
EXISTENCE OF PERIODIC SOLUTION FOR
A KIND OF THIRD-ORDER GENERALIZED
NEUTRAL FUNCTIONAL DIFFERENTIAL

EQUATION WITH VARIABLE PARAMETER∗

A.M. Mahmoud†

(Dept. of Math., Faculty of Science, New Valley Branch,

Assiut University, New Valley, El-Khargah 72111, Egypt)

E.S. Farghaly
(Dept. of Math., Faculty of Science, Assiut University, Assiut 71516, Egypt)

Ann. of Appl. Math.
34:3(2018), 285-301

Abstract

In this paper, we investigate a third-order generalized neutral functional
differential equation with variable parameter. Based on Mawhin’s coincidence
degree theory and some analysis skills, we obtain sufficient conditions for the
existence of periodic solution for the equation. An example is also provided.
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1 Introduction

Neutral differential equations are widely used in many fields including biology,

chemistry, physics, medicine, population dynamics, mechanics, economics, and so

on (see [6,8,10,27]). For example, in population dynamics, since a growing popu-

lation consumes more (or less) food than a matured one, depending on individual

species, this leads to neutral equations [10]. These equations also arise in classical

cobweb models in economics where current demand depends on price, but supply

depends on the previous periodic [6]. In recent years, the problem of the existence

of periodic solutions for neutral differential equations has been extensively studied

in the literature. We refer the reader to [1-5,11-14,17-19,21-24] and the references

cited therein for more details.
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In this paper, we consider the generalized neutral functional differential equation

with variable parameter

d3

dt3
(
x(t)− c(t)x(t− δ(t))

)
+ f

(
t, ẍ(t)

)
+ g

(
t, ẋ(t)

)
+ h

(
t, x

(
t− τ(t)

))
= e(t), (1)

where |c(t)| ̸= 1, c, δ ∈ C2(R,R) and c, δ are ω-periodic functions for some ω > 0,

τ, e ∈ C[0, ω] and
∫ ω
0 e(t)dt = 0; f, g and h are continuous functions defined on R2

and periodic in t with f(t, ·) = f(t + ω, ·), g(t, ·) = g(t + ω, ·), h(t, ·) = h(t + ω, ·),
and f(t, 0) = g(t, 0) = 0.

In recent years, when c(t) is a constant c or δ(t) is a constant δ or both of them

are constants, many researchers have extensively studied such types of neutral func-

tional differential equations. We refer the reader [9,15-17,20,26] and their references

therein. But the work to study the existence of periodic solutions for neutral func-

tional differential equations with variable parameter has rarely appeared. There are

two reasons for this. The first reason is that the criterion of L-compact of nonlinear

operator N on the set Ω is difficult to establish when c(t) is not a constant. The

second reason is that the linear operator A : CT → CT , [Ax](t) = x(t)− c(t)x(t− τ),

for all t ∈ [0, T ], has continuous inverse A−1, which is far away from the answer.

For example, Du et al. [5] investigated the second-order neutral equation(
x(t)− c(t)x(t− δ)

)′′
+ f

(
x(t)

)
x′(t) + g

(
x
(
t− γ(t)

))
= e(t), (2)

by using Mawhin’s continuous theorem, the authors obtained the existence of peri-

odic solution for (2).

Afterwards, in [19], Ren et al. considered the following neutral differential equa-

tion with deviating arguments:(
x(t)− cx

(
t− δ(t)

))′′
= f(t, x′(t)) + g

(
t, x

(
t− τ(t)

))
+ e(t),

by the continuation theorem and some analysis techniques, some new results on the

existence of periodic solutions were obtained.

Recently, Xin and Zhao [25] studied the neutral equation with variable delay(
x(t)− c(t)x

(
t− δ(t)

))′′
+ f(t, x′(t)) + g

(
t, x

(
t− τ(t)

))
= e(t), (3)

by coincidence degree theory and some analysis skills, the authors obtained sufficient

conditions for the existence of periodic solution for (3).

Motivated by [5,19,25], in this paper, we consider the generalized neutral equa-

tion (1). Notice that here the neutral operator A is a natural generalization of the

familiar operatorA1 = x(t)−cx(t−δ), A2 = x(t)−c(t)x(t−δ), A3 = x(t)−cx(t−δ(t)).

But A possesses a more complicated nonlinearity than Ai, i = 1, 2, 3. For example,

the neutral operator A1 is homogeneous in the following sense d
dt(A1x)(t) = (A1ẋ)(t),
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whereas the neutral operator A in general is inhomogeneous. As a consequence,

many of the new results for differential equations with the neutral operator A will

not be a direct extension of known theorems for neutral differential equations.

The paper is organized as follows. In Section 2, we first analyze qualitative prop-

erties of the generalized neutral operator A, which will be helpful for further studies

of differential equations with this neutral operator; in Section 3, by Mawhin’s contin-

uation theorem, we obtain the existence of periodic solution for the generalized neu-

tral equation with variable parameter. An illustrative example is given in Section 4.

2 Analysis of the Generalized Neutral Operator with
Variable Parameter

Let

c∞ = max
t∈[0,ω]

|c(t)|, c0 = min
t∈[0,ω]

|c(t)|.

Let X = {x ∈ C(R,R) : x(t+ω) = x(t), t ∈ R} with the norm ∥x∥ = max
t∈[0,ω]

|x(t)|,

then (X, ∥ · ∥) is a Banach space. Moreover, define operators A,B : Cω → Cω by

(Ax)(t) = x(t)− c(t)x
(
t− δ(t)

)
, (Bx)(t) = c(t)x

(
t− δ(t)

)
.

Lemma 2.1[25] If |c(t)| ̸= 1, then the operator A has a continuous inverse A−1

on Cω satisfying

(1)

(
A−1f

)
(t) =



f(t) +

∞∑
j=1

j∏
i=1

c(Di)x

(
t−

j∑
i=1

δ(Di)

)
, for |c(t)|<1 and f∈Cω,

−f(t+ δ(t))

c(t+ δ(t))
−

∞∑
j=1

f
(
t+ δ(t) +

j∑
i=1

δ(D′
i)
)

c(t+ δ(t))
j∏

i=1
c(D′

i)

, for |c(t)|>1 and f∈Cω.

(2)

∣∣(A−1f
)
(t)

∣∣ ≤


∥f∥
1− c∞

, for c∞ < 1 and f ∈ Cω,

∥f∥
c0 − 1

, for c0 > 1 and f ∈ Cω.

(3)

∫ ω

0

∣∣(A−1f
)
(t)

∣∣dt ≤


1

1− c∞

∫ ω

0
|f(t)|dt, for c∞ < 1 and f ∈ Cω,

1

c0 − 1

∫ ω

0
|f(t)|dt, for c0 > 1 and f ∈ Cω,
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where D1 = t, Di = t −
i∑

k=1

δ(Dk), k = 1, 2, · · · , and D′
1 = t, D′

i = t +
i∑

k=1

δ(D′
k),

k = 1, 2, · · · .

3 Existence of Periodic Solution for (1)

We first recall Mawhin’s continuation theorem, which our study is based upon.

Let X and Y be real Banach spaces and L : D(L) ⊂ X → Y be a Fredholm

operator with index zero, here D(L) denotes the domain of L. This means that

ImL is closed in Y and dimKerL = dim(Y/ ImL) < +∞. Consider supplementary

subspaces X1, Y1, of X, Y , respectively such that X = KerL⊕X1, Y = ImL⊕ Y1.

Let P1 : X → KerL and Q1 : Y → Y1 denote the natural projections. Clearly,

KerL ∩ (D(L) ∩X1) = {0}, thus the restriction LP1 := L|D(L)∩X1
is invertible. Let

L−1
P1

denote the inverse of LP1 .

Let Ω be an open bounded subset of X with D(L)∩Ω ̸= ∅. A map N : Ω → Y is

said to be L-compact in Ω if Q1N(Ω) is bounded and the operator L−1
P1

(I −Q1)N :

Ω → X is compact.

Lemma 3.1[7] Suppose that X and Y are two Banach spaces, and L : D(L) ⊂
X → Y is a Fredholm operator with index zero. Furthermore, Ω ⊂ X is an open

bounded set and N : Ω → Y is L-compact on Ω. Assume that the following conditions

hold:

(1) Lx ̸= λNx, for any x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(2) Nx /∈ ImL, for any x ∈ ∂Ω ∩KerL;

(3) deg{JQ1N,Ω ∩KerL, 0} ̸= 0, where J : ImQ1 → KerL is an isomorphism.

Then the equation Lx = Nx has a solution in Ω ∩D(L).

In order to use Mawhin’s continuation theorem to study the existence of ω-

periodic solutions for (1), we rewrite (1) in the following form:
d

dt
(Ax1)(t) = x2(t),

d2

dt2
(Ax1)(t) = ẋ2(t) = x3(t),

ẋ3(t) = −f(t, ẍ1(t))− g(t, ẋ1(t))− h(t, x1(t− τ(t))) + e(t).

(4)

Clearly, if x(t) = (x1(t), x2(t), x3(t))
⊤ is an ω-periodic solution to (4), then x1(t)

must be an ω-periodic solution to (1). Thus the problem of finding an ω-periodic

solution for (1) reduces to that of finding one for (4). Recall that Cω = {ϕ ∈
C(R,R) : ϕ(t + ω) ≡ ϕ(t)} with the norm ∥ϕ∥ = max

t∈[0,ω]
|ϕ(t)|. Define X = Y =

Cω × Cω = {x = (x1(·), x2(·), x3(·)) ∈ C(R,R3) : x(t) = x(t + ω), t ∈ R} with the
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norm ∥x∥ = max{∥x1∥, ∥x2∥, ∥x3∥}. Clearly, X and Y are Banach spaces. Moreover

define

L : D(L) =
{
x ∈ C1

(
R,R3

)
: x(t+ ω) = x(t), t ∈ R

}
⊂ X → Y

by

(Lx)(t) =


d

dt
(Ax1)(t)

d2

dt2
(Ax1)(t)

ẋ3(t)

 =


d

dt
(Ax1)(t)

ẋ2(t)
ẋ3(t)

 .

Also define N : X → Y by

(Nx)(t) =

 x2(t)
x3(t)

−f(t, ẍ1(t))− g(t, ẋ1(t))− h(t, x1(t− τ(t))) + e(t)

 . (5)

Then (4) can be converted to the abstract equation Lx = Nx. From the definition

of L, one can easily see that

KerL ∼= R3, ImL =

y ∈ Y :

∫ ω

0

y1(s)
y2(s)
y3(s)

ds =

0
0
0

 .

So L is a Fredholm operator with index zero. Let P1 : X → KerL and Q1 : Y →
ImQ1 ⊂ R3 be defined by

P1x =

(Ax1)(0)
x2(0)
x3(0)

 ; Q1y =
1

ω

∫ ω

0

y1(s)
y2(s)
y3(s)

 ds.

Then ImP1 = KerL, KerQ1 = ImL. Set LP1 = L|D(L)∩KerP1
and let L−1

P1
: ImL →

D(L) denote the inverse of LP1 , then it follows that

[
L−1
P1

y
]
(t) =

(A−1Fy1)(t)
(Fy2)(t)
(Fy3)(t)

 ,

[Fy1](t) =

∫ t

0
y1(s)ds, [Fy2](t) =

∫ t

0
y2(s)ds, [Fy3](t) =

∫ t

0
y3(s)ds.

(6)

From (5) and (6), it is clear that Q1N and L−1
P1

(I − Q1)N are continuous, and

Q1N(Ω) is bounded, and then L−1
P1

(I −Q1)N(Ω) is compact for any open bounded

Ω ⊂ X, which means N is L-compact on Ω. For convenience, we list the following

assumptions, which will be used repeatedly in the sequel:
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(H1) There exists a positive constant K1 such that |f(t, u)| ≤ K1 for (t, u) ∈ R×R;
(H2) there exists a positive constant K2 such that |g(t, u)| ≤ K2 for (t, u) ∈ R×R;
(H3) there exists a positive constant D such that |h(t, x)| > K1+K2 and x[f(t, u)+

g(t, v) + h(t, x)] ̸= 0 for t, u, v, x ∈ R and |x| > D;

(H4) there exists a positive constant mo such that |h(t, x1) − h(t, x2)| ≤ mo|x1 −
x2|, for all t, x1, x2 ∈ R.

Now we give our main results on periodic solutions for (1).

Theorem 3.1 Assume that conditions (H1)-(H4) hold. Suppose that one of the

following conditions is satisfied:

(i) If c∞ < 1 and 1− c∞ − c∞δ1(δ1 − 2)−M6 > 0;

(ii) if c0 > 1 and c0 − 1− c∞δ1(δ1 − 2)−M6 > 0,

where

M6 =
1

2

(√
M5ω +

1

2
c2ω

2 + 2c1ω − c∞δ2ω
)
, M5 =

1

2
moω

2M1,

M1 = 1 +
1

2
c1ω + c∞ + c∞δ1, c1 = max

t∈[0,ω]
|ċ(t)|,

c2 = max
t∈[0,ω]

|c̈(t)|, δ1 = max
t∈[0,ω]

|δ̇(t)|, δ2 = max
t∈[0,ω]

|δ̈(t)|.

Then equation (1) has at least one ω-periodic solution.

Proof By construction, (4) has an ω-periodic solution, if and only if, the fol-

lowing operator equation

Lx = Nx

has an ω-periodic solution. From (5) we see that N is L-compact on Ω, where Ω is

any open, bounded subset of Cω. For λ ∈ (0, 1], define Ω1 = {x ∈ Cω : Lx = λNx}.
Then x = (x1, x2, x3)

⊤ ∈ Ω1 satisfies
d

dt
(Ax1)(t) = λx2(t),

ẋ2(t) = λx3(t),

ẋ3(t) = −λf(t, ẍ1(t))− λg(t, ẋ1(t))− λh(t, x1(t− τ(t))) + λe(t).

(7)

Substituting x3(t) =
1
λ

d2

dt2
(Ax1)(t) into the third equation of (7) yields

d

dt

[ 1
λ

d2

dt2
(Ax1)(t)

]
= −λf(t, ẍ1(t))− λg(t, ẋ1(t))− λh(t, x1(t− τ(t))) + λe(t).

Therefore we find

d3

dt3
(
Ax1(t)

)
= −λ2f(t, ẍ1(t))− λ2g(t, ẋ1(t))− λ2h(t, x1(t− τ(t))) + λ2e(t). (8)
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Integrating both sides of (8) over [0, ω], we have∫ ω

0

[
f(t, ẍ1(t)) + g(t, ẋ1(t)) + h(t, x1(t− τ(t)))

]
dt = 0, (9)

which yields that there exists at least one point t1 such that

f(t1, ẍ1(t1)) + g(t1, ẋ1(t1)) + h(t1, x1(t1 − τ(t1))) = 0.

Thus by (H1) and (H2) we have∣∣h(t1, x1(t1 − τ(t1)))
∣∣ = ∣∣−f(t1, ẍ1(t1))

∣∣+ ∣∣−g(t1, ẋ1(t1))
∣∣ ≤ K1 +K2 := K.

In view of (H3) we get that |x1(t1−τ(t1))| ≤ D. Since x1(t) is periodic with periodic

ω. So t1 − τ(t1) = nω + ξ, ξ ∈ [0, ω], where n is some integer, then |x1(ξ)| ≤ D.

Therefore we have

|x1(t)| =
∣∣∣∣x1(ξ) + ∫ t

ξ
ẋ1(s)ds

∣∣∣∣ ≤ D +

∫ t

ξ

∣∣ẋ1(s)∣∣ds, t ∈ [ξ, ξ + ω].

And

|x1(t)| = |x1(t− ω)| =
∣∣∣∣x1(ξ)− ∫ ξ

t−ω
ẋ1(s)ds

∣∣∣∣ ≤ D +

∫ ξ

t−ω

∣∣ẋ1(s)∣∣ds, t ∈ [ξ, ξ + ω].

Combining the above two inequalities, we obtain

∥x1∥∞ = max
t∈[0,ω]

∣∣x1(t)∣∣ = max
t∈[ξ,ξ+ω]

∣∣x1(t)∣∣
≤ max

t∈[ξ,ξ+ω]

{
D +

1

2

(∫ t

ξ

∣∣ẋ1(s)∣∣ds+ ∫ ξ

t−ω

∣∣ẋ1(s)∣∣ds)}
≤ D +

1

2

∫ ω

0

∣∣ẋ1(s)∣∣ds ≤ D +
1

2
ω∥ẋ1∥∞.

(10)

Since x1(0) = x1(ω), there exists a constant η ∈ [0, ω] such that ẋ1(η) = 0. Hence

|ẋ1(t)| =
∣∣∣∣ẋ1(η) + ∫ t

η
ẍ1(s)ds

∣∣∣∣ ≤ ∫ t

η
|ẍ1(s)|ds, t ∈ [η, ω + η]. (11)

Also

|ẋ1(t)| =
∣∣∣∣ẋ1(η + ω) +

∫ t

η+ω
ẍ1(s)ds

∣∣∣∣
≤ |ẋ1(η + ω)|+

∫ η+ω

t
|ẍ1(s)|ds =

∫ η+ω

t
|ẍ1(s)|ds, t ∈ [0, ω].

(12)

From the above inequalities we have

∥ẋ1∥∞ = max
t∈[0,ω]

∣∣ẋ1(t)∣∣ ≤ 1

2

∫ ω

0

∣∣ẍ1(s)∣∣ds, t ∈ [0, ω]. (13)
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From the definition of the operator A, we have

d

dt

(
Ax1(t)

)
=

d

dt

(
x1(t)− c(t)x1

(
t− δ(t)

))
= ẋ1(t)− ċ(t)x1

(
t− δ(t)

)
− c(t)ẋ1

(
t− δ(t)

)(
1− δ̇(t)

)
.

Then from (10) and condition (ii) of Theorem 3.1, we have∣∣∣ d
dt

(
(Ax1)(t)

)∣∣∣ ≤ ∣∣ẋ1(t)∣∣+ ∣∣ċ(t)∣∣∣∣x1(t− δ(t)
)∣∣+ ∣∣c(t)∣∣∣∣ẋ1(t− δ(t)

)∣∣∣∣1− δ̇(t)
∣∣

≤ ∥ẋ1∥∞ + c1∥x1∥∞ + c∞∥ẋ1∥∞(1 + δ1)

≤ ∥ẋ1∥∞ + c1D +
1

2
∥ẋ1∥∞c1ω + c∞∥ẋ1∥∞(1 + δ1)

= c1D +
(
1 +

1

2
c1ω + c∞ + c∞δ1

)
∥ẋ1∥∞

= c1D +M1∥ẋ1∥∞,

(14)

where c1 = max
t∈[0,ω]

|ċ(t)|, δ1 = max
t∈[0,ω]

|δ̇(t)| and M1 = 1 + 1
2c1ω + c∞ + c∞δ1. Thus we

can obtain

d2

dt2
(
Ax1(t)

)
= ẍ1(t)− c̈(t)x1

(
t− δ(t)

)
− ċ(t)ẋ1

(
t− δ(t)

)(
1− δ̇(t)

)
− ċ(t)ẋ1

(
t− δ(t)

)
− c(t)ẍ1

(
t− δ(t)

)(
1− δ̇(t)

)
+ ċ(t)ẋ1

(
t− δ(t)

)
δ̇(t) + c(t)ẍ1

(
t− δ(t)

)(
1− δ̇(t)

)
δ̇(t)

+ c(t)ẋ1
(
t− δ(t)

)
δ̈(t)

=
(
Aẍ1

)
(t)− c̈(t)x1

(
t− δ(t)

)
− 2ċ(t)ẋ1

(
t− δ(t)

)
+ 2c(t)ẍ1

(
t− δ(t)

)
δ̇(t)− c(t)ẍ1

(
t− δ(t)

)
δ̇2(t)

+ c(t)ẋ1
(
t− δ(t)

)
δ̈(t)

=
(
Aẍ1

)
(t)− c̈(t)x1

(
t− δ(t)

)
−

[
2ċ(t)− c(t)δ̈(t)

]
ẋ1

(
t− δ(t)

)
−

[
δ̇(t)− 2

]
c(t)ẍ1

(
t− δ(t)

)
δ̇(t).

Therefore we get

(
Aẍ1

)
(t) =

d2

dt2
(
Ax1(t)

)
+ c̈(t)x1

(
t− δ(t)

)
+

[
2ċ(t)− c(t)δ̈(t)

]
ẋ1

(
t− δ(t)

)
+
[
δ̇(t)− 2

]
c(t)ẍ1

(
t− δ(t)

)
δ̇(t). (15)

On the other hand, multiplying both sides of (8) by d
dt(Ax1)(t) and integrating it

over [0, ω], we get
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∫ ω

0

d3

dt3
(
Ax1(t)

) d
dt

(
Ax1(t)

)
dt = −

∫ ω

0

∣∣∣ d2
dt2

(Ax1)(t)
∣∣∣2dt

= −λ2

∫ ω

0
f
(
t, ẍ1(t)

) d
dt

(Ax1)(t)dt

− λ2

∫ ω

0
g
(
t, ẋ1(t)

) d
dt

(Ax1)(t)dt

− λ2

∫ ω

0
h
(
t, x1

(
t− τ(t)

)) d
dt

(Ax1)(t)dt

+ λ2

∫ ω

0
e(t)

d

dt
(Ax1)(t)dt.

Hence, we obtain∫ ω

0

∣∣∣ d2
dt2

(Ax1)(t)
∣∣∣2dt ≤ ∫ ω

0

∣∣f(t, ẍ1(t))∣∣∣∣∣ d
dt

(Ax1)(t)
∣∣∣dt+∫ ω

0

∣∣g(t, ẋ1(t))∣∣∣∣∣ d
dt

(Ax1)(t)
∣∣∣dt

+

∫ ω

0

∣∣h(t, x1(t− τ(t)
))

− h(t, 0) + h(t, 0)
∣∣∣∣∣ d
dt

(Ax1)(t)
∣∣∣dt

+

∫ ω

0

∣∣e(t)∣∣∣∣∣ d
dt

(Ax1)(t)
∣∣∣dt.

Therefore from (H4) we have∫ ω

0

∣∣∣ d2
dt2

(Ax1)(t)
∣∣∣2dt ≤ ∫ ω

0

∣∣f(t, ẍ1(t))∣∣∣∣∣ d
dt

(Ax1)(t)
∣∣∣dt+∫ ω

0

∣∣g(t, ẋ1(t))∣∣∣∣∣ d
dt

(Ax1)(t)
∣∣∣dt

+

∫ ω

0

[
mo

∣∣x1(t− τ(t)
)∣∣+ ∣∣h(t, 0)∣∣]∣∣∣ d

dt
(Ax1)(t)

∣∣∣dt
+

∫ ω

0

∣∣e(t)∣∣∣∣∣ d
dt

(Ax1)(t)
∣∣∣dt.

Using (H1), (H2) and (14) we get∫ ω

0

∣∣∣ d2
dt2

(Ax1)(t)
∣∣∣2dt ≤ (

K1 +K2 +mo∥x1∥∞
)(
c1D +M1∥ẋ1∥∞

)
ω

+
(
max{|h(t, 0)| : 0 ≤ t ≤ ω}+ ∥e∥∞

)(
c1D +M1∥ẋ1∥∞

)
ω.

Hence from (10), we obtain∫ ω

0

∣∣∣ d2
dt2

(Ax1)(t)
∣∣∣2dt ≤ c1DM2 +

(
M1M2 +

1

2
moω

2c1D
)
∥ẋ1∥∞ +

1

2
moω

2M1∥ẋ1∥2∞,

where M2 =
(
K1+K2+moD+max{|h(t, 0)| : 0 ≤ t ≤ ω}+ ∥e∥∞

)
ω. Thus we have∫ ω

0

∣∣∣ d2
dt2

(Ax1)(t)
∣∣∣2dt ≤ M3 +M4∥ẋ1∥∞ +M5|ẋ1∥2∞, (16)
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where

M3 = c1DM2, M4 = M1M2 +
1

2
moω

2c1D, M5 =
1

2
moω

2M1.

Case (i) If c∞ < 1, by applying Lemma 2.1 (3), we obtain

∫ ω

0

∣∣ẍ1(t)∣∣dt = ∫ ω

0

∣∣(A−1Aẍ1
)
(t)

∣∣dt ≤
∫ ω

0
|(Aẍ1)(t)|dt

1− c∞
.

Substituting from (15) and using condition (ii) of Theorem 3.1 we have∫ ω

0

∣∣ẍ1(t)∣∣dt ≤ 1

1− c∞

[ ∫ ω

0

∣∣∣ d2
dt2

(
Ax1(t)

)∣∣∣dt+ ∫ ω

0

∣∣c̈(t)x1(t− δ(t)
)∣∣dt]

+
1

1− c∞

[ ∫ ω

0

∣∣{2ċ(t)− c(t)δ̈(t)
}
ẋ1

(
t− δ(t)

)∣∣dt]
+

1

1− c∞

{∫ ω

0

∣∣{δ̇(t)− 2
}
c(t)ẍ1

(
t− δ(t)

)
δ̇(t)

∣∣dt}
≤ 1

1− c∞

[ ∫ ω

0

∣∣∣ d2
dt2

(
Ax1(t)

)∣∣∣dt+ c2ω∥x1∥∞ + (2c1 − c∞δ2)ω∥ẋ1∥∞
]

+
1

1− c∞

[
c∞δ1(δ1 − 2)

∫ ω

0

∣∣ẍ1(t)∣∣dt],
where

c1 = max
t∈[0,ω]

|ċ(t)|, c2 = max
t∈[0,ω]

|c̈(t)|, δ1 = max
t∈[0,ω]

|δ̇(t)|, δ2 = max
t∈[0,ω]

|δ̈(t)|.

From (10) and by Schwarz inequality, we have

[
1− c∞δ1(δ1 − 2)

1− c∞

] ∫ ω

0

∣∣ẍ1(t)∣∣dt ≤ 1

1− c∞

[
ω

1
2

(∫ ω

0

∣∣∣ d2
dt2

(
Ax1(t)

)∣∣∣2dt) 1
2
]

+
1

1− c∞

[
c2ω

(
D +

1

2
∥ẋ1∥∞ω

)]
+

1

1− c∞

[
(2c1 − c∞δ2)ω∥ẋ1∥∞

]
.

Thus it follows that

[
1− c∞− c∞δ1(δ1− 2)

]∫ ω

0

∣∣ẍ1(t)∣∣dt≤ ω
1
2

(∫ ω

0

∣∣∣ d2
dt2

(
Ax1(t)

)∣∣∣2dt) 1
2

+ c2ω
(
D +

1

2
∥ẋ1∥∞ω

)
+(2c1− c∞δ2)ω∥ẋ1∥∞.
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Applying the inequality (a+ b)k ≤ ak + bk for all a, b > 0, 0 < k < 1, it follows from

(16) that[
1− c∞− c∞δ1(δ1 − 2)

]∫ ω

0

∣∣ẍ1(t)∣∣dt≤ √
ω
[√

M3 +
√

M4

(
∥ẋ1∥∞

) 1
2 +

√
M5∥ẋ1∥∞

]
+ c2ω

(
D+

1

2
∥ẋ1∥∞ω

)
+(2c1−c∞δ2)ω∥ẋ1∥∞

≤
√

M3ω + c2ωD +
√

M4ω
(
∥ẋ1∥∞

) 1
2

+
(√

M5ω +
1

2
c2ω

2 + 2c1ω − c∞δ2ω
)
∥ẋ1∥∞.

Substituting from (13), we get

[
1−c∞−c∞δ1(δ1 − 2)

]∫ ω

0

∣∣ẍ1(t)∣∣dt ≤ √
M3ω+c2ωD+

√
M4ω

√
1

2

(∫ ω

0

∣∣ẍ1(t)∣∣dt) 1
2

+M6

∫ ω

0

∣∣ẍ1(t)∣∣dt,
where M6 =

1
2

(√
M5ω + 1

2c2ω
2 + 2c1ω − c∞δ2ω

)
.

Therefore we obtain

[
1−c∞−c∞δ1(δ1−2)−M6

] ∫ ω

0

∣∣ẍ1(t)∣∣dt ≤ √
M3ω+c2ωD+

√
1

2
M4ω

(∫ ω

0

∣∣ẍ1(t)∣∣dt) 1
2

.

(17)

Since 1− c∞ − c∞δ1(δ1 − 2)−M6 > 0, it is easy to see that there exists a constant

M > 0 (independent of λ) such that∫ ω

0

∣∣ẍ1(t)∣∣dt ≤ M. (18)

It follows from (13) that

∥ẋ1∥∞ ≤ 1

2
M.

Thus, from (10) we obtain

∥x1∥∞ ≤ M1.

Case (ii) If c0 > 1, by applying Lemma 2.1 (3), we have∫ ω

0

∣∣ẍ1(t)∣∣dt = ∫ ω

0

∣∣(A−1Aẍ1
)
(t)

∣∣dt ≤ 1

c0 − 1

∫ ω

0
|(Aẍ1)(t)|dt.

Following the same manner as in Case (i), we can get

[
c0−1−c∞δ1(δ1−2)−M6

] ∫ ω

0

∣∣ẍ1(t)∣∣dt ≤ √
M3ω+c2ωD+

√
1

2
M4ω

(∫ ω

0

∣∣ẍ1(t)∣∣dt) 1
2

.
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Since c0 − 1− c∞δ1(δ1 − 2)−M6 > 0, similarly, we can obtain

∥x1∥∞ ≤ M1.

By the first equation of system (7) we have∫ ω

0
x2(t)dt =

∫ ω

0

d

dt
(Ax1)(t)dt = 0,

which implies that there is a constant t1 ∈ [0, ω], such that x2(t1) = 0, hence from

(16) we find

∥x2∥∞ ≤
∫ ω

0
|ẋ2(t)|dt =

∫ ω

0

∣∣∣ d2
dt2

(
Ax1(t)

)∣∣∣dt ≤ ω
1
2

(∫ ω

0

∣∣∣ d2
dt2

(
Ax1(t)

)∣∣∣2dt) 1
2

≤
√
ω
[√

M3 +
√

M4

(
∥ẋ1∥∞

) 1
2 +

√
M5∥ẋ1∥∞

]
.

In view of Cases (i) and (ii), it is easy to see that there exists a constant M2 > 0

(independent of λ) such that

∥x2∥∞ ≤ M2.

By the second equation of system (7), we obtain∫ ω

0
x3(t)dt =

∫ ω

0

d2

dt2
(Ax1)(t)dt =

∫ ω

0
ẋ2(t)dt = 0,

which implies that there is a constant t2 ∈ [0, ω] such that x3(t2) = 0, hence

∥x3∥∞ ≤
∫ ω

0
|ẋ3(t)|dt.

By the third equation of system (7), we have

ẋ3(t) = −λf(t, ẍ1(t))− λg(t, ẋ1(t))− λh(t, x1(t− τ(t))) + λe(t).

Using (H1), (H2) and (H4), we get

∥x3∥∞ ≤
∫ ω

0
|ẋ3(t)|dt

≤
∫ ω

0

∣∣f(t, ẍ1(t))∣∣dt+ ∫ ω

0

∣∣g(t, ẋ1(t))∣∣dt
+

∫ ω

0

∣∣h(t, x1(t− τ(t)
))

− h(t, 0) + h(t, 0)
∣∣dt+ ∫ ω

0

∣∣e(t)∣∣dt
≤

∫ ω

0

∣∣f(t, ẍ1(t))∣∣dt+ ∫ ω

0

∣∣g(t, ẋ1(t))∣∣dt
+

∫ ω

0

[
mo

∣∣x1(t− τ(t)
)∣∣+ ∣∣h(t, 0)∣∣]dt+ ∫ ω

0

∣∣e(t)∣∣dt
≤

(
K1 +K2 +mo∥x1∥∞ +max{|h(t, 0)| : 0 ≤ t ≤ ω}+ ∥e∥∞

)
ω := M3.
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To prove condition (1) of Lemma 3.1, we assume that for any λ ∈ (0, 1) and any

x = x(t) in the domain of L, which also belongs to ∂Ω, we must have Lx ̸= λNx.

For otherwise in view of (7), we obtain

∥x1∥∞ ≤ M1, ∥x2∥∞ ≤ M2, ∥x3∥∞ ≤ M3.

Let M4 = max{M1,M2,M3}+1, Ω = {x = (x1, x2, x3)
⊤ : ∥x∥ < M4}, then we see

that x belongs to the interior of Ω, which contradicts the assumption that x ∈ ∂Ω.

Therefore condition (1) of Lemma 3.1 is satisfied. Now for any x ∈ ∂Ω ∩KerL

Q1Nx =
1

ω

∫ ω

0

 x2(t)
x3(t)

−f(t, ẍ1(t))− g(t, ẋ1(t))− h(t, x1(t− τ(t))) + e(t)

dt.

If Q1Nx = 0, then x2(t) = 0, x3(t) = 0, x1 = M4 or −M4. But if x1(t) = M4,

then we get

0 =

∫ ω

0
h(t,M4)dt,

from which there exists a point t2 such that h(t2,M4) = 0. From assumption

(H3), we have M4 ≤ D, which yields a contradiction. Similar analysis holds for

x1 = −M4. Therefore we have Q1Nx ̸= 0, hence for all x ∈ ∂Ω ∩KerL, x /∈ ImL,

so condition (2) of Lemma 3.1 is satisfied.

Define an isomorphism J : ImQ1 → KerL as follows:

J(x1, x2, x3)
⊤ = (−x3, x1, x2)

⊤.

Let H(µ, x) = µx+ (1− µ)JQ1Nx, (µ, x) ∈ [0, 1]×Ω, then for any (µ, x) ∈ (0, 1)×
(∂Ω ∩KerL),

H(µ, x) =

µx1(t)+
1−µ

ω

∫ ω

0
[f(t, ẍ1(t))+g(t, ẋ1(t))+h(t, x1(t−τ(t)))−e(t)]dt

(µ+ (1− µ))x2(t)
(µ+ (1− µ))x3(t)

 .

We have
∫ ω
0 e(t)dt = 0. So, we can get

H(µ, x) =

µx1(t) +
1− µ

ω

∫ ω

0
[f(t, ẍ1(t)) + g(t, ẋ1(t)) + h(t, x1(t− τ(t)))]dt

(µ+ (1− µ))x2(t)
(µ+ (1− µ))x3(t)

 ,

for all (µ, x) ∈ (0, 1)× (∂Ω ∩KerL).
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From (H3), it is obvious that x⊤H(µ, x) ̸= 0, for any (µ, x) ∈ (0, 1)×(∂Ω∩KerL).

Hence
deg{JQ1N,Ω ∩KerL, 0} = deg

{
H(0, x),Ω ∩KerL, 0

}
= deg

{
H(1, x),Ω ∩KerL, 0

}
= deg{I,Ω ∩KerL, 0} ̸= 0.

So condition (3) of Lemma 3.1 is satisfied. By applying Lemma 3.1, we conclude

that equation Lx = Nx has a solution x = (x1, x2, x3)
⊤ on Ω ∩D(L), thus (1) has

an ω-periodic solution x(t).

Remark 3.1 If
∫ ω
0 e(t)dt ̸= 0, f(t, 0) ̸= 0 and g(t, 0) ̸= 0, the problem of

existence of an ω-periodic solution for (1) can be converted to the existence of an

ω-periodic solution for the equation

d3

dt3
(
x(t)−c(t)x

(
t−δ(t)

))
+f1

(
t, ẍ(t)

)
+g1

(
t, ẋ(t)

)
+h1

(
t, x

(
t−τ(t)

))
= e1(t), (19)

where f1(t, x) = f(t, x) − f(t, 0), g1(t, x) = g(t, x) − g(t, 0), h1(t, x) = h(t, x) +∫ ω
0 e(t)dt + f(t, 0) + g(t, 0) and e1(t) = e(t) −

∫ ω
0 e(t)dt. Clearly,

∫ ω
0 e1(t)dt = 0,

f1(t, 0) = 0 and g1(t, 0) = 0. Therefore (19) can be discussed using Theorem 3.1.

4 Example

Example 4.1 Consider the following third-order neutral functional differential

equation:

d3

dt3

(
x(t)− 1

150
sin 16t · x

(
t− 1

160
sin 16t

))
+ cos 16t sin ẍ(t)

+ sin 16t cos ẋ(t) +
8

π
x(t− sin 16t) = cos 16t.

(20)

Comparing (20) to (1), we find f(t, u) = cos 16t sinu, g(t, v) = sin 16t cos v, h(t, x) =
8
πx, h(t, 0) = 0, mo = 8

π , c(t) =
1

150 sin 16t, δ(t) =
1

160 sin 16t, τ(t) = sin 16t, e(t) =

cos 16t and let ω = π
8 .

Therefore we get

c∞ = max
t∈[0,ω]

∣∣c(t)∣∣ = max
t∈[0,π

8
]

∣∣∣ 1

150
sin 16t

∣∣∣ = 1

150
< 1,

c1 = max
t∈[0,ω]

|ċ(t)| = max
t∈[0,π

8
]

∣∣∣ 16
150

cos 16t
∣∣∣ = 8

75
,

c2 = max
t∈[0,ω]

|c̈(t)| = max
t∈[0,π

8
]

∣∣∣256
150

sin 16t
∣∣∣ = 128

75
,

δ1 = max
t∈[0,ω]

|δ̇(t)| = max
t∈[0,π

8
]

∣∣∣ 1
10

cos 16t
∣∣∣ = 1

10
,
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δ2 = max
t∈[0,ω]

|δ̈(t)| = max
t∈[0,π

8
]

∣∣∣16
10

sin 16t
∣∣∣ = 8

5
,

M1 = 1 +
1

2
c1ω + c∞ + c∞δ1

= 1 +
1

2
× 8

75
× π

8
+

1

150
+

1

150
× 1

10
≃ 1.0283,

M5 =
1

2
moω

2M1 =
1

2
× 8

π
×
(π
8

)2
× 1.0283 ≃ 0.2019,

M6 =
1

2

(√
M5ω +

1

2
c2ω

2 + 2c1ω − c∞δ2ω
)

=
1

2

[(
0.2019× π

8

) 1
2
+

1

2
× 128

75
×

(π
8

)2

+ 2× 8

75
× π

8
− 1

150
× 8

5
× π

8

]
≃ 0.2464.

We can choose K1 = 1, K2 = 1, D > π
8 and mo =

8
π such that (H1)-(H4) hold. And

1− c∞ − c∞δ1(δ1 − 2)−M6 = 0.7482 > 0.

To verify obtain (17), we calculate

M2 =
(
K1 +K2 +moD +max{|h(t, 0)| : 0 ≤ t ≤ ω}+ ∥e∥∞

)
ω

= (1 + 1 + 1 + 0 + 1)× π

8
=

π

2
,

M3 = c1DM2 =
8

75
× π

8
× π

2
= 0.0658,

M4 = M1M2 +
1

2
moω

2c1D = 1.0283× π

2
+

1

2
× 8

π
×

(π
8

)2
× 8

75
× π

8
= 1.6152 + 0.0082 = 1.6234.

Then (17) becomes

0.7482×
∫ ω

0

∣∣ẍ1(t)∣∣dt ≤ 0.4239 + 0.5646

(∫ ω

0

∣∣ẍ1(t)∣∣dt) 1
2

,

which can be considered as a quadratic inequality, whose roots are

−b±
√
b2 − 4ac

2a
=

1

2
(0.7546± 1.6839).

From this, we obtain ∫ ω

0

∣∣ẍ1(t)∣∣dt ≤ 1.4866.

The rest of the proof is clear. Hence, by Theorem 3.1, (20) has at least one π
8 -periodic

solution.
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