
SOME LIMIT PROPERTIES AND THE
GENERALIZED AEP THEOREM FOR

NONHOMOGENEOUS MARKOV CHAINS∗†

Ping Hu, Zhongzhi Wang‡

(School of Math. & Physics Science and Engineering, AnHui University of Technology,

Ma’anshan 243002, Anhui, PR China)

Ann. of Appl. Math.
34:3(2018), 269-284

Abstract

Let (ξn)
∞
n=0 be a Markov chain with the state space X = {1, 2, · · · , b},

(gn(x, y))
∞
n=1 be functions defined on X × X , and

Fmn,bn(ω) =
1

bn

mn+bn∑
k=mn+1

gk(ξk−1, ξk).

In this paper the limit properties of Fmn,bn(ω) and the generalized relative en-
tropy density fmn,bn(ω) = −(1/bn) log p(ξmn,mn+bn) are discussed, and some
theorems on a.s. convergence for (ξn)

∞
n=0 and the generalized Shannon-McMillan

(AEP) theorem on finite nonhomogeneous Markov chains are obtained.
Keywords AEP; nonhomogeneous Markov chains; limit theorem; gener-

alized relative entropy density
2000 Mathematics Subject Classification 60F15; 94A37

1 Introduction

Throughout this paper, let the random variables (ξn)
∞
n=0 be defined on a fixed

probability space (Ω,F , P ) taking on values in a finite set X = {1, 2, · · · , b}. Given

two integers, we denote by ξm,n the random vector of (ξm, · · · , ξn) and by xm,n =

(xm, · · · , xn) a realization of ξm,n. Suppose the joint distribution of ξm,n is

P (ξm,n = xm,n) = p(xm,n) > 0, xi ∈ X , m ≤ i ≤ n.

In what follows we shall assume that (mn)
∞
n=0 is a fixed sequence of positive integers,

(bn)
∞
n=0 is a sequence of integers satisfying: For every ε > 0,

∞∑
n=0

exp(−εbn) < ∞.
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Let

fmn,bn(ω) = − 1

bn
log p(ξmn,mn+bn), (1.1)

where log is the natural logarithm. The defined quantity of fmn,bn(ω) is referred

to as generalized relative entropy density of (ξn)
∞
n=0 (see Wang and Yang [13]). If

(ξn)
∞
n=0 is a nonhomogeneous Markov chain with the state space X = {1, 2, · · · , b},

the initial distribution

(p(1), · · · , p(b)), p(i) > 0, i ∈ X , (1.2)

and the transition matrices

Pn = (pn(j|i))b×b, pn(j|i) > 0, i, j ∈ X , n ≥ 1, (1.3)

then

p(xmn,mn+bn) = P (ξmn,mn+bn = xmn,mn+bn) = pmn(xmn)

mn+bn∏
k=mn+1

pk(xk|xk−1),

fmn,bn(ω) = − 1

bn

[
log pmn(ξmn) +

mn+bn∑
k=mn+1

log pk(ξk|ξk−1)

]
, (1.4)

where pmn(xmn) = P (ξmn = xmn), pn(j|i) = P (ξn = j|ξn−1 = i).

The statement of convergence of the relative entropy density f0,n(ω) to a constant

limit called the entropy rate of the process is known as the ergodic theorem of

information theory or asymptotic equipartition property (AEP). Shannon [11] first

showed that for the stationary ergodic Markov chain f0,n(ω) converges in probability

to a constant. McMillan [7] and Breiman [2] proved, respectively, that if (ξn)
∞
n=0 is

stationary and ergodic, then f0,n(ω) converges in L∞ and almost everywhere to a

constant. Since then, numerous extension have been made in many directions, such

as weakening the hypothesis on the reference measure, state space, index set and

required properties of the process. For example, in Feinstein [5], Chung [4], Moy [8],

Kiefer [6], Perez [9] and Barron [1].

In the paper of Mark Schwartz [10], it is shown that if (mn)
∞
n=1 and (bn)

∞
n=1 are

two sequences of positive integers, and a measure-preserving ergodic transformation

τ , the moving averages Tn(f) = b−1
n

mn+bn∑
k=mn+1

f(τk) converge a.s.. Motivated by the

work of Schwartz, in this paper we first establish a class of limit theorems for finite

nonhomogeneous Markov chains, then give an extend Shannon-McMillan (AEP)

theorem. The conditions of our main theorems are slightly weaker than those of

[13].
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Theorem 1 Let the Markov chain (ξn)
∞
n=0 and P=(p(j|i))b×b and (π1, π2, · · · , πb)

be as in Theorem 7. Let fmn,bn(ω) be the generalized relative entropy density of

(ξn)
∞
n=0 defined by (1.4). If

lim
n

1

bn

mn+bn∑
k=mn+1

[pk(j|i)− p(j|i)]+ = 0, for any i, j ∈ X , (1.5)

then

lim
n

fmn,bn(ω) = −
b∑

i=1

b∑
j=1

πip(j|i) log p(j|i) a.s. (1.6)

Remark 1 Let mn = 0, bn = n in (1.1), f0,n(ω) become the classical entropy

density, then Theorem 9 in [12] is a special case of Theorem 1. In particular, if

lim
n→∞

pn(j|i) = p(j|i), for any i, j ∈ X ,

then equation (1.6) also holds.

The rest of this paper is organized as follows: In Section 2, we prove some limit

theorem for the delayed sum of the functions of two variables of finite nonhomoge-

neous Markov chains. In Section 3, we get some other limits for Markov chains and

some limit theorems for the generalized relative entropy density, and finally, we give

an extension of AEP theorem to the case of finite nonhomogeneous Markov chains.

In the proof of our main results, the analytical technique put forward by Wang and

Yang [13] is applied.

2 Preliminaries

Let (ξn)
∞
n=0 be a Markov chain with the initial distribution (1.2) and the tran-

sition matrices (1.3), (gn(·, ·))∞n=1 be a sequence of real functions defined on X ×X ,

and

Fmn,bn(ω) =
1

bn

mn+bn∑
k=mn+1

g(ξk−1, ξk). (2.1)

For each i ∈ X , let δi(·) be the Kronecker delta function, that is,

δi(j) =

{
1, if j = i;
0, if j ̸= i.

It is clear that Fmn,bn(ω) can be rewritten as

Fmn,bn(ω) =
1

bn

mn+bn∑
k=mn+1

b∑
i=1

b∑
j=1

gk(i, j)δi(ξk−1)δj(ξk). (2.2)
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Lemma 1 If (ζn)
∞
n=0 is a sequence of positive random variables with sup

n≥0
Eζn ≤

c, for some constant c > 0, then

lim sup
n

b−1
n log ζn ≤ 0 a.s.

Proof By Markov inequality, for every ε > 0, we have

P

[
1

bn
log ζn ≥ ε

]
= P [ζn ≥ exp(bnε)] ≤ c · exp(−bnε).

Hence
∞∑
n=1

P

[
1

bn
log ζn ≥ ε

]
≤ c

∞∑
n=1

exp(−bnε) < ∞.

By the Borel-Cantelli lemma, taking a union over positive rational values of ε, with

probability 1, 1
bn

log ζn ≤ 0. The proof is completed.

The proof here is adapted from the proof of Theorem 2.1 in Wang and Yang

[13].

Theorem 2 Let (ξn)
∞
n=0 be a Markov chain defined by (1.2) and (1.3), Fmn,bn(ω)

be defined by (2.1), and (bn)
∞
n=1 be as in Lemma 1. If there exists a constant α > 0

satisfying that

bα(i, j) = lim sup
n

1

bn

mn+bn∑
k=mn+1

g2k(i, j)pk(j|i) exp(α|gk(i, j)|) < ∞, for any i, j ∈ X ,

(2.3)

then

lim
n

[
Fmn,bn(ω)−

1

bn

mn+bn∑
k=mn+1

b∑
j=1

gk(ξk−1, j)pk(j|ξk−1)

]
= 0 a.s., (2.4)

that is

lim
n

1

bn

mn+bn∑
k=mn+1

[
gk(ξk−1, ξk)−

b∑
j=1

gk(ξk−1, j)pk(j|ξk−1)

]
= 0 a.s. (2.5)

Proof Let λ ̸= 0 be a constant. Define, for any i, j ∈ X ,

Λmn,bn(λ, ω) = exp

[
λ

mn+bn∑
k=mn+1

δi(ξk−1)δj(ξk)gk(i, j)

]

·
mn+bn∏
k=mn+1

[
1

1 + (exp(λgk(i, j))− 1)pk(j|i)

]δi(ξk−1)

. (2.6)
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Note that

EΛmn,bn(λ, ω)

=
∑

xmn∈X
· · ·

∑
xmn+bn∈X

exp
(
λ[δi(xmn)δj(xmn+1)gmn+1(i, j) + · · ·

+δi(xmn+bn−1)δj(xmn+bn)gmn+bn(i, j)]
)

·
mn+bn∏
k=mn+1

[
1

1 + (exp(λgk(i, j))− 1)pk(j|i)

]δi(xk−1)

· p(xmn)

mn+bn∏
k=mn+1

p(xk|xk−1)

=
∑

xmn∈X
· · ·

∑
xmn+bn∈X

p(xmn)

mn+bn∏
k=mn+1

exp
(
λδi(xk−1)δj(xk)gk(i, j)

)
· pk(xk|xk−1)

[1 + (exp(λgk(i, j))− 1)pk(j|i)]δi(xk−1)

· · · · · ·
= 1.

By Lemma 1, we have 1
bn

log Λmn,bn(λ, ω) ≤ 0 a.s., that is there exists a set Aij(λ),

such that P (Aij(λ)) = 1 and

lim sup
n

1

bn
log Λmn,bn(λ, ω) ≤ 0, ω ∈ Aij(λ). (2.7)

From equation (2.6), we have

1

bn
log Λmn,bn(λ, ω) =

λ

bn

mn+bn∑
k=mn+1

δi(ξk−1)δj(ξk)gk(i, j)

− 1

bn

mn+bn∑
k=mn+1

δi(ξk−1) log[1+(exp(λgk(i, j))−1)pk(j|i)]. (2.8)

Equations (2.7) and (2.8) yield

lim sup
n

{
λ

bn

mn+bn∑
k=mn+1

δi(ξk−1)δj(ξk)gk(i, j)

− 1

bn

mn+bn∑
k=mn+1

δi(ξk−1) log[1+(exp(λgk(i, j))−1)pk(j|i)]

}
≤ 0, ω ∈ Aij(λ). (2.9)

(a) Putting λ > 0, and dividing both sides of equation (2.9) by λ, we have

lim sup
n

1

bn

{
mn+bn∑
k=mn+1

δi(ξk−1)δj(ξk)gk(i, j)

− 1

λ

mn+bn∑
k=mn+1

δi(ξk−1) log[1+(exp(λgk(i, j))−1)pk(j|i)]

}
≤ 0, ω ∈ Aij(λ). (2.10)
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From equation (2.10) and the property of superior limit

lim sup
n

(an − bn) ≤ 0 implies lim sup
n

(an − cn) ≤ lim sup
n

(bn − cn),

and the facts log(1 + x) ≤ x (x > −1) and 0 ≤ ex − 1− x ≤ x2e|x|, we obtain

lim sup
n

1

bn

[
mn+bn∑
k=mn+1

δi(ξk−1)δj(ξk)gk(i, j)−
mn+bn∑
k=mn+1

δi(ξk−1)gk(i, j)pk(j|i)

]

≤ lim sup
n

1

λbn

mn+bn∑
k=mn+1

δi(ξk−1){log[1 + (eλgk(i,j) − 1)pk(j|i)]− gk(i, j)pk(j|i)}

≤ lim sup
n

1

λbn

mn+bn∑
k=mn+1

δi(ξk−1)pk(j|i)[eλgk(i,j) − 1− λgk(i, j)]

≤ λ lim sup
n

1

bn

mn+bn∑
k=mn+1

g2k(i, j)pk(j|i)eλ|gk(i,j)|, ω ∈ Aij(λ). (2.11)

Choose λl ∈ (0, α), l = 1, 2, · · · , such that λl → 0 as l → ∞, and denote A
(1)
ij =

∞∩
l=1

Aij(λl). Then for all l ≥ 1, we have by equations (2.11) and (2.3)

lim sup
n

1

bn

[
mn+bn∑
k=mn+1

δi(ξk−1)δj(ξk)gk(i, j)−
mn+bn∑
k=mn+1

δi(ξk−1)gk(i, j)pk(j|i)

]

≤ λl lim sup
n

1

bn

mn+bn∑
k=mn+1

g2k(i, j)pk(j|i) exp(α|gk(i, j)|)

= λlbα(i, j), ω ∈ A
(1)
ij . (2.12)

Since λl → 0 as l → ∞, we have by equation (2.12) that

lim sup
n

1

bn

[
mn+bn∑
k=mn+1

δi(ξk−1)δj(ξk)gk(i, j)−
mn+bn∑
k=mn+1

δi(ξk−1)gk(i, j)pk(j|i)

]
≤0, ω∈A

(1)
ij .

(2.13)

(b) Putting λ < 0, an argument similar to the one used in (a) shows that there

exists a set A
(2)
ij with P (A

(2)
ij ) = 1, and

lim inf
n

1

bn

[
mn+bn∑
k=mn+1

δi(ξk−1)δj(ξk)gk(i, j)−
mn+bn∑
k=mn+1

δi(ξk−1)gk(i, j)pk(j|i)

]
≥0, ω∈A

(2)
ij .

(2.14)

Putting Aij = A
(1)
ij ∩A

(2)
ij , by equations (2.13) and (2.14), we have
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lim
n

1

bn

[
mn+bn∑
k=mn+1

δi(ξk−1)gk(i, j)[δj(ξk)− pk(j|i)]

]
= 0, ω ∈ Aij . (2.15)

Putting A =
b∩

i,j=1
Aij , by equations (2.13), (2.15) and (2.2), we have

lim
n

[
mn+bn∑
k=mn+1

gk(ξk−1, ξk)−
mn+bn∑
k=mn+1

b∑
j=1

gk(ξk−1, j)pk(j|ξk−1)

]

= lim
n

1

bn

mn+bn∑
k=mn+1

[
b∑

i=1

b∑
j=1

δi(ξk−1)δj(ξk)gk(i, j)−
b∑

i=1

b∑
j=1

δi(ξk−1)gk(i, j)pk(j|i)

]

=

b∑
i=1

b∑
j=1

lim
n

mn+bn∑
k=mn+1

δi(ξk−1)gk(i, j)[δj(ξk)− pk(j|i)] = 0, ω ∈ A. (2.16)

Since P (A) = 1, equation (2.5) follows from equation (2.16) immediately. The proof

is complete.

3 Some Limit Properties for Nonhomogeneous Markov
Chains

Theorem 3 Let (ξn)
∞
n=0 be Markov chain with the initial distribution (1.2)

and the transition matrices (1.3), and fmn,bn(ω) be the generalized relative entropy

density defined as (1.4). Then

lim
n

{
fmn,bn(ω) +

1

bn

mn+bn∑
k=mn+1

b∑
j=1

pk(j|ξk−1) log pk(j|ξk−1)

}
= 0 a.s.. (3.1)

Proof Putting gk(i, j) = − log pk(j|i) in Theorem 1, we get

Fmn,bn(ω) =
1

bn

mn+bn∑
k=mn+1

gk(ξk−1, ξk) = − 1

bn

mn+bn∑
k=mn+1

log pk(ξk|ξk−1), (3.2)

noticing that

pk(j|i) exp(|gk(i, j)|) = pk(j|i) exp(− log pk(j|i)) = 1. (3.3)

By equations (3.2), (3.3), (1.4) and Theorem 1, equation (3.1) follows. The proof

is completed.

Lemma 2 Let (ηn)
∞
n=0 be a sequence of random variables taking value in X ,

g(·) and (g(·)n)∞n=1 be functions defined on X , and Smn+1,mn+bn(i, ω), i ∈ X , be the

number of i in the segment of ηmn+1, · · · , ηmn+bn, that is,
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Smn+1,mn+bn(i, ω) =

mn+bn∑
k=mn+1

δi(ηk), (3.4)

if

lim
n

1

bn

mn+bn∑
k=mn+1

|gk(i)− g(i)| = 0, for any i ∈ X (3.5)

and the following limits exists

lim
n

1

bn
Smn+1,mn+bn(i, ω) = πi a.s., for any i ∈ X , (3.6)

then

lim
n

1

bn

mn+bn∑
k=mn+1

gk(ηk) =
b∑

i=1

πig(i) a.s.. (3.7)

Proof Applying the triangle inequality |a − b| ≤ |a − c| + |c − b|, we have by

equation (3.4) that∣∣∣∣∣ 1bn
mn+bn∑
k=mn+1

gk(ηk)−
b∑

i=1

πig(i)

∣∣∣∣∣
≤

∣∣∣∣∣ 1bn
mn+bn∑
k=mn+1

b∑
i=1

δi(ηk)gk(i)−
1

bn

mn+bn∑
k=mn+1

b∑
i=1

δi(ηk)g(i)

∣∣∣∣∣
+

∣∣∣∣∣ 1bn
mn+bn∑
k=mn+1

b∑
i=1

δi(ηk)g(i)−
b∑

i=1

πig(i)

∣∣∣∣∣
≤ 1

bn

mn+bn∑
k=mn+1

b∑
i=1

δi(ηk)|gk(i)− g(i)|+
b∑

i=1

∣∣∣∣∣ 1bn
mn+bn∑
k=mn+1

δi(ηk)− πi

∣∣∣∣∣|g(i)|
≤ 1

bn

b∑
i=1

mn+bn∑
k=mn+1

|gk(i)− g(i)|+
b∑

i=1

∣∣∣ 1
bn

Smn+1,mn+bn(i, ω)− πi

∣∣∣|g(i)|. (3.8)

By equation (3.5), we get

lim
n

1

bn

b∑
i=1

mn+bn∑
k=mn+1

|gk(i)− g(i)| = 0. (3.9)

By equation (3.6), we get

b∑
i=1

∣∣∣ 1
bn

Smn+1,mn+bn(i, ω)− πi

∣∣∣|g(i)| = 0 a.s.. (3.10)

Then equation (3.7) follows immediately from equations (3.9) and (3.10). The proof

is completed.
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Theorem 4 Let the Markov chain (ξn)
∞
n=0, (gn(x, y))

∞
n=1, and Fmn,bn(ω) be as

in Theorem 2, and g(x) be a function defined on X , and Smn,mn+bn−1(i, ω), i ∈ X ,

be the number of i in the segment ξmn , · · · , ξmn+n−1, that is,

Smn,mn+bn−1(i, ω) =

mn+bn−1∑
k=mn

δi(ξk). (3.11)

Assume that:

(a) There exists an α > 0 such that equation (2.3) holds for all i, j ∈ X ;

(b)

lim
n

1

bn

mn+bn∑
k=mn+1

∣∣∣∣∣
b∑

j=1

pk(j|i)gk(i, j)− g(i)

∣∣∣∣∣ = 0, for any i ∈ X ; (3.12)

(c) the following limits exist

lim
n

1

bn
Smn,mn+bn−1(i, ω) = πi a.s., for any i ∈ X , (3.13)

then

lim
n

Fmn,bn(ω) =
b∑

i=1

πig(i) a.s.. (3.14)

Proof Put ηk = ξk−1 (k ≥ 1) in Lemma 1 and

gk(i) =
b∑

j=1

pk(j|i)gk(i, j), k ≥ 1. (3.15)

We have by equations (3.12) and (3.13) that,

lim
n

1

bn

mn+bn∑
k=mn+1

b∑
j=1

pk(j|i)gk(ξk−1, j) =

b∑
i=1

πig(i) a.s.. (3.16)

By (a) and Theorem 1, equation (2.4) holds. Then equation (3.14) follows from

equations (3.15) and (3.16). The proof is completed.

Theorem 5 Let (ξn)
∞
n=0, g(x) and Smn,mn+bn−1(i, ω) be defined as in Theorem

4 and fmn,bn(ω) be defined by (1.4). If

(a)

lim
n

1

bn

mn+bn∑
k=mn+1

∣∣∣∣∣
b∑

j=1

pk(j|i) log pk(j|i)− g(i)

∣∣∣∣∣ = 0, for any i ∈ X ; (3.17)

(b) the equality (3.13) holds for all i ∈ X . Then

lim
n

fmn,bn(ω) =
b∑

i=1

πig(i) a.s.. (3.18)
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Proof Putting ηk = ξk−1 (k ≥ 1) and

gk(i) =
b∑

j=1

pk(j|i) log pk(j|i), k ≥ 1 (3.19)

in Lemma 1, we have by equations (3.13) and (3.16) that

lim
n

1

bn

mn+bn∑
k=mn+1

b∑
j=1

pk(j|ξk−1) log pk(j|ξk−1) =

b∑
i=1

πig(i) a.s.. (3.20)

By Theorem 2, equation (3.1) holds. It is straightforward to show that equation

(3.18) follows from equations (3.20) and (3.1). The proof is completed

Theorem 6 Let the Markov chain (ξn)
∞
n=0 and Smn,mn+bn−1(i, ω) be defined as

in Theorem 4. Then

lim
n

1

bn

[
Smn,mn+bn−1(i, ω)−

mn+bn∑
k=mn+1

pk(i|ξk−1)

]
= 0 a.s.. (3.21)

Proof Putting gk(x, y) = δi(y) (k ≥ 1) in Theorem 1, by equation (2.5) we have

mn+bn∑
k=mn+1

{
gk(ξk−1, ξk)−

b∑
j=1

gk(ξk−1, j)pk(j|ξk−1)

}

=

mn+bn∑
k=mn+1

{
δi(ξk)−

b∑
j=1

pk(j|ξk−1)

}

= Smn,mn+bn−1(i, ω)−
mn+bn∑
k=mn+1

pk(i|ξk−1). (3.22)

By equation (3.22) and Theorem 2, equation (3.21) follows. The proof is completed.

Theorem 7 Let (ξn)
∞
n=0 be a Markov chain defined as in Theorem 4, P =

((p(i|j))b×b be an ergodic transition matrix, and (π1, π2, · · · , πb) be the stationary

distribution determined by P . For real number, denote

a+ = max{a, 0}, a− = max{−a, 0}.

(a) For fixed j ∈ X , if

lim
n

1

bn

mn+bn∑
k=mn+1

[pk(j|i)− p(j|i)]+ = 0, for any i ∈ X , (3.23)

Then

lim sup
n

1

bn
Smn,mn+bn−1(j, ω) ≤ πj a.s.. (3.24)
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(b) For fixed j ∈ X , if

lim
n

1

bn

mn+bn∑
k=mn+1

[pk(j|i)− p(j|i)]− = 0, for any i ∈ X , (3.25)

then

lim sup
n

1

bn
Smn,mn+bn−1(j, ω) ≥ πj a.s.. (3.26)

(c) For fixed j ∈ X , if

lim
n

1

bn

mn+bn∑
k=mn+1

[pk(j|i)− p(j|i)] = 0, for any i ∈ X , (3.27)

then

lim
n

1

bn
Smn,mn+bn−1(j, ω) = πj a.s.. (3.28)

Proof We have by equation (3.21) that

lim
n

1

bn

[
Smn,mn+bn−1(j, ω)−

mn+bn∑
k=mn+1

pk(j|ξk−1)

]
= 0 a.s., for any j ∈ X . (3.29)

It is simple to show that, for the fixed j ∈ X ,

mn+bn∑
k=mn+1

pk(j|ξk−1) =

b∑
i=1

Smn,mn+bn−1(i, ω)p(j|i), for any j ∈ X . (3.30)

Applying the properties of superior and inferior limits, we have by equations (3.24)

and (3.30) that

lim sup
n

1

bn

[
Smn,mn+bn−1(j, ω)−

b∑
i=1

Smn,mn+bn−1(i, ω)p(j|i)

]

≤ lim sup
n

1

bn

mn+bn∑
k=mn+1

[pk(j|ξk−1)− p(j|ξk−1)] a.s., for any j ∈ X , (3.31)

lim inf
n

1

bn

[
Smn,mn+bn−1(j, ω)−

b∑
i=1

Smn,mn+bn−1(i, ω)p(j|i)

]

≥ lim inf
n

1

bn

mn+bn∑
k=mn+1

[pk(j|ξk−1)− p(j|ξk−1)] a.s., for any j ∈ X . (3.32)

Obviously,
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pk(j|ξk−1)−p(j|ξk−1)≤ [pk(j|ξk−1)−p(j|ξk−1)]
+≤

b∑
i=1

[pk(j|i)−p(j|i)]+, (3.33)

pk(j|ξk−1)−p(j|ξk−1)≥−[pk(j|ξk−1)−p(j|ξk−1)]
−≥−

b∑
i=1

[pk(j|i)−p(j|i)]−. (3.34)

(a) Suppose equation (3.23) holds, we have by equations (3.33) and (3.34) that

lim sup
n

1

bn

[
Smn,mn+bn−1(j, ω)−

b∑
i=1

Smn,mn+bn−1(i, ω)p(j|i)

]
≤ 0 a.s., for any j ∈ X .

(3.35)

Multiplying both sides of equation (3.35) by p(k|j), and adding the obtained in-

equalities for j ∈ X , we have

0 ≥ lim sup
n

[
b∑

j=1

Smn,mn+bn−1(j, ω)p(k|j)−
b∑

j=1

b∑
i=1

Smn,mn+bn−1(j, ω)p(j|i)p(k|j)

]

= lim sup
n

[
b∑

j=1

Smn,mn+bn−1(j, ω)p(k|j)− Smn,mn+bn−1(k, ω)

+Smn,mn+bn−1(j, ω)
b∑

i=1

Smn,mn+bn−1(i, ω)p
(2)(k|i)

]

≥ lim sup
n

[
Smn,mn+bn−1(k, ω)−

b∑
i=1

Smn,mn+bn−1(i, ω)p
(2)(k|i)

]

− lim sup
n

[
Smn,mn+bn−1(k, ω)−

b∑
j=1

Smn,mn+bn−1(j, ω)p(k|j)

]
a.s., (3.36)

where p(l)(k|j) (l is a positive integer) denotes the l-step transition probability de-

termined by the transition matrix P . By equation (3.35), we obtain

lim sup
n

[
Smn,mn+bn−1(k, ω)−

m∑
j=1

Smn,mn+bn−1(j, ω)p(k|j)

]
≤ 0 a.s.. (3.37)

By equations (3.36) and (3.37), we obtain

lim sup
n

1

bn

[
Smn,mn+bn−1(k, ω)−

m∑
i=1

Smn,mn+bn−1(i, ω)p(k|i)

]
≤ 0 a.s.. (3.38)

By induction we have for all l ≥ 1,

lim sup
n

1

bn

[
Smn,mn+bn−1(k, ω)−

b∑
i=1

Smn,mn+bn−1(j, ω)p
(l)(k|j)

]
≤ 0 a.s.. (3.39)
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It follows that

0 ≥ lim sup
n

1

bn

[
Smn,mn+bn−1(k, ω)− bnπk +

b∑
i=1

Smn,mn+bn−1(i, ω)(πk − p(l)(i|k))

]

≥ lim sup
n

[ 1

bn
Smn,mn+bn−1(k, ω)− πk

]
−

b∑
i=1

|πk − p(l)(k|i)| a.s.. (3.40)

Since p(l)(k|l) → πk (as l → ∞), we have by equation (3.40) that

lim sup
n

1

bn
Smn,mn+bn−1(k, ω) ≤ πk a.s.. (3.41)

Hence, equation (3.24) follows.

(b) Suppose equation (3.25) holds, from (3.32) and (3.34), then we obtain

lim inf
n

1

bn

[
Smn,mn+bn−1(j, ω)−

b∑
j=1

Smn,mn+bn−1(i, ω)p(j|i)

]
≥0 a.s., for any j ∈ X .

(3.42)

Thus, using arguments similar to those used to derive equation (3.39), we can show

that

lim inf
n

1

bn
Smn,mn+bn−1(k, ω) ≥ πk a.s. (3.43)

Hence, equation (3.26) follows.

(c) Suppose equation (3.27) holds. Obviously equations (3.23) and (3.25) follow

from equation (3.27).

Therefore, equations (3.24) and (3.26) are true, and equation (3.28) follows. The

proof is completed.

Theorem 8 Let (ξn)
∞
n=0, Smn,mn+bn−1(i, ω), p(j|i), (π1, π2, · · · , πb) be defined

as in Theorem 7, and g(x) and (gn(x))
∞
n=1 be functions defined on X . If equations

(3.5) and (3.27) holds, then

lim
n

mn+bn∑
k=mn+1

gk(ξk) =

b∑
i=1

πig(i) a.s.. (3.44)

Proof We have by (c) of Theorem 7 that

lim inf
n

1

bn
Smn,mn+bn−1(j, ω) = πj a.s., for any j ∈ X . (3.45)

Applying Lemma 1, equation (3.34) follows from equations (3.45) and (3.5). The

proof is completed.
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Lemma 3[3] Let f(x) be a bounded function defined on an interval I, and (an)
∞
n=0

be a sequence in I. If

lim
n

1

bn

mn+bn∑
k=mn+1

|ak − a| = 0, (3.46)

and f(x) is continuous at point a, then

lim
n

1

bn

mn+bn∑
k=mn+1

|f(ak)− f(a)| = 0. (3.47)

Theorem 9 Let (ξn)
∞
n=0 be a Markov chain with the initial distribution (1.2)

and the transition matrices (1.3), and g(x) be a continuous function defined on the

interval (0, 1] such that

lim
x→0

xg(x) = A (finite). (3.48)

Let P = (p(j|i))b×b be an ergodic transition matrix, and (π1, π2, · · · , πb) be the

stationary distribution determined by P . Let

Fmn,bn(ω) =
1

bn

mn+bn∑
k=mn+1

g[pk(ξk|ξk−1)]. (3.49)

Suppose that:

(a) There exists an α > 0 such that

lim sup
n

1

bn

mn+bn∑
k=mn+1

g2[pk(j|i)]pk(j|i)eα|g[pk(j|i)]| < ∞, for any i, j ∈ X ; (3.50)

(b)

lim sup
n

1

bn

mn+bn∑
k=mn+1

|pk(j|i)− p(j|i)| = 0, for any i, j ∈ X , (3.51)

then

lim
n

Fmn,bn(ω) =

b∑
i=1

b∑
j=1

πip(j|i)g[p(j|i)] a.s.. (3.52)

Proof Let

f(x) =

{
xg(x), if 0 < x ≤ 1;

A, if x = 0.
(3.53)

By equations (3.48) and (3.53), f(x) is continuous on [0, 1], then from equation

(3.51) and according to Lemma 2, we have

lim
n

1

bn

mn+bn∑
k=mn+1

|pk(j|i)g[pk(j|i)]− p(j|i)g[pk(j|i)]| = 0, for any i, j ∈ X . (3.54)
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By equation (3.51) and Theorem 6, there is

lim
n

1

bn
Smn+1,mn+bn(i, ω) = πi a.s., for any i ∈ X . (3.55)

Applying Theorem 3 to gk(i, j) = g[pk(j|i)], equation (3.52) follows from equations

(3.54) and (3.55). The proof is completed.

Finally, we present the proof of Theorem 1.

Proof of Theorem 1 Note that

E
1

pmn(ξmn)
=

b∑
i=1

1

pmn(i)
· pmn(i) = b.

By Lemma 1, we have

lim sup
n

1

bn
log

1

pmn(ξmn)
≤ 0 a.s.

Since log 1
pmn (ξmn )

is nonnegative, therefore

lim
n

1

bn
log pmn(ξmn) = 0 a.s.. (3.56)

Notice that
b∑

j=1

[pk(j|i)− p(j|i)]+ =

b∑
j=1

[pk(j|i)− p(j|i)]−.

By the condition (1.5), we have

lim
n

1

bn

mn+bn∑
k=mn+1

b∑
j=1

|pk(j|i)− p(j|i)| = 0, for any i ∈ X ,

which implies

lim
n

1

bn

mn+bn∑
k=mn+1

|pk(j|i)− p(j|i)| = 0, for any i, j ∈ X .

By this together with the inequality x
3
2 (log x)2 ≤ 16

9 e
−2, 0 ≤ x ≤ 1, we have

(log pk(j|i))2pk(j|i)e
1
2
| log pk(j|i)| ≤ 16

9
e−2.

Putting g(x) = log x in Theorem 8, it is easy to verify that equation (3.50) holds

(see Theorem 2 and equation (3.3)).

Thus equation (1.6) follows from (1.4), (3.56) and Theorem 8. The proof is

completed.
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