ON q-WIENER INDEX OF UNICYCLIC GRAPHS* ${ }^{*}$

Xing Feng ${ }^{1,2 \ddagger}$ Jianping Ou^{2}, \quad Shaihua Liu^{2}
(1. Faculty of Science, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, PR China;
2. Department of Math., Wuyi University, Jiangmen 529020, Guangdong, PR China)

Abstract

The q-Wiener index of unicyclic graphs are determined in this work. As an example of its applications, an explicit expression of q-Wiener index of caterpillar cycles is presented.

Keywords q-Wiener index; unicyclic graphs; caterpillar cycles
2000 Mathematics Subject Classification 05C90; 05C50

1 Introduction

All graphs considered in this paper are connected and simple. As usual, the distance between two vertices u, v of a graph G is denoted by $d_{G}(u, v)$, or $d(u, v)$ for short. The maximum of such numbers, denoted by $d(G)$, is called the diameter of graph G.

Let $u_{0} u_{1} u_{2} \cdots u_{n}$ be a molecular chain. Note the interaction between two atoms decreases when the distance between them increases. Let $q<1$ be a positive real number, and suppose that the contribution of atom u_{1} to atom u_{0} is unity. Then the total interaction of atoms to atom u_{0} can be modeled by

$$
[n+1]_{q}=1+q+q^{2}+\cdots+q^{n}=\frac{1-q^{n+1}}{1-q}
$$

And the total interaction between individual atoms of a molecule with graph G can be modeled by the following formula [1,2]

$$
W_{1}(G, q)=\sum_{\{u, v\} \in V(G)}[d(u, v)]_{q}
$$

[^0]In $[1,2]$, other two concepts of q-Wiener index of a graph G are also introduced as follows

$$
\begin{aligned}
& W_{2}(G, q)=\sum_{\{u, v\} \in V(G)}[d(u, v)]_{q} q^{d-d(u, v)}, \\
& W_{3}(G, q)=\sum_{\{u, v\} \in V(G)}[d(u, v)]_{q} q^{d(u, v)} .
\end{aligned}
$$

On the one hand, these three q-Wiener indices have close relationship with the classic Wiener index, which can be exemplified by the following equations

$$
\lim _{q \rightarrow 1} W_{1}(G, q)=\lim _{q \rightarrow 1} W_{2}(G, q)=\lim _{q \rightarrow 1} W_{3}(G, q)=W(G) .
$$

On the other hand, these three q-Wiener indices are also mutually related as follows

$$
\begin{align*}
& W_{2}(G, q)=q^{d-1} W_{1}\left(G, \frac{1}{q}\right), \tag{1}\\
& W_{3}(G, q)=(1+q) W_{1}\left(G, q^{2}\right)-W_{1}(G, q) . \tag{2}
\end{align*}
$$

The earliest q-analog studied in detail is the basic hypergeometric series, which was introduced in the 19th century [3]. q-Analogs find their applications in lots of areas, such as fractals and multi-fractal measures, the entropy of chaotic dynamical systems, and quantum groups. For derails in this field, the readers are suggested to refer to $[4,5]$ for example. Based on equations (1) and (2), in this work, we only consider the first case of q-Wiener index. As a result, the q-Wiener index of unicyclic graphs are determined. As an example of its applications, an explicit expression of q-Wiener index of caterpillar cycles is also presented.

Before proceeding, let us introduce some more symbols and terminology. For any complete graph K_{n} and a forest F, let K_{n}^{F} denote the graph obtained by pasting one vertex of K_{n} and a vertex of T. For any two trees T_{1} and T_{2} with $u \in V\left(T_{1}\right)$ and $v \in V\left(T_{2}\right)$, let $T_{1} u v T_{2}$ denote a graph obtained by joining T_{1} and T_{2} with an new edge $u v$. In this paper, we shall obtain a q-Wiener index of K_{n}^{F} at first, and then use the obtained observation to determine the q-winer index of unicyclic graphs. For other symbols and terminology not specified herein, we follow that of [6].

$2 \quad q$-Wiener Index of Unicyclic Graphs

For any two vertices of u and v of G, we write $d_{G}(u, v ; q)=[d(u, v)]_{q}$ and $d_{G}(u ; q)=\sum_{v \in V(G)} d_{G}(u, v ; q)$, then

$$
W_{1}(G, q)=\sum_{\{u, v\} \subseteq V(G)} d_{G}(u, v ; q)=\frac{1}{2} \sum_{u \in V(G)} d_{G}(u ; q) .
$$

When $q=1$, we have

$$
W(G)=\frac{1}{2} \sum_{u \in V(G)} d_{G}(u ; 1) .
$$

For simplicity, we write $W_{1}(G)$ for $W_{1}(G, q)$ in this paper.
Lemma 2.1 ${ }^{[1]}$ Let T_{1} and T_{2} be two trees on n_{1} and n_{2} vertices, respectively, with $v_{1} \in V\left(T_{1}\right)$ and $v_{2} \in V\left(T_{2}\right)$. If the tree T is obtained by linking v_{1} and v_{2} with an edge, then

$$
\begin{aligned}
W_{1}(T)= & W_{1}\left(T_{1}\right)+W_{1}\left(T_{2}\right)+n_{1} n_{2}+q\left(n_{1} d_{T_{2}}\left(v_{2} ; q\right)+n_{2} d_{T_{1}}\left(v_{1} ; q\right)\right) \\
& -q(1-q) d_{T_{1}}\left(v_{1} ; q\right) d_{T_{2}}\left(v_{2} ; q\right) .
\end{aligned}
$$

Lemma 2.2 If we denote by $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ the vertex set of the subgraph K_{n} of K_{n}^{F}, by T_{i} the component of $K_{n}^{F}-E\left(K_{n}\right)$ that contains vertex v_{i} and $n_{i}=\left|T_{i}\right|$, then

$$
\begin{aligned}
W_{1}\left(K_{n}^{F}\right)= & \sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(n_{i} n_{j}+q\left(n_{i} d_{T_{j}}\left(v_{j} ; q\right)\right)+n_{j} d_{T_{i}}\left(v_{i} ; q\right)\right) \\
& -\sum_{\substack{i, j=1 \\
i \neq j}}^{n} q(1-q) d_{T_{i}}\left(v_{i} ; q\right) d_{T_{j}}\left(v_{j} ; q\right)+\sum_{i=1}^{n} W_{1}\left(T_{i}\right) .
\end{aligned}
$$

Proof Let $G=K_{n}^{F}$. By (1) of Lemma 2.1, we have

$$
\begin{aligned}
W_{1}\left(K_{n}^{F}\right)= & \sum_{\{u, v\} \subseteq V\left(K_{n}^{F}\right)} d_{G}(u, v ; q) \\
= & \sum_{i=1}^{n} \sum_{\{u, v\} \subseteq V\left(T_{i}\right)} d_{G}(u, v ; q)+\sum_{\substack{i, j=1 \\
i \neq j}}^{n} \sum_{\substack{u \in V\left(T_{i}\right) \\
v \in V\left(T_{j}\right)}} d_{G}(u, v ; q) \\
= & \sum_{\substack{i \neq j \\
i, j=1}}^{n}\left(\sum_{\substack{u \in V\left(T_{i}\right) \\
v \in V\left(T_{j}\right)}} d_{G}(u, v ; q)+\sum_{\{u, v\} \subseteq V\left(T_{i}\right)} d_{G}(u, v ; q)+\sum_{\{u, v\} \subseteq V\left(T_{j}\right)} d_{G}(u, v ; q)\right) \\
& -\sum_{\substack{i \neq j \\
i, j=1}}^{n}\left(\sum_{\{u, v\} \subseteq V\left(T_{i}\right)} d_{G}(u, v ; q)+\sum_{\{u, v\} \subseteq V\left(T_{j}\right)} d_{G}(u, v ; q)\right)+\sum_{i=1}^{n} W_{1}\left(T_{i}\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{i=1}^{n} W_{1}\left(T_{i}\right)+\sum_{\substack{i, j=1 \\
i \neq j}}^{n} W_{1}\left(T_{i} v_{i} v_{j} T_{j}\right)-(n-1) \sum_{i=1}^{n} W_{1}\left(T_{i}\right) \\
= & \sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(W_{1}\left(T_{i}\right)+W_{1}\left(T_{j}\right)+n_{i} n_{j}+q\left(n_{i} d_{T_{j}}\left(v_{j} ; q\right)+n_{j} d_{T_{i}}\left(v_{i} ; q\right)\right)\right. \\
& \left.-q(1-q) d_{T_{i}}\left(v_{i} ; q\right) d_{T_{j}}\left(v_{j} ; q\right)\right)-(n-2) \sum_{i=1}^{n} W_{1}\left(T_{i}\right) \\
= & \sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(n_{i} n_{j}+q\left(n_{i} d_{T_{j}}\left(v_{j} ; q\right)+n_{j} d_{T_{i}}\left(v_{i} ; q\right)\right)\right) \\
& -\sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(q(1-q) d_{T_{i}}\left(v_{i} ; q\right) d_{T_{j}}\left(v_{j} ; q\right)\right)+\sum_{i=1}^{n} W_{1}\left(T_{i}\right) .
\end{aligned}
$$

And so, the lemma follows.
Theorem 2.1 Let G be a unicyclic graph with cycle $C=v_{1} v_{2} \cdots v_{n} v_{1}$. If T_{i} is the subgraph of $G-E(C)$ that contains vertex v_{i} and $n_{i}=\left|T_{i}\right|$, then

$$
\begin{aligned}
W_{1}(G)= & \sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(n_{i} n_{j}+q\left(n_{i} d_{T_{j}}\left(v_{j} ; q\right)+n_{j} d_{T_{i}}\left(v_{i} ; q\right)\right)\right) \\
& -\sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(q(1-q) d_{T_{i}}\left(v_{i} ; q\right) d_{T_{j}}\left(v_{j} ; q\right) q^{d_{C}\left(v_{i}, v_{j}\right)-1}\right. \\
& \left.+n_{i} n_{j}\left[d_{C}\left(v_{i}, v_{j}\right)-1\right]_{q}\right)+\sum_{i=1}^{n} W_{1}\left(T_{i}\right) .
\end{aligned}
$$

Proof Add as few as possible edges to G such that in the new obtained graph G^{\prime}, every vertex v_{i} is adjacent to every vertex v_{j} with $i \neq j$. For every pair of vertices $u \in V\left(T_{i}\right)$ and $v \in V\left(T_{j}\right)$, we have

$$
d_{G}(u, v)=d_{G^{\prime}}(u, v)+d_{C}\left(v_{i}, v_{j}\right)-1 .
$$

Combining this observation with the definition of $d_{G}(u, v ; q)$, we have

$$
d_{G}(u, v ; q)=d_{G^{\prime}}(u, v ; q) q^{d_{C}\left(v_{i}, v_{j}\right)-1}+\left[d_{C}\left(v_{i}, v_{j}\right)-1\right]_{q} .
$$

And so,

$$
\begin{aligned}
W_{1}(G)= & \sum_{\substack{i, j=1 \\
i \neq j}}^{n} \sum_{\substack{u \in V\left(T_{i}\right) \\
v \in V\left(T_{j}\right)}} d_{G}(u, v ; q)+\sum_{i=1}^{n} \sum_{\{u, v\} \subseteq V\left(T_{i}\right)} d_{G}(u, v ; q) \\
= & \sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(\left(W_{1}\left(T_{i} v_{i} v_{j} T_{j}\right)-W_{1}\left(T_{i}\right)-W_{1}\left(T_{j}\right)\right) q^{d_{C}\left(v_{i}, v_{j}\right)-1}\right. \\
& \left.+n_{i} n_{j}\left[d_{C}\left(v_{i}, v_{j}\right)-1\right]_{q}\right)+\sum_{i=1}^{n} W_{1}\left(T_{i}\right) .
\end{aligned}
$$

It follows from the combination of Lemma 2.1 and the above formula that

$$
\begin{aligned}
W_{1}(G)= & \sum_{i=1}^{n} W_{1}\left(T_{i}\right)+\sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(\left(n_{i} n_{j}+q\left(n_{i} d_{T_{j}}\left(v_{j} ; q\right)+n_{j} d_{T_{i}}\left(v_{i} ; q\right)\right)\right.\right. \\
& \left.\left.-q(1-q) d_{T_{i}}\left(v_{i} ; q\right) d_{T_{j}}\left(v_{j} ; q\right)\right) q^{d_{C}\left(v_{i}, v_{j}\right)-1}+n_{i} n_{j}\left[d_{C}\left(v_{i}, v_{j}\right)-1\right]_{q}\right) .
\end{aligned}
$$

And so, the theorem follows.
As an application of Theorem 2.1, we shall present the explicity expression of the caterpillar cycles. This kind of graphs are constructed as follows [5]. Let $C_{k}=v_{1} v_{2} \cdots v_{k} v_{1}$ be a cycle on k vertices with $k \geq 3$. Then caterpillar cycle $C_{k}\left(n_{1}, n_{2} \cdots n_{k}\right)$ is obtained from C_{k} by attaching n_{i} vertices to v_{i}, where $n_{i} \geq 0$ for all $i=1,2, \cdots, k$.

Lemma 2.3 ${ }^{[1,2]}$ If $n \geq 2$, then

$$
W_{1}\left(S_{n}\right)=\frac{n(n-1)}{2}+\frac{(n-1)(n-2)}{2} q .
$$

The following corollary follows directly from the combination of Theorem 2.1 and Lemma 2.3, and so we leave its proof to the readers.

Corollary 2.1 Let $C_{k}\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ be a caterpillar cycle with $k \geq 3, n_{i} \geq$ 0 for all $i=1,2, \cdots, k$. If denote by $C=v_{1} v_{2} \cdots v_{k} v_{1}$ the unique cycle of this caterpiller cycle, and T_{i} by the tree of $C_{k}\left(n_{1}, n_{2}, \cdots, n_{k}\right)-E(C)$ that contains vertex v_{i}, then

$$
\begin{aligned}
W_{1}(G)= & \frac{1}{2} \sum_{i=1}^{n}\left(n_{i}\left(n_{i}-1\right)+\left(n_{i}-1\right)\left(n_{i}-2\right) q\right) \\
& +\sum_{\substack{i, j=1 \\
i \neq j}}^{n}\left(\left(n_{i} n_{j}+q\left(2 n_{i} n_{j}-n_{i}-n_{j}\right)-q(1-q)\left(n_{i}-1\right)\left(n_{j}-1\right)\right) q^{d_{C}\left(v_{i}, v_{j}\right)-1}\right. \\
& \left.+n_{i} n_{j}\left[d_{C}\left(v_{i}, v_{j}\right)-1\right]_{q}\right) .
\end{aligned}
$$

References

[1] J.G. Liu, I. Gutman, Z.C. Mu, Y.S. Zhang, q-Wiener index of some compound trees, Appl. Math. Comput., 218(2012),9528-9535.
[2] Y.S. Zhang, I. Gutman, J.G. Liu, Z.C. Mu, q-Analog of Wiener index, MATCH Commun. Math. Comput. Chem., 67(2012),347-356.
[3] G. Gasper, M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 2004.
[4] G.E. Andrews, q-Series, Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra. Am. Math. Soc., Providence, 1986.
[5] S. Roman, More on the umbral calculus, with emphasis on the q-umbral calculus, J. Math. Anal. Appl., 107(1985),222-254.
[6] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.

[^0]: *This work was supported by National Natural Science Foundation of China (11126326), NSF of Guandong Province (S2012010010815), Foundation of Wuyi University (201210041650504).
 ${ }^{\dagger}$ Manuscript received March 11, 2016; Revised July 10, 2018
 ${ }^{\ddagger}$ Corresponding author. E-mail: fengxing_fm@163.com

