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Abstract

In this paper, we consider Seymour’s Second Neighborhood Conjecture in
3-free digraphs, and prove that for any 3-free digraph D, there exists a vertex
say v, such that d++(v) ≥ ⌊λd+(v)⌋, λ = 0.6958 · · · . This slightly improves
the known results in 3-free digraphs with large minimum out-degree.
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1 Introduction
All digraphs considered in this paper are finite, simple and digonless. Let

D = (V,A) be a digraph with vertex set V (D) and arc set A(D). For any ver-

tex v ∈ V , the out-neighbourhood of v is the set N+(v)={u ∈ V (D):(v, u) ∈ A(D)},
and the out-degree of v is d+(v)= |N+(v)|. The in-neighbourhood of v is the set

N−(v)={u ∈ V (D):(u, v) ∈ A(D)}, and the in-degree of v is d−(v)= |N−(v)|. The

set N(v) = N+(v) ∪ N−(v) is called the neighbourhood of v. We call the ver-

tices in N+(v), N−(v) and N(v) the out-neighbours, in-neighbours and neighbours

of v respectively. The minimum out-degree (minimum in-degree) of D is δ+(D) =

min{d+(v) : v ∈ V (D)} (δ−(D) = min{d−(v) : v ∈ V (D)}). For a set S ⊆ V , we let

N+(S) =
∪
v∈S

N+(v)− S, N−(S) =
∪
v∈S

N−(v)− S. For any vertex v, let N++(v) =

N+(N+(v)) and d++(v) = |N++(v)|. Similarly, one can define the maximum out-

degree of D, ∆+(D), and the maximum in-degree, ∆−(D), N−−(v), d−−(v).

For the purpose of this paper, all cycles considered here are direct cycles. The

girth g(D) of D is the minimum length of the cycles of D. A digraph D is k-free

means that g(D) ≥ k + 1 for k ≥ 2, that is, there is no cycle whose length is less

than k in D.

In 1990, Seymour [1] put forward the following conjecture:
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Conjecture 1.1(Seymour’s Second Neighborhood Conjecture) For any digraph

D, there exists a vertex v such that d++(v) ≥ d+(v).

We call the vertex v in Conjecture 1.1 a Seymour vertex. In 1996, Fisher [3]

proved that Conjecture 1.1 is true ifD is a tournament. In 2007, Fidler and Yuster [2]

showed that any tournament minus a star or a sub-tournament, and any digraph

D with minimum degree |V (D)| − 2 has a Seymour vertex. In 2016, Cohn et al [8]

proved that almost surely there are a large number of Seymour vertices in random

tournaments and even more in general random digraphs. However, Conjecture 1.1

is still an open problem for general digraphs.

Another approach to Conjecture 1.1 is to determine the maximum value of λ such

that there is a vertex v in D satisfying d++(v) ≥ λd+(v) for any digraph D. Chen,

Shen and Yuster [4] proved that d++(v) ≥ λd+(v), λ = 0.6572 · · · is the unique real

root of the equation 2x3 + x2 − 1 = 0. In 2010, Zhang and Zhou [7] proved that

for any 3-free digraph D, there exists a vertex v in D such that d++(v) ≥ λd+(v),

where λ = 0.6751 · · · is the only real root in the interval (0, 1) of the polynomial

x3+3x2−x−1 = 0. Liang and Xu [6] considered k-free digraphs, k ≥ 3, and proved

that d++(v) ≥ λkd
+(v), where λk is the only real root in the interval (0,1) of the

polynomial

gk(x) = 2x3 − (k − 3)x2 + (2k − 4)x− (k − 1).

Furthermore, λk is increasing with k, and λk → 1 while k → ∞. When k=3, λ3 =

0.6823 · · · is the only real root in the interval (0, 1) of the polynomial x3+x−1 = 0.

In this paper, we consider Seymour’s second neighborhood conjecture in 3-free

digraphs, and our result slightly improves the known results in 3-free digraphs with

large minimum out-degree.

Theorem 1.1 Let D be an n order 3-free digraph, then there exists a vertex

v ∈ V (D) such that d++(v) ≥ ⌊λd+(v)⌋, where λ = 0.6958 · · · is the only real root

in the interval (0, 1) of the polynomial x3 + 1
2x

2 − (1−x)2

1.17 − 1
2 = 0.

This paper is organized as follows. In Section 2, we first introduce some defi-

nitions and notations used in the paper, and give some lemmas in order to prove

Theorem 1.1. In Section 3, we will prove Theorem 1.1.

2 Preparation
A digraph G is a subdigraph of a digraph D if V (G) ⊆ V (D), A(G) ⊆ A(D). For

any subdigraph G of D, let N+
G (v) = N+

D (v)∩V (G) and d+G(v) = |N+
G (v)|. For a set

W ⊆ V , we let D[W ] denote the subgraph induced by W and N+
W (v) = N+

D[W ](v),

d+W (v) = d+D[W ](v). Similarly, we can define N−
G (v), d−G(v), N

−
W (v), d−W (v). For any

two vertex disjoint vertex sets X and Y , denote A(X,Y ) as the arc set between X

and Y , every arc (x, y) ∈ A(X,Y ) with x ∈ X and y ∈ Y .
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We need the following lemmas to prove Theorem 1.1.

Lemma 2.1 The polynomial f(x) = x3 + 1
2x

2 − (1−x)2

1.17 − 1
2 = 0 is strictly

increasing and has a unique real root in the interval (0, 1).

Proof Since f(x) = x3 + 1
2x

2 − (1−x)2

1.17 − 1
2 = 0, we have

f ′(x) = 3x2 + x+ 2
(1− x)2

1.17
.

f ′(x) > 0 when x ∈ (0, 1), which implies f(x) is strictly increasing in (0, 1). Since

f(0) < 0 and f(1) > 0, f(x) has a unique real root in the interval (0, 1). The proof

is completed.

Lemma 2.2 If x < ⌈y⌉, then x < y, where x is an integer and y is a real

number.

Proof (i) If y is an integer, then x < ⌈y⌉ = y.

(ii) If y is not an integer, denote y = y′ + c, here y′ is an integer and 0 < c < 1.

Since x < ⌈y⌉ = ⌈y′ + c⌉ = y′ + 1, so we have x ≤ y′ < y′ + c = y. The proof is

completed.

Lemma 2.3 If ⌈x⌉ > ⌈y⌉, then x > y, where both x and y are real numbers.

Proof If not, we have x ≤ y. It is easy to see that ⌈x⌉ ≤ ⌈y⌉, a contradiction.

The proof is completed.

Lemma 2.4 x− ⌈y⌉ = ⌊x− y⌋, where x is an integer and y is a real number.

Proof (i) If y is an integer, then x− ⌈y⌉ = x− y = ⌊x− y⌋.
(ii) If y is not an integer, denote y = y′ + c, here y′ is an integer and 0 < c < 1,

then x− ⌈y⌉ = x− ⌈y′ + c⌉ = x− y′ − 1 = ⌊x− y⌋. The proof is completed.

Lemma 2.5 ⌊x⌋ − ⌊y⌋ ≤ ⌈x− y⌉, where both x and y are real numbers.

Proof (i) If both x and y are integers, then ⌊x⌋ − ⌊y⌋ = x− y = ⌈x− y⌉.
(ii) If x is an integer and y is not an integer, denote y = y′ + c, here y′ is an

integer and 0 < c < 1, then ⌊x⌋ − ⌊y⌋ = x− y′ = ⌈x− y⌉.
(iii) If x is not an integer and y is an integer, denote x = x′ + c, here x′ is an

integer and 0 < c < 1, then ⌊x⌋ − ⌊y⌋ = x′ − y < x′ − y + 1 = ⌈x− y⌉.
(iv) If both x and y are not integers, denote x = x′+c1, y = y′+c2, here both x′

and y′ are integers and 0 < ci < 1, where i = 1, 2, then ⌊x⌋−⌊y⌋ = x′−y′ ≤ ⌈x−y⌉.
The proof is completed.

Lemma 2.6[5] Let D be an n order digraph with δ+(D) ≥ ⌈0.3465n⌉, then D

contains a directed triangle.

Lemma 2.7 Let D be an n order 3-free digraph with |A(D)| =
(
n
2

)
− k and

δ+(D) = ⌈αn⌉, 0.3465/2 < α < 0.3465, then

δ+(D) <
3.6535α− 0.693

2(2α− 0.3465)
+

√
(0.3465α)2

4(2α− 0.3465)2
+

3.307α2k

2α− 0.3465
.
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Proof For any vertex v ∈ V (D), denote X = N+(v), Y = N−(v). So |X| =
d+(v) and |Y | = d−(v). There exists a vertex say x ∈ X, such that d+X(x) <

⌈0.3465|X|⌉ since D is 3-free by Lemma 2.6. And we have d+X(x) < 0.3465|X| by
Lemma 2.2. Denote S as V −X − Y − v. Since D is 3-free and δ+(D) = ⌈αn⌉, we
have

|S| ≥ d+S (x) = d+(x)− d+X(x) > ⌈αn⌉ − 0.3465|X| = ⌈αn⌉ − 0.3465d+(v).

Since X, Y and S are pairwise-disjoint sets since D is 3-free, we can acquire that

n ≥ |X|+ |Y |+ |S|+ 1 ≥ d+(v) + d−(v) + ⌈αn⌉ − 0.3465d+(v) + 1

= 0.6535d+(v) + d−(v) + ⌈αn⌉+ 1.

We sum this inequality over all vertex v ∈ V (D), then∑
v∈V

n >
∑
v∈V

(0.6535d+(v) + d−(v) + ⌈αn⌉+ 1)

=
∑
v∈V

0.6535d+(v) +
∑
v∈V

d−(v) +
∑
v∈V

⌈αn⌉+ n

= 1.6535|A(D)|+ n⌈αn⌉+ n,

because
∑
v∈V

d+(v) =
∑
v∈V

d−(v) = |A(D)|.

Since |A(D)| =
(
n
2

)
− k and αn ≤ ⌈αn⌉ < αn+1, the following inequality holds,

k >
1.6535

(
n
2

)
+ n⌈αn⌉ − n2 + n

1.6535
=

−0.3465(n2 − n) + 2n⌈αn⌉
3.307

≥ (2α− 0.3465)n2 + 0.3465n

3.307
.

So we obtain that

δ+(D)− 1

α
< n <

−0.3465

2(2α− 0.3465)
+

√
0.34652 + 13.228(2α− 0.3465)k

2(2α− 0.3465)
.

Since 0.3465/2 < α < 0.3465 and δ+(D) = ⌈αn⌉ < αn+1, rearranging the inequality,

we obtain

δ+(D) <
3.6535α− 0.693

2(2α− 0.3465)
+

√
(0.3465α)2

4(2α− 0.3465)2
+

3.307α2k

2α− 0.3465
.

The proof is completed.

3 Proof of Theorem 1.1

Proof of Theorem 1.1 We prove Theorem 1.1 by induction on the number of

vertices. It is trivial for n = 1, 2, 3. Assume that Theorem 1.1 holds for all 3-free
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digraphs with less than n vertices. When |V (D)| = n, assume to the contrary that

for any vertex v ∈ V (D), d++(v) < ⌊λd+(v)⌋. We will show that the assumption

leads to a contradiction.

Let u ∈ V (D) be a vertex with minimum out-degree, that is d+(u) = δ+(D).

Let R = N+(u), S = N++(u), r = d+(u) and s = d++(u). It is easy to check

that Theorem 1.1 holds for all 3-free digraphs with minimum out-degree less than

7, and every vertex with minimum out-degree satisfies d++(v) ≥ ⌊λd+(v)⌋, where
λ = 0.6958 · · · is the only real root in the interval (0, 1) of the polynomial x3 +
1
2x

2 − (1−x)2

1.17 − 1
2 = 0. So we can assume that r ≥ 7. By our assumption, we have

the following inequality:

s = d++(u) < ⌊λd+(u)⌋ = ⌊λr⌋ ≤ λr. (1)

Since D is 3-free, D(R) is 3-free. There exists at least one vertex say x ∈ R, such

that d+R(x) < ⌈0.3465|R|⌉ by Lemma 2.6. We have that d+R(x) < 0.3465|R| = 0.3465r

by Lemma 2.2. So we obtain that

d+S (x) = d+(x)− d+R(x) > r − 0.3465r = 0.6535r.

Thus

λr ≥ ⌊λr⌋ > s = |S| ≥ d+S (x) > 0.6535r,

which implies that

λ > 0.6535. (2)

Suppose that |A(D(R))| =
(
r
2

)
−m and let σ = m

r2
, then

|A(R,S)| =
∑
v∈R

d+(v)− |A(D(R))| ≥ r2 −
(
r

2

)
+m =

(1
2
+ σ

)
r2 +

r

2
.

Assume that there exists a vertex t ∈ R such that d+R(t) ≤ ⌈(1 − λ)r⌉, then
d+S (t) = d+(t) − d+R(t) ≥ r − ⌈(1 − λ)r⌉ = ⌊λr⌋ by Lemma 2.6, which implies that

s ≥ d+S (y) ≥ ⌊λr⌋, a contradiction.

Now we suppose that for every vertex t ∈ R, d+R(t) > ⌈(1 − λ)r⌉. Assume

that δ+(D(R)) = ⌈αr⌉, where α < 0.3465 by Lemma 2.6, so δ+(D(R)) = ⌈αr⌉ >

⌈(1− λ)r⌉. By Lemma 2.3, we have αr > (1− λ)r. On the other hand, α > 0.304,

otherwise λ ≥ 0.696, a contradiction.

Since D(R) is 3-free, |A(D(R))| =
(
r
2

)
−m and δ+(D(R)) = ⌈αr⌉, where 0.304 <

α < 0.3465. By Lemma 2.7, the following inequality holds,

δ+(D(R))<
3.6535α−0.693

2(2α−0.3465)
+

√
(0.3465α)2

4(2α−0.3465)2
+

3.307α2m

2α−0.3465
<0.8+

√
0.05+1.17m.

Thus
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(1− λ)r ≤ ⌈(1− λ)r⌉ < δ+(D(R)) < 0.8 +
√
0.05 + 1.17m.

We have that

σ >
(1− λ)2

1.17
− 1.6(1− λ)

1.17r
,

since (1− λ)r − 0.8 > 0.

Thus, the following inequality holds

|A(R,S)| >
(1
2
+

(1− λ)2

1.17
− 1.6(1− λ)

1.17r

)
r2 +

r

2
. (3)

By induction hypothesis, there exists at least one vertex say w ∈ R such that

d++
R (w) ≥ ⌊λd+R(w)⌋. Denote X = N+

R (w), Y = N+(w) − R = N+(w) ∩ S and

d = |Y |. Since |R−X| ≥ d++
R (w) ≥ ⌊λd+R(w)⌋ = ⌊λ|X|⌋, we have |X| ≤ r+1

1+λ . Thus,

d = |Y | = d+(w)− |X| ≥ r − r + 1

1 + λ
=

λr − 1

1 + λ
> 0.3r,

since r ≥ 7 and λ > 0.6535.

Since d = |Y | < |S| = s < ⌊λr⌋ < λr, we conclude that

0.3r < d < λr. (4)

For every vertex y ∈ Y , use d+V−R−Y (y) to denote the number of out-neighbors

of y in D not in R ∪ Y . Since d++(w) < ⌊λd+(w)⌋ and d++
R (w) ≥ ⌊λd+R(w)⌋, by

Lemma 2.5, we have that

d+V−R−Y (y)≤d++(w)−d++
R (w)< ⌊λd+(w)⌋−⌊λd+R(w)⌋≤⌈λd+(w)−λd+R(w)⌉= ⌈λd⌉.

By Lemma 2.2, we have d+V−R−Y (y) < λd.

Since d+(y) ≥ d+(u) = r and
∑
y∈Y

d+Y (y) ≤
(
d
2

)
, we obtain that

|A(Y,R)| =
∑
y∈Y

d+R(y) ≥
∑

(r − d+V−R−Y (y)− d+Y (y))

> (r − λd)d− d(d− 1)

2
>

(
r − λd− d

2

)
d.

That is,

|A(Y,R)| >
(
r − λd− d

2

)
d. (5)

Combining (1), (3) and (5), 1.6(1−λ)
1.17 r < r

2 since λ > 0.6535, therefore,

λr2 ≥ ⌊λr⌋r > rs ≥ |A(R,S)|+ |A(S,R)| ≥ |A(R,S)|+ |A(Y,R)|

>
(1
2
+

(1− λ)2

1.17
− 1.6(1− λ)

1.17r

)
r2 +

r

2
+
(
r − λd− d

2

)
d

> −
(
λ+

1

2

)
d2 + rd+

(1
2
+

(1− λ)2

1.17

)
r2.
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That is,

λr2 > −
(
λ+

1

2

)
d2 + rd+

(1
2
+

(1− λ)2

1.17

)
r2, (6)

where 0.3r < d < λr.

Let

f(z) = −
(
λ+

1

2

)
z2 + rz +

(1
2
+

(1− λ)2

1.17

)
r2,

where 0.3r < z < λr. Since f(z) is a quadratic function with a negative leading

coefficient, the following inequality holds,

f(z) ≥ min{f(0.3r), f(λr)}, (7)

for all z ∈ (0.3r, λr).

Combining (6) with (7), we have

λr2 > f(d) ≥ min{f(0.3r), f(λr)}. (8)

A simple calculation shows that if λr2 > f(0.3r), then λ > 0.744, a contradiction.

Similarly, if λr2 > f(λr), by simplifying there is

λr2 > −
(
λ+

1

2

)
λ2r2 + λr2 +

(1
2
+

(1− λ)2

1.17

)
r2.

We obtain that λ3+ 1
2λ

2− (1−λ)2

1.17 − 1
2 > 0, which contradicts that λ is the unique

real root of the equation x3 + 1
2x

2 − (1−x)2

1.17 − 1
2 > 0. The proof is completed.
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