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Abstract

The g-Wiener index of unicyclic graphs are determined in this work. As
an example of its applications, an explicit expression of ¢-Wiener index of
caterpillar cycles is presented.
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1 Introduction

All graphs considered in this paper are connected and simple. As usual, the
distance between two vertices u, v of a graph G is denoted by dg(u,v), or d(u,v)
for short. The maximum of such numbers, denoted by d(G), is called the diameter
of graph G.

Let upuqus - - - up, be a molecular chain. Note the interaction between two atoms
decreases when the distance between them increases. Let ¢ < 1 be a positive real
number, and suppose that the contribution of atom u; to atom wg is unity. Then
the total interaction of atoms to atom ug can be modeled by

5 1— qn+1

m+1lly=14+q+q¢ +---+¢" = 17—(]

And the total interaction between individual atoms of a molecule with graph G can
be modeled by the following formula [1,2]

Wi(Gq)= > ldu,v)l

{u,v}eV(G)
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In [1,2], other two concepts of g-Wiener index of a graph G are also introduced
as follows

Wa(Grg) = Y [d(u,v)]eq "™,
{uv}ev(@)
Wa(Gg) = > [d(u,v)]gq" ™Y,
{uw}eV(G)
On the one hand, these three ¢g-Wiener indices have close relationship with the
classic Wiener index, which can be exemplified by the following equations

lim Wi(G, q) = lim Wa(G, q) = lim W5(G, q) = W(Q).
q—1 q—1 q—1
On the other hand, these three g-Wiener indices are also mutually related as follows
1
_ d-1 1
WQ(Ga Q) =49 Wl (G7 q>7 (1)
W3(Ga Q) = (1 + Q)Wl(G, q2) - Wl(G7Q) (2)

The earliest g-analog studied in detail is the basic hypergeometric series, which
was introduced in the 19th century [3]. g-Analogs find their applications in lots of
areas, such as fractals and multi-fractal measures, the entropy of chaotic dynamical
systems, and quantum groups. For derails in this field, the readers are suggested
to refer to [4,5] for example. Based on equations (1) and (2), in this work, we only
consider the first case of g-Wiener index. As a result, the g-Wiener index of unicyclic
graphs are determined. As an example of its applications, an explicit expression of
g-Wiener index of caterpillar cycles is also presented.

Before proceeding, let us introduce some more symbols and terminology. For any
complete graph K, and a forest F, let K! denote the graph obtained by pasting
one vertex of K, and a vertex of T'. For any two trees 71 and T with v € V(T}) and
v € V(T3), let ThuvT, denote a graph obtained by joining 77 and Ty with an new
edge uv. In this paper, we shall obtain a ¢-Wiener index of K" at first, and then
use the obtained observation to determine the g-winer index of unicyclic graphs. For
other symbols and terminology not specified herein, we follow that of [6].

2 ¢-Wiener Index of Unicyclic Graphs

For any two vertices of u and v of G, we write dg(u,v;q) = [d(u,v)], and
dG(U; Q) = Z dG(u7U; Q)v then
veV(G)

M@= Y delwuia) =5 Y dalusa)

{u,w}CV(G) ueV(G)
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When ¢ = 1, we have
Z dg(u;1).
uEV (G)

For simplicity, we write W1(G) for Wi (G, q) in this paper.

Lemma 2.1[1 et Ty and T, be two trees on ny and ng vertices, respectively,
with v1 € V(T1) and vo € V(T3). If the tree T is obtained by linking v1 and ve with
an edge, then

Wh(T) = Wi(Th) + Wi (Te) + ning + q(nadr, (ve; q) + nadr, (v15q))
—q(1 = q)dr, (v1; q)dr, (v2; q)-

Lemma 2.2 If we denote by {vi,ve, -+ ,v,} the vertex set of the subgraph K,
of K, by T; the component of KI — E(K,) that contains vertex v; and n; = |Tj|,
then

n

Wi(K)) = Z (ning + q(nidr, (v5; q)) + njdr, (vi; q))

i, =1
tF#j
- Z ]-_da Vi q )dT(U], +ZW1
i,j=1 i=1
1]

Proof Let G = K. By (1) of Lemma 2.1, we have
WK = Y. da(u,v;q)
{uv}CV(K])

n

:Z Z da(u,v;q) + Z Z da(u,v;q)

i=1 {u,w}CV(T}) i,j=1 ueV(T)
i#j veV(Ty

=> | Y. de(wuvi+ D delwvig+ Y da(uv;q)

i#j \ue V() {uv}CV(Ty) {uv}CV(Ty)
i,j=1\weV(T))

Dl D SEEEIRT D DR TR B ST
i£] \m)ev (T {uw}QV(T)
1,] =
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=> Wi(T)+ Y Wi(TwwTy) — (n— 1) ZWl
i=1 i,j=1
i

n

= Z (Wl( )+Wl( )+nzn] +Q(nsz (ij )—l—ndei(Ui;Q))

ij=1
]
—q(1 — q)dr, (vis 9)dr, (vj3 ) — (n—2) Y Wi(Ty)
i=1
= Y (niny + q(nidr; (v q) + nydr, (vis q)))
ij=1
]
- Z (1= @)dr, (vi; a)dr, (vj:9)) + > Wi(Th).
i,5=1 =1
]

And so, the lemma follows.
Theorem 2.1 Let G be a unicyclic graph with cycle C' = vivg -+ -vpvyr. If T; is
the subgraph of G — E(C) that contains vertex v; and n; = |T;|, then

n

Wi(G) = Y (ning + q(nidr; (v @) + nydr, (vi; )))

ij=1
i#j
- Z (1 = q)dr, (vi; q)dr, (v5; q)g e )~
i, =1
i#£j
+nanglde (vi,v5) = 1g) + Y Wi(Ty).
i=1

Proof Add as few as possible edges to G such that in the new obtained graph
G', every vertex v; is adjacent to every vertex v; with ¢ # j. For every pair of
vertices u € V(T;) and v € V(T}), we have

dg(u,v) = dgr(u,v) + de (v, v5) — 1.
Combining this observation with the definition of dg(u,v;q), we have
de(u,v;q) = der (u,v;0)g™ D1 4 [do (v, v5) — 1.

And so,
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Z ST da(u,viq) +Z Y. da(u,viq)

i,j=1 weV(T;) i=1 {uw}CV(T})
i£j veV(Ty)

e Z ((W]_ (T Uﬂ}] ) W].( ) Wl(Tj))qu(Uh”j)—l
’L,]:l
1#]

+ninildo(vi,v5) — 14 —|— ZWl

It follows from the combination of Lemma 2.1 and the above formula that

G)=>_Wi(T)+ Y ((nin + qnidr; (v5; q) + njdr, (vi; )
i=1 i,j=1
%
—q(1 = q)dr, (vi; @)dr, (v5; 9)) g™ D1 + i [de(vi, v5) — 1)

And so, the theorem follows.

As an application of Theorem 2.1, we shall present the explicity expression
of the caterpillar cycles. This kind of graphs are constructed as follows [5]. Let
Cr = vivy---vkv1 be a cycle on k vertices with &k > 3. Then caterpillar cycle
Ck(ni,ng -+ -ny) is obtained from Cj by attaching n; vertices to v;, where n; > 0 for
alli=1,2,--- k.

Lemma 2.302 [fn > 2, then

n(n2— 1) n (n— 1)2(71 — 2>q.

The following corollary follows directly from the combination of Theorem 2.1

Wi (Sn) =

and Lemma 2.3, and so we leave its proof to the readers.

Corollary 2.1 Let Ci(ni,ng,-- ,nk) be a caterpillar cycle with k > 3, n; >
0 for all i = 1,2,--- k. If denote by C = vivy---vpv1 the unique cycle of this
caterpiller cycle, and T; by the tree of C(n1,ng, -+ ,ni)— E(C) that contains vertex
v;, then

WA(G) = 23 (i — 1) + (s — 1) — 2)a)
i=1
+ Z (ninj + q(2ning — n; —n3) — q(1 — q)(n; — 1)(ny — 1))g2e @)1
i,j=1
i#j

+ninjlde (vi,vj) — 1]4).
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