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Abstract

The q-Wiener index of unicyclic graphs are determined in this work. As
an example of its applications, an explicit expression of q-Wiener index of
caterpillar cycles is presented.
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1 Introduction
All graphs considered in this paper are connected and simple. As usual, the

distance between two vertices u, v of a graph G is denoted by dG(u, v), or d(u, v)

for short. The maximum of such numbers, denoted by d(G), is called the diameter

of graph G.

Let u0u1u2 · · ·un be a molecular chain. Note the interaction between two atoms

decreases when the distance between them increases. Let q < 1 be a positive real

number, and suppose that the contribution of atom u1 to atom u0 is unity. Then

the total interaction of atoms to atom u0 can be modeled by

[n+ 1]q = 1 + q + q2 + · · ·+ qn =
1− qn+1

1− q
.

And the total interaction between individual atoms of a molecule with graph G can

be modeled by the following formula [1,2]

W1(G, q) =
∑

{u,v}∈V (G)

[d(u, v)]q.
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In [1,2], other two concepts of q-Wiener index of a graph G are also introduced

as follows

W2(G, q) =
∑

{u,v}∈V (G)

[d(u, v)]qq
d−d(u,v),

W3(G, q) =
∑

{u,v}∈V (G)

[d(u, v)]qq
d(u,v).

On the one hand, these three q-Wiener indices have close relationship with the

classic Wiener index, which can be exemplified by the following equations

lim
q→1

W1(G, q) = lim
q→1

W2(G, q) = lim
q→1

W3(G, q) = W (G).

On the other hand, these three q-Wiener indices are also mutually related as follows

W2(G, q) = qd−1W1

(
G,

1

q

)
, (1)

W3(G, q) = (1 + q)W1(G, q2)−W1(G, q). (2)

The earliest q-analog studied in detail is the basic hypergeometric series, which

was introduced in the 19th century [3]. q-Analogs find their applications in lots of

areas, such as fractals and multi-fractal measures, the entropy of chaotic dynamical

systems, and quantum groups. For derails in this field, the readers are suggested

to refer to [4,5] for example. Based on equations (1) and (2), in this work, we only

consider the first case of q-Wiener index. As a result, the q-Wiener index of unicyclic

graphs are determined. As an example of its applications, an explicit expression of

q-Wiener index of caterpillar cycles is also presented.

Before proceeding, let us introduce some more symbols and terminology. For any

complete graph Kn and a forest F , let KF
n denote the graph obtained by pasting

one vertex of Kn and a vertex of T . For any two trees T1 and T2 with u ∈ V (T1) and

v ∈ V (T2), let T1uvT2 denote a graph obtained by joining T1 and T2 with an new

edge uv. In this paper, we shall obtain a q-Wiener index of KF
n at first, and then

use the obtained observation to determine the q-winer index of unicyclic graphs. For

other symbols and terminology not specified herein, we follow that of [6].

2 q-Wiener Index of Unicyclic Graphs
For any two vertices of u and v of G, we write dG(u, v; q) = [d(u, v)]q and

dG(u; q) =
∑

v∈V (G)

dG(u, v; q), then

W1(G, q) =
∑

{u,v}⊆V (G)

dG(u, v; q) =
1

2

∑
u∈V (G)

dG(u; q).
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When q = 1, we have

W (G) =
1

2

∑
u∈V (G)

dG(u; 1).

For simplicity, we write W1(G) for W1(G, q) in this paper.

Lemma 2.1[1] Let T1 and T2 be two trees on n1 and n2 vertices, respectively,

with v1 ∈ V (T1) and v2 ∈ V (T2). If the tree T is obtained by linking v1 and v2 with

an edge, then

W1(T ) = W1(T1) +W1(T2) + n1n2 + q(n1dT2(v2; q) + n2dT1(v1; q))

−q(1− q)dT1(v1; q)dT2(v2; q).

Lemma 2.2 If we denote by {v1, v2, · · · , vn} the vertex set of the subgraph Kn

of KF
n , by Ti the component of KF

n − E(Kn) that contains vertex vi and ni = |Ti|,
then

W1(K
F
n ) =

n∑
i, j = 1
i ̸= j

(ninj + q(nidTj (vj ; q)) + njdTi(vi; q))

−
n∑

i, j = 1
i ̸= j

q(1− q)dTi(vi; q)dTj (vj ; q) +

n∑
i=1

W1(Ti).

Proof Let G = KF
n . By (1) of Lemma 2.1, we have

W1(K
F
n ) =

∑
{u,v}⊆V (KF

n )

dG(u, v; q)

=
n∑

i=1

∑
{u,v}⊆V (Ti)

dG(u, v; q) +
n∑

i, j = 1
i ̸= j

∑
u ∈ V (Ti)
v ∈ V (Tj)

dG(u, v; q)

=

n∑
i ̸= j

i, j = 1

 ∑
u ∈ V (Ti)
v ∈ V (Tj)

dG(u, v; q)+
∑

{u,v}⊆V (Ti)

dG(u, v; q)+
∑

{u,v}⊆V (Tj)

dG(u, v; q)



−
n∑

i ̸= j
i, j = 1

 ∑
{u,v}⊆V (Ti)

dG(u, v; q) +
∑

{u,v}⊆V (Tj)

dG(u, v; q)

+
n∑

i=1

W1(Ti)
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=

n∑
i=1

W1(Ti) +

n∑
i, j = 1
i ̸= j

W1(TivivjTj)− (n− 1)

n∑
i=1

W1(Ti)

=
n∑

i, j = 1
i ̸= j

(
W1(Ti) +W1(Tj) + ninj + q(nidTj (vj ; q) + njdTi(vi; q))

−q(1− q)dTi(vi; q)dTj (vj ; q)
)
− (n− 2)

n∑
i=1

W1(Ti)

=

n∑
i, j = 1
i ̸= j

(ninj + q(nidTj (vj ; q) + njdTi(vi; q)))

−
n∑

i, j = 1
i ̸= j

(q(1− q)dTi(vi; q)dTj (vj ; q)) +

n∑
i=1

W1(Ti).

And so, the lemma follows.

Theorem 2.1 Let G be a unicyclic graph with cycle C = v1v2 · · · vnv1. If Ti is

the subgraph of G− E(C) that contains vertex vi and ni = |Ti|, then

W1(G) =

n∑
i, j = 1
i ̸= j

(ninj + q(nidTj (vj ; q) + njdTi(vi; q)))

−
n∑

i, j = 1
i ̸= j

(
q(1− q)dTi(vi; q)dTj (vj ; q)q

dC(vi,vj)−1

+ninj [dC(vi, vj)− 1]q
)
+

n∑
i=1

W1(Ti).

Proof Add as few as possible edges to G such that in the new obtained graph

G′, every vertex vi is adjacent to every vertex vj with i ̸= j. For every pair of

vertices u ∈ V (Ti) and v ∈ V (Tj), we have

dG(u, v) = dG′(u, v) + dC(vi, vj)− 1.

Combining this observation with the definition of dG(u, v; q), we have

dG(u, v; q) = dG′(u, v; q)qdC(vi,vj)−1 + [dC(vi, vj)− 1]q.

And so,
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W1(G) =

n∑
i, j = 1
i ̸= j

∑
u ∈ V (Ti)
v ∈ V (Tj)

dG(u, v; q) +

n∑
i=1

∑
{u,v}⊆V (Ti)

dG(u, v; q)

=
n∑

i, j = 1
i ̸= j

(
(W1(TivivjTj)−W1(Ti)−W1(Tj))q

dC(vi,vj)−1

+ninj [dC(vi, vj)− 1]q
)
+

n∑
i=1

W1(Ti).

It follows from the combination of Lemma 2.1 and the above formula that

W1(G) =

n∑
i=1

W1(Ti) +

n∑
i, j = 1
i ̸= j

(
(ninj + q(nidTj (vj ; q) + njdTi(vi; q))

−q(1− q)dTi(vi; q)dTj (vj ; q))q
dC(vi,vj)−1 + ninj [dC(vi, vj)− 1]q

)
.

And so, the theorem follows.

As an application of Theorem 2.1, we shall present the explicity expression

of the caterpillar cycles. This kind of graphs are constructed as follows [5]. Let

Ck = v1v2 · · · vkv1 be a cycle on k vertices with k ≥ 3. Then caterpillar cycle

Ck(n1, n2 · · ·nk) is obtained from Ck by attaching ni vertices to vi, where ni ≥ 0 for

all i = 1, 2, · · · , k.
Lemma 2.3[1,2] If n ≥ 2, then

W1(Sn) =
n(n− 1)

2
+

(n− 1)(n− 2)

2
q.

The following corollary follows directly from the combination of Theorem 2.1

and Lemma 2.3, and so we leave its proof to the readers.

Corollary 2.1 Let Ck(n1, n2, · · · , nk) be a caterpillar cycle with k ≥ 3, ni ≥
0 for all i = 1, 2, · · · , k. If denote by C = v1v2 · · · vkv1 the unique cycle of this

caterpiller cycle, and Ti by the tree of Ck(n1, n2, · · · , nk)−E(C) that contains vertex

vi, then

W1(G) =
1

2

n∑
i=1

(
ni(ni − 1) + (ni − 1)(ni − 2)q

)
+

n∑
i, j = 1
i ̸= j

(
(ninj + q(2ninj − ni − nj)− q(1− q)(ni − 1)(nj − 1))qdC(vi,vj)−1

+ninj [dC(vi, vj)− 1]q
)
.
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