)

h−1∑
j=1

rGh,k
(cj , ch−1) +

1

6
(k2 − 1)(h− 1)

]

+
1

12
(k3 − k) +

1

6
(k − 1)(k2 − 1)(h− 1)

= Kf(Gh−1,k) + (k − 1)2
h−1∑
j=1

rGh,k
(cj , ch−1) +

1

3
(k − 1)(k2 − 1)(h− 1)

+
1

12
(k3 − k)
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= Kf(G1,k) +
h−1∑
i=1

[
(k − 1)2

i∑
j=1

rGh,k
(cj , ci) +

1

3
(k − 1)(k2 − 1)i+

1

12
(k3 − k)

]

= (k − 1)2
h−1∑
i=1

i∑
j=1

rGh,k
(cj , ci) +

1

6
(k − 1)(k2 − 1)(h2 − h) +

1

12
(k3 − k)h

= (k − 1)2W (Ph−1, ωr) +
1

6
(k − 1)(k2 − 1)h2 +

1

12
(2− k)(k2 − 1)h.

By the same way

Kf+(Gh,k) = Kf+(Gh−1,k) +Kf+(Ck) + (k − 1)RD(ch−1|Gh−1,k)

+(k − 1)(h− 1)RD(ch−1|Hh) + 2kR(ch−1|Gh−1,k)

+2k(h− 1)R(ch−1|Hh)

= Kf+(Gh−1,k) +
1

3
(k3 − k) +

1

3
(k − 1)(k2 − 1)(h− 1)

+
1

3
k(k2 − 1)(h− 1)

+(k − 1)

[
2k

h−1∑
j=1

rGh,k
(cj , ch−1) +

1

3
(k2 − 1)(h− 1)

]

+2k

[
(k − 1)

h−1∑
j=1

rGh,k
(cj , ch−1) +

1

6
(k2 − 1)(h− 1)

]

= Kf+(Gh−1,k) + 4k(k − 1)

h−1∑
j=1

rGh,k
(cj , ch−1)

+
1

3
(4k − 2)(k2 − 1)(h− 1) +

1

3
(k3 − k)

= Kf+(G1,k)

+
h−1∑
i=1

[
4k(k − 1)

i∑
j=1

rGh,k
(cj , ci) +

1

3
(4k − 2)(k2 − 1)i+

1

3
(k3 − k)

]

= 4k(k − 1)

h−1∑
i=1

i∑
j=1

rGh,k
(cj , ci) +

1

3
(2k − 1)(k2 − 1)h2

−1

3
(k − 1)(k2 − 1)h

= 4k(k − 1)W (Ph−1, ωr) +
1

3
(2k − 1)(k2 − 1)h2 − 1

3
(k − 1)(k2 − 1)h,
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Kf∗(Gh,k) = Kf∗(Gh−1,k) +Kf∗(Ck) + 2kRD(ch−1|Gh−1,k)

+2k(h− 1)RD(ch−1|Hh)

= Kf∗(Gh−1,k) +
1

3
(k3 − k)

+2k

[
2k

h−1∑
j=1

rGh,k
(cj , ch−1) +

1

3
(k2 − 1)(h− 1)

]
+

2

3
k(k2 − 1)(h− 1)

= Kf∗(Gh−1,k) + 4k2
h−1∑
j=1

rGh,k
(cj , ch−1) +

4

3
(k3 − k)(h− 1) +

1

3
(k3 − k)

= Kf∗(G1,k) +
h−1∑
i=1

[
4k2

i∑
j=1

rGh,k
(cj , ci) +

4

3
(k3 − k)i+

1

3
(k3 − k)

]

= 4k2
h−1∑
i=1

i∑
j=1

rGh,k
(cj , ci) +

2

3
(k3 − k)h2 − 1

3
(k3 − k)h

= 4k2W (Ph−1, ωr) +
2

3
(k3 − k)h2 − 1

3
(k3 − k)h.

Recall that |V (G′h−1,k)| = k(h−1) and |E(G′h−1,k)| = (k+1)(h−1)−1, by Lemmas

3.4 and 3.5, then we obtain

Kf(G′h,k) = Kf(G′h−1,k) +Kf(Hh) + kR(uh−1|G′h,k)

+k(h− 1)R(vh−1|Hh) + k2(h− 1)

= Kf(G′h−1,k) +
1

12
(k3 − k) + k

[
k

h−1∑
j=1

rG′
h,k

(uj , uh−1) +
1

6
(k2 − 1)(h− 1)

]

+
1

6
k(k2 − 1)(h− 1) + k2(h− 1)

= Kf(G′h−1,k) + k2
h−1∑
j=1

rG′
h,k

(uj , uh−1)

+
1

3
(k3 + 3k2 − k)(h− 1) +

1

12
(k3 − k)

= Kf(G′1,k) +
h−1∑
i=1

[
k2

i∑
j=1

rG′
h,k

(uj , ui) +
1

3
(k3 + 3k2 − k)i+

1

12
(k3 − k)

]

= k2
h−1∑
i=1

i∑
j=1

rG′
h,k

(uj , ui) +
1

6
(k3 + 3k2 − k)h2 +

1

12
(−k3 − 6k2 + k)h.

It is not difficult to see that rG′
h,k

(uj , ui) = rGh,k
(cj , ci) + (i− j). So
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h−1∑
i=1

i∑
j=1

rG′
h,k

(uj , ui) =

h−1∑
i=1

i∑
j=1

[rGh,k
(cj , ci) + (i− j)]

=

h−1∑
i=1

i∑
j=1

rGh,k
(cj , ci) +

1

6
h(h− 1)(h− 2)

= W (Ph−1, ωr) +
1

6
h(h− 1)(h− 2).

Then

Kf(G′h,k) = k2
[
W (Ph−1, ωr) +

1

6
h(h− 1)(h− 2)

]
+

1

6
(k3 + 3k2 − k)h2 +

1

12
(−k3 − 6k2 + k)h

= k2W (Ph−1, ωr) +
1

6
k2h3 +

1

6
(k3 − k)h2 +

1

12
(−k3 − 2k2 + k)h.

Similarly, by Lemmas 3.4 and 3.5

Kf+(G′h,k) = Kf+(G′h−1,k) +Kf+(Hh) + kRD(uh−1|G′h−1,k)

+k(h− 1)RD(vh−1|Hh) + (2k + 2)R(uh−1|G′h−1,k)

+(2k + 2)(h− 1)R(vh−1|Hh) + k(h− 1)(2k + 1)

+k[(2k + 2)(h− 1)− 1]

= Kf+(G′h−1,k) +
1

3
(k3 − k)

+k

[
(2k + 2)

h−1∑
j=1

rG′
h,k

(uj , uh−1) +
1

3
(k2 − 4)(h− 1) + 1

]

+
1

3
k(k2 − 1)(h− 1) + (2k + 2)

[
k
h−1∑
j=1

rG′
h,k

(uj , uh−1)

+
1

6
(k2 − 1)(h− 1)

]
+

1

3
(k + 1)(k2 − 1)(h− 1)

+k(h− 1)(2k + 1) + k[(2k + 2)(h− 1)− 1]

= Kf+(G′h−1,k) + (4k2 + 4k)
h−1∑
j=1

rG′
h,k

(uj , uh−1)

+
2

3
(2k3 + 7k2 + k − 1)(h− 1) +

1

3
(k3 − k)
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= Kf+(G′1,k) +

h−1∑
i=1

[
(4k2 + 4k)

i∑
j=1

rG′
h,k

(uj , ui)

+
2

3
(2k3 + 7k2 + k − 1)i+

1

3
(k3 − k)

]

= (4k2 + 4k)
h−1∑
i=1

i∑
j=1

rG′
h,k

(uj , ui) +
1

3
(2k3 + 7k2 + k − 1)h2

+
1

3
(−k3 − 7k2 − 2k + 1)h

= (4k2 + 4k)
[
W (Ph−1, ωr) +

1

6
h(h− 1)(h− 2)

]
+

1

3
(2k3 + 7k2 + k − 1)h2 +

1

3
(−k3 − 7k2 − 2k + 1)h

= (4k2 + 4k)W (Ph−1, ωr) +
2

3
(k2 + k)h3 +

1

3
(2k3 + k2 − 5k − 1)h2

+
1

3
(−k3 − 3k2 + 2k + 1)h,

Kf∗(G′h,k) = Kf∗(G′h−1,k) +Kf∗(Hh) + (2k + 2)RD(uh−1|G′h−1,k)

+(2k + 2)(h− 1)RD(vh−1|Hh) + (2k + 1)[(2k + 2)(h− 1)− 1]

= Kf∗(G′h−1,k) +
1

3
(k3 − k)

+(2k + 2)

[
2(k + 1)

h−1∑
j=1

rG′
h,k

(uj , uh−1) +
(k2 − 4)(h− 1)

3
+ 1

]

+
1

3
(2k + 2)(h− 1)(k2 − 1) + (2k + 1)[(2k + 2)(h− 1)− 1]

= Kf∗(G′h−1,k) + 4(k + 1)2
h−1∑
j=1

rG′
h,k

(uj , uh−1)

+
4

3
(k3 + 4k2 + 2k − 1)(h− 1) +

1

3
(k3 − k) + 1

= Kf∗(G′1,k) +
h−1∑
i=1

[
4(k + 1)2

i∑
j=1

rG′
h,k

(uj , ui)

+
4

3
(k3 + 4k2 + 2k − 1)i+

1

3
(k3 − k) + 1

]
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= 4(k + 1)2
h−1∑
i=1

i∑
j=1

rG′
h,k

(uj , ui) +
2

3
(k3 + 4k2 + 2k − 1)h2

+
1

3
(−k3 − 8k2 − 5k + 5)h− 1

= 4(k + 1)2
[
W (Ph−1, ωr) +

1

6
h(h− 1)(h− 2)

]
+

2

3
(k3 + 4k2 + 2k − 1)h2

+
1

3
(−k3 − 8k2 − 5k + 5)h− 1

= 4(k + 1)2W (Ph−1, ωr) +
2

3
(k + 1)2h3 +

2

3
(k3 + k2 − 4k − 4)h2

+
1

3
(−k3 + k2 − 5k + 9)h− 1.

The proof is completed.
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