
AN EFFECTIVE DETAILED ROUTING
ALGORITHM CONSIDERING ADVANCED

TECHNOLOGY NODES∗

Xiqiong Bai1, Dixiu Xiao1, Jianli Chen2, Wenxing Zhu2†,
Yadong Zhang3, Taotao Lu3, Lifeng Wu3

(1. College of Mathematics and Computer Science, Fuzhou University,

Fuzhou 350116, Fujian, PR China;

2. Center for Discrete Mathematics and Theoretical Computer Science,

Fuzhou University, Fuzhou 350116, Fujian, PR China;

3. Empyrean Software, Inc., Beijing 100000, PR China)

Ann. of Appl. Math.
36:1(2020), 31-47

Abstract

Detailed routing has become much challenging in modern circuit designs
due to the extreme scaling of chip size and the complicated design rules. In this
paper, we give an effective algorithm for detailed routing considering advanced
technology nodes. First, we present a valid pin-access candidates generation
technology for handling complex pin shapes. Then, we propose a tree-based
nets components selection algorithm to decide connecting order for multiple
nets components. Finally, combined with global routing results and advanced
technology nodes, an initial routing results optimization algorithm is presented
to achieve the final detailed routing results. Experimental results on indus-
try benchmarks show that, our proposed algorithm not only achieves 100%
routability on real industrial cases in a reasonable runtime, but also optimizes
total wirelength, total vias and other advanced technology nodes simultane-
ously.

Keywords detailed routing; advanced technology nodes; pin-access; total
vias

2000 Mathematics Subject Classification 68Q25

1 Introduction

Routing is considered as the most time-consuming and important stage in the

VLSI design flow. In addition, with ever increasing requirements, many new design

rules are introduced to satisfy modern industrial demands. Due to the complexity

∗Manuscript received September 29, 2019
†Corresponding author. E-mail: wxzhu@fzu.edu.cn

31



32 ANN. OF APPL. MATH. Vol.36

of the routing problem, routing is usually divided into two stages: global routing and

detailed routing. During the global routing stage, nets are routed on a coarse-grain

grid structure with the objective of determining the regions within which each net

will be routed. After an approximate routing solution is determined for each net,

the detailed routing stage is to find the exact routes of all nets [1]. Since detailed

routing is generated based on the global routes, the quality of the final interconnects

depends largely on the quality of the global routing solution [27].

Considering advanced technology nodes in detailed routing is a complicated step

in the physical design process. A high-performance chip requires that several corre-

sponding metrics need to be evaluated and considered in this dead-or-alive process.

With the aim to achieve a better detailed routing result, honoring global routing re-

sults can maximize reducing the disturbance to these metrics (e.g., timing, routabil-

ity [3], manufacturability, skew, and congestion [2, 15, 16]), and so on. Figure 1 is

a comparison of routing results of whether or not to take into account the impact

of congestion for a net with four pins. If the detailed router routes wires over the

region as shown in Figure 1 (a), it will have overlapped wires because of congestion.

Figure 1 (b) is a modified detailed routing result considering advanced technology

nodes. With the rapid development of modern industrial tools and lithography re-

quirements, satisfying all advanced technology nodes in a detailed routing process

is becoming more and more challenging. Therefore, several corresponding metrics

need to be managed in different steps during the detailed routing process to meet

all constraints in the final detailed routing result.

Figure 1: (a) A detailed routing result without considering congestion.
(b) A modified detailed routing result by considering congestion area.

1.1 Previous work
Many works have been presented for VLSI routing based on the shortest path

algorithms, which can be divided into two categories: maze routing algorithm and

line-search algorithm [4,5]. The fundamental maze algorithm is Lee’s algorithm [6],



No.1 X.Q. Bai, etc., An Effective Detailed Routing Algorithm 33

which is an application of the breadth-first search method. This algorithm consists

of two main phases, and is applied to a uniform grid with known starting and ending

points of a net. In the first phase, adjacent points of the starting point of the net are

marked by label 1. Then after each step i, the unmarked neighbors of the labeled

elements are labelled by i + 1. This phase will be repeated until the target point

is found. The shortest path is produced by backtracking diminishing labels from

the target point to the beginning point in the second phase. If there exist several

neighboring points with the same label, the guidance for choosing the next point is

to follow the path’s direction and decrease the number of bends at the same time.

After that, by applying the A* heuristic search, Hadlock [22] proposed a shortest

path algorithm called the Minimum Detour (MD) algorithm, which is guided by the

number of detours during the path search process. Compared to Lee′s algorithm,

the MD algorithm not only costs less time and the number of detours during the

shortest path stage, but also achieves a better result. Different from the MD al-

gorithm, Soukup’s algorithm [8] combined advantages of the depth-first search and

the breadth-first search, which improves the runtime of the original maze-routing

algorithm. However, since it is a heuristic search method, the path found is usually

not the shortest.

The search lengths at each step of all the above maze-routing algorithms are

unit grid length, which adds the burden of storage and search ability during the

routing process. As a result, line-search algorithms have been proposed to change

this situation. The search segments are series of effective lines rather than unit

grid intervals. Hence they can save runtime and memory for finding a single-shaped

path, but usually cannot ensure to find a shortest path. For example, Hetzal′s

algorithm [9] is an improved A* algorithm which searches intervals instead of nodes.

Intervals are generated by clustering one row or one column of consecutive identical

cost nodes, and are stored before the path searching process. However, Hetzal′s

algorithm was proved that it does not enhance the running time [10]. What’s more,

these algorithms are mainly used for graph grids and the corresponding solution

may be limited. So they cannot meet our research requirements for detailed routing

with advanced technology nodes.

In addition, the above mentioned algorithms are mainly the path search process

between two points. However, routing terminals of a net may not be a single source

and a target, and the characteristics of multi-terminal nets indicate that our routing

problem is an NP-complete problem [11]. Hence, basic methods of the Steiner tree

problem have been widely promoted to minimize the total wirelength and consider

other constraints. Typical approach to route a multi-terminal net is usually divided

into two steps, that is, build a Steiner tree firstly, and then search a path between



34 ANN. OF APPL. MATH. Vol.36

two points based on all pairs of connections of the tree.

Many routing methods have been proposed to solve the multi-terminal net rout-

ing problem, which includes two main types of algorithms: sequential and concurrent

routing algorithms. Sequential routing algorithm has the advantage of simpleness,

but routing one net may affect routability of other nets or degrade routing quality

of all nets. To avoid this issue, another kind of algorithms attempt to find the final

results of all nets concurrently. Shragowitz [12] proposed an algorithm based on the

multicommodity flow formulation for two-terminal nets. Raghavan [13] presented an

improved algorithm which can handle three-terminal nets. Later, Albrecht [14] gave

a rigorous algorithm for global routing based on a new approximation algorithm for

the multi-commodity flow problem.

In VLSI detailed routing, the solution space is much smaller than that of glob-

al routing. Since it is rather hard for an optimization method to consider global

routing and advanced technology nodes simultaneously, it is great to design effi-

cient detailed routing algorithms for producing high quality routing solution with

considering advanced technology nodes.

1.2 Our work
In this paper, we design an effective algorithm flow to achieve a detailed routing

result with global routing information and advanced technology nodes. Based on

the circuit netlist and global routing results information, our algorithm connects all

nets efficiently and optimizes the total wirelength, the total number of vias, the out-

of-rectangle vias and wirelength, wrong wires and off-track vias. In our algorithm,

we identify shape-based pin-access candidates by considering spacing violation and

remaining enough available routing space. After preprocessing of all valid points

for nets, tree-shape structure is used to select sequence of connections for optimized

nets with the aim to decrease our routing area and wirelength. Finally, we propose

an optimized detailed routing process by considering global routing information and

advanced technology nodes. The main contributions of our work are summarized as

follows:

• A valid pin-access candidates generation algorithm is proposed to obtain valid

pin-access candidates from different shape of pins within track grids. Since

some connection violations may have a large effect on later detailed routing

stage, after generating pin-access candidates, spacing violation-aware candi-

dates restriction is applied to achieve valid pin-access candidates.

• A tree-based nets components selection algorithm is applied to select net’s

components points by reducing total wirelength and total vias. We first divide

nets multiple components into several pairs with corresponding weights, then



No.1 X.Q. Bai, etc., An Effective Detailed Routing Algorithm 35

establish connection points of these components based on known division.

This algorithm can reduce abstract distance between two points for each pair

of components, and decrease the total wirelength and total vias for the whole

net.

• An algorithm is designed for optimizing initial routing results. Initial detailed

routing solution is produced by carrying out a rectangle-driven A* algorithm

at first, then based on via candidates, detailed routing optimization is present-

ed to honor global routing results and consider advanced technology nodes for

the whole net, with the aim to reduce out-of-rectangle wirelength, number of

vias and other constraints.

• Experimental results show that our algorithm can achieve 100% routability in

a reasonable runtime, while handling several advanced technology nodes with

optimized total wirelength and total vias on industrial benchmarks.

The rest of this paper is organized as follows. Section 2 is the preliminaries.

Section 3 describes our algorithm in detail for our complicated detailed routing

problem. Empirical studies of our proposed algorithm are presented in Section 4.

Finally, conclusion is given in Section 5.

2 Preliminaries

2.1 Modern connection constraints
In this subsection, several modern connection constraints and routing preference

metrics will be described for satisfying the industrial advanced technology nodes on

global routing results.

1) Open Net. The pins of each net need to be fully connected. If any pin in

a net is disconnected, the net will be considered as an open net, and our detailed

router will regard this kind of nets as failed wires.

2) Cut Spacing. The cut spacing specifies the minimum spacing distance

between every two vias on cut layers, which ensures that vias on the same net or

different nets must be placed satisfying the minimum spacing distance.

3) Min Area. By specifying the min area rule for all routing segments, the

area of each routing polygon must be equal to or bigger than the default minimum

value. A patch may be added to the polygon in order to increase its area up to the

minimum default value.

4) Short Area. In our industrial benchmarks, each metal layer has only one

value of width. Namely, a short area violation will happen when either a via or

metal wire overlaps with another via model, metal wire, blockages, or pin shapes.



36 ANN. OF APPL. MATH. Vol.36

These cases can change the stable width value, and all intersection part of these

cases are the short area.

5) Rectangle Spacing. All rectangles on routing layers have a default minimum

spacing value between every two objects, such as the spacing between two routing

segments, the spacing between wires and obstacles, the spacing between vias and

obstacles, and so on.

An example of detailed routing result which violates connection constraints is

presented in Figure 2. These situations indicate that every routing segment needs

to satisfy specific connection constraints by considering advanced technology nodes

during the detailed routing process.

Figure 2: A detailed routing result with several connection constraints

2.2 Routing preference metrics
Due to modern connection constraints and other limited routing resources, we

use several routing preference metrics [17] to evaluate the detailed routing quali-

ty, such as out-of-rectangle wirelength and vias, wrong-way routing and off-track

routing. The distinction between routing preference metrics and modern connection

constraints is the influence on routing results. By optimizing these metrics during

the detailed routing process we can improve the quality of detailed routing results.

We describe these metrics in detail in the following concepts.

1) Out-of-Rectangle Wirelength and Vias. Following global routing results

is a wise choice for detailed routing process. Since global routing results in our in-

dustrial benchmarks are lists of rectangles which are saved in a specific file, each list

of rectangles of one net can ensure to cover a detailed routing solution of the associ-



No.1 X.Q. Bai, etc., An Effective Detailed Routing Algorithm 37

ated net. However, due to the congestion location of pins and limited global routing

space, out-of-rectangle wires and vias are acceptable to accomplish all routing nets

while considering other connection constraints.

2) Wrong-Way Routing. All routing layers have a preferred routing direction,

which is either horizontal or vertical to guide routing path on the corresponding met-

al layer. What’s more, routing directions on adjacent metal layers must be mutually

perpendicular to each other to satisfy modern chip structure. If a horizontal wire

exists on a vertical metal layer, this horizontal wire is called a wrong-way wire.

Wrong-way wires may lead to a bad final routing result.

3) Off-Track Routing. Each metal layer has its track grids for assigning routing

resources within a given wiring range. This means off-track routing wires are not

aligned with track grids, and vias located outside the given track grids are off-track

vias. Since the via structure is made up of two adjacent metal layers and a cut layer,

routing wires on different layers needs to abide by specific tracks grids of different

layers at the same time.

2.3 Problem statement

Given a set of m nets N = {n1, n2, · · · , nm}, each net has its specific pin in-

formation, and a set of m global routing results G = {g1, g2, · · · , gm}, which are

comprised by several rectangles. The goal of our detailed routing problem is to

achieve a routing result for each net ni ∈ N while considering its corresponding

global routing result gi ∈ G, and each net also should optimize the following metrics

simultaneously: (1) all nets need to guarantee no open nets or short areas in our

detailed routing results; (2) the total wirelength of all nets; (3) the total number

of vias; (4) the out-of-rectangle vias and wirelength; (5) wrong wires and off-track

vias.

In this paper, our detailed routing problem is based on the 3-D grid graph

structure with unit length of grid per layer. Assume that the preferred direction

of metal 1 is horizontal, and adjacent metal directions are perpendicular to each

other. Our routing capacity of the unit track grids is only those unblocked edges

with corresponding routing preference direction.

All benchmarks are derived from a single-core 32-bit processor with four memory

cores, and multi-terminal nets are included without power and ground (PG) nets.

Complex pin shapes exist not only in a single metal layer, but also in multiple metal

layers. What’s more, the number of blockages and layers, the die area of routing

have increased the difficulty of our routing problem. The complicated industrial

benchmarks indicate that line-search algorithms may not be applied to our problem,

since they have designated routing direction and cannot route all nets successfully.



38 ANN. OF APPL. MATH. Vol.36

3 Our Algorithm
The overall flow of our algorithm is summarized in Figure 3. It starts with prepro-

cessing circuit netlist and global routing results information on track grids. Circuit

netlist is made up of specific pin information of all nets, and every pin information

is decided by its relative orientation and location on corresponding boxes. A list of

rectangles with assigned layers represents the regions passed by the global routing

result of the associated net, which guarantees to cover at least a fully connected

detailed routing solution for the net. After completing the above processes, our

routing resources are divided into several kinds of points and our algorithm consists

of three main parts: (1) valid pin-access candidates generation, (2) tree-based nets

components points selection, (3) optimizing initial routing results. We will detail

these three major parts in the following subsections.

Figure 3: Algorithm flow

3.1 Valid pin-access candidates generation
In this subsection, to reduce the complexity of this process, we define the concepts

of pin-access candidate and valid pin-access candidate [18,19] as follows.

1) Pin-Access Candidate: A pin-access candidate on a metal layer is the

intersection point of every two adjacent track grids within corresponding pin shapes.

Pin-access candidates on the same single layer are put into a vertex set, and through

this step, multiple sets of vertices corresponding to different layers are generated for

the entire chip. In our pin-access candidates generation step, two pin shapes never

share the same pin-access candidate, but one pin shape may have many pin-access

candidates.



No.1 X.Q. Bai, etc., An Effective Detailed Routing Algorithm 39

2) Valid Pin-Access Candidate: A pin-access candidate is valid if we can

place at least one type of vias at that point without violating some connection

constraints, such as spacing distance between vias and other objects. Otherwise,

these pin-access candidates are considered invalid.

We intend to achieve valid pin-access candidates Pvc for each net with their global

routing information and spacing constraints. Since the off-track wires and wrong

wires may have a negative effect on routing result, we firstly present a technology

to build track grid with routing direction for each layer. Specifically, a track grid

Tg for a metal layer is created uniformly which covers the entire design area from

bottom to top (or left to right). Secondly, all pin access candidates Pc are created

by the intersection of points in pin shapes of every two adjacent track grids.

After creating pin-access candidates by track grids and pin information, we use

Algorithm 1 to select valid pin-access candidates. Based on the generated vertex

sets of pin information Pi and preprocessed track grids Tg, we generate pin-access

candidates for every pin at the beginning, then inspect set of vertexes Pci with

spacing constraints. All candidates violating spacing constraints are saved in Pvs

for later judgment. If no points are created within track grids, then a unit track

interval is added to expand our search scope each time. We take Tu in pseudo code

to count the number of expansions. After shape-based pin-access candidates are

created, these candidates Pvs violating spacing constraints are removed.

Algorithm 1: Valid Pin-Access Points
Require: Pi, Tg, Pvs

Ensure: Pvc

1: Tu ← 0, pvc(used) ← 0, Pvc ← 0;

2: while Pi is not empty

3: for every pin in Pi

4: Pc ← Get pin access candidates;

5: for every Pci ∈ Pc

6: if Pci ∈ Pvc(used) or Pci ∈ Pvs

7: Pvc ← Pc \ Pci;

8: Pvc(used) ← Pvc(used) ∪ Pci;

9: Tu ← Tu + 1;

10: end if

11: end for

12: end for

13: end while

14: return Pvc



40 ANN. OF APPL. MATH. Vol.36

Figure 4 is an example to find valid pin-access candidates considering specific
spacing rules. Since two generated pin-access candidates in Figure 4 (a) cannot
satisfy the spacing constraint, a unit track interval is expanded in Figure 4 (b) on
the second point to produce our valid pin-access candidates, in which the purple
point is our valid pin access point for this pin.

Figure 4: An example to find valid pin-access points

In addition, if the density of obstacles on the first metal layer is high, we may
prefer to route less nets on this layer for routability of later process. Thus, if valid
pin-access candidates are located in the range of global routing results, a via can
be directly generated to start routing on the upper metal. Otherwise, we need to
choose valid pin-access candidates closest to the global routing results and to find
the shortest path to connect them on the first metal layer.

3.2 Tree-based net’s components points selection
Components of a net are pins of this net. After the first step for finding valid

pin-access candidates, the second step is to select a point of each pin for each net
by optimizing total wirelength Ltotal and the total number of vias Vtotal.

3.2.1 Net’s components division

With a set of n pins on a net, a graph G(V,E) is constructed to divide each net
into tree shape. Vertexes of the graph are composed of net components, and every
two vertexes has an edge between them. Owing to the complexity of pin shapes, we
set coordinates of all vertexes as the center points of the rectangles. With the aim
to reduce total wirelength and total vias, connecting two far vertexes and searching
random directions are meaningless.

Our connecting order of these vertexes starts from choosing the leftmost candi-
date of all nets, then Prim algorithm is applied to construct the minimum spanning
tree (MST) on the above graph for each net, which aims to search for a minimum
spanning tree within the weighted connected graph. The tree formed by the edge
subset includes not only all the vertices in the connected graph, but also the sum of
the weights of all the edges is the smallest.



No.1 X.Q. Bai, etc., An Effective Detailed Routing Algorithm 41

In our algorithm, the weight for each edge is the Manhattan distance between
two vertexes and the via number calculated from the global routing results. We
define the weight of a via as 5, and the weight of Manhattan distance of an edge
between two points is 1. Then, the edge weight is

Weight = TotalTrackDistance× 1 + V iaNumber × 5. (1)

With the above graph G(V,E), we choose a root node x ∈ V (the leftmost point)
and generate a minimum spanning tree.

3.2.2 Division-aware components points establishment

Since our net’s connecting order are derived from the generated spanning tree,
the following step is to effectively extract connection points of every pin of a net.
A bipartite graph is used to select net’s components points. Each pin shape has
one or more valid pin-access candidates, and since too close pin-access points may
have space violation, retaining access points for other pins as more as possible is a
better choice. So we construct the grid graph as a bipartite graph according to the
generated spanning tree. Vertexes in the bipartite graph are two disjoint sets, and
weighted edges represent the cost of connecting these two points. We select an edge
with the minimum weight in the bipartite graph.

Figure 5 (a) shows that our net component P1 has five valid pin-access candi-
dates, and another net component P2 has four valid pin-access candidates. So 20
possible connections and associated weights are generated in this bipartite graph.
The selected edge is labeled purple in Figure 5 (b).

Figure 5: An example to establish net’s components connection points

3.3 Optimizing initial routing result

In this subsection, our process is split into two stages to achieve our detailed
routing results.

3.3.1 Rectangle-driven initial routing solution

For every edge established in Section 3.2.2, we use A* algorithm to build an



42 ANN. OF APPL. MATH. Vol.36

initial routing scheme, in which the cost function is the sum of the distance between
the current search point and start point and the distance between the current search
point and target point. In this routing scheme for an edge, the routing preference
metrics may be bad. To improve the metrics, we use the following method to adapt
the initial routing.

First, we set up a conflict graph G = (V,E). All initial routing segments of nets

on the same metal layer are regarded as vertexes, and each edge e
(x′,y′)
(x,y) indicates

that two segments Vx,y and Vx′,y′ on the same metal layer overlap with each other.
Let the weight Wx,y of vertex Vx,y be the sum of track length without wrong-way
routing and off-track routing. To achieve segments with better routing preference
metrics, we solve the following problem by using Branch-and-Bound solver to select
segments with respect to vertexes of the conflict graph:

max
∑

w(x,y) × c(x,y)

such that c(x,y) + c(x′,y′) ≤ 1, for any e
(x′,y′)
(x,y) ∈ E

c(x,y) ∈ {0, 1}, for any Vx,y ∈ V.

(2)

In the above formulation, c(x,y) is a binary indicator of deciding whether Vx,y is
used in the following rerouting stage. The aim of rerouting is to achieve routing
segments with improved routing preference metrics. We iteratively rip-up segments
with respect to vertexes until there are no conflict edges in the graph.

3.3.2 Initial detailed routing solution optimization
After accomplishing detailed routing with respect to routing preference metrics,

we further optimize the detailed routing solution honoring the global routing results
as much as possible, and reroute segments overlapped or violating connection con-
straints. In this stage, our initial detailed routing results are divided into routing
segments Ri by via locations. This step can efficiently simplify our method to deal
with modern advanced technology nodes.

First, we find open nets and short areas according to modern connection con-
straints on our track grids. Then for each routing layer, we define a panel Li to be
the i-th metal layer, and Ri to be the set of all routing segments on the i-th metal
layer. Let SCost be the overlapped wirelength of a segment, and OCost be a binary
variable to indicate whether or not this segment is open.

We preprocess all nets according to spacing rules described in modern advanced
technology nodes before our detailed routing process [23, 26]. For any via, routing
segment and other object of routed nets, we label the rectangle centered at the via,
routing segment or other object with width of the minimum spacing as a blockage
during the next routing process. This step can satisfy the minimum distance con-
straint between any two of vias, other objects and segments for the next routing
process. By the way, CCost is set as a binary indicator, which indicates if a segment
satisfies the spacing constraint or not.



No.1 X.Q. Bai, etc., An Effective Detailed Routing Algorithm 43

Minimum area rule specifies that all routing segments in our results should be
larger than minimum manufacturable size. In order to satisfy this constraint, we
need to insert patch for those segments violating the minimum area rule. Let MCost

be a binary variable indicating whether or not to add patch to a segment.
Due to the particularity of our global routing results and complicated pin infor-

mation, we need to consider out-of-rectangle wirelength (Loc), wrong wires (Lwl),
out-of-rectangle vias (Voc) and off-track vias (Vot) metrics in our detailed routing
process. Compared with previous connection constraints, these metrics have less
influence on our detailed routing results, but are still considered in our cost for
optimization.

All the above metrics need to be optimized together for every panel. Therefore,
a weighted sum of these costs is generated below to assess our routing results. In
equation (3), the coefficients of OCost, SCost and CCost reveal that these metrics have
a higher priority to optimize:

HistoryCost = OCost × 100 + SCost × 100 + CCost × 100 +MCost × 1
+Loc × 0.5 + Lwl × 0.5 + Voc × 0.5 + Vot × 0.5.

(3)

In Algorithm 2, we detail the process of reducing history cost of one segment
in a panel. It must be noted that, our previous history costs of segments in one
panel need to be updated after each iteration. This step will be continued until no
segments have any violation of advanced technology nodes.

Algorithm 2: Overall Reduction of Violation of Constraints for a Panel
Require: Panel Li, routing segments Ri

1: for the j-th routing segment Rij ∈ Ri

2: calculate History Cost of Rij ;

3: repeat

4: Hmax = selectMaxCostsegmentRij ;

5: rip− up Hmax;

6: reroute segment Rij ;

7: update History Cost of Rij ;

8: until termination condition is satisfied;

9: end for

10: return Ri

4 Empirical Studies
In this section, we implement our detailed routing algorithm in the C++ pro-

gramming language, and test it on modern real industrial benchmarks. All features
of each modern industrial benchmark are described in Table 1.



44 ANN. OF APPL. MATH. Vol.36

Table 1: Characteristics of modern industrial benchmarks

Benchmark blk net pin layer area(µm2)
case1 0 225 450 6 31 800

case2 0 548 1 149 6 35 130

case3 0 1 862 3 904 6 39 331

case4 4 359 718 9 465 739

case5 4 585 1 377 9 499 887

case6 4 1 534 3 309 9 640 334

There are two kinds of benchmarks. The first kind contains three industrial
benchmarks without blockages and vast majority of nets are with two terminals.
The second kind of industrial benchmarks is with blockages, the range of routing
area, routing layers numbers, and there are a large number of multi-terminals nets.
All benchmarks are derived from a single-core 32-bit processor with four memory
cores with modern manufacturing design rules. Table 1 presents the exhaustive
statistics information of our modern industrial benchmarks, where “blk”, “net”,
“pin”, “layer”, “area” give the numbers of blockages and nets, the amount of nets’
pins, the range of routing layers, and the die area for each industrial case respectively.

We compare our experimental results generated by our proposed detailed routing
process with and without considering the tree-based net’s components points selec-
tion firstly. And then, we compare our final optimized results (denoted by Ours)
with those generated by replacing A* algorithm in our algorithm with the classic
depth-first search algorithm (denoted by DFS). All experiments are performed on
the same platform with Intel Core 3.40GHz CPU and 16GB memory for fair com-
parison.

4.1 Effectiveness of tree-based net’s components points selection
In Section 3.2, two stages of optimization methods are presented to select our

connection points of each pin. In order to reflect the effectiveness of the two stages,
we test our algorithm with and without considering the tree-based net’s components
points selection on the modern industrial benchmarks. The test results are listed in
Table 2. In the table, the first column is the names of our industrial benchmarks.
The following three columns show the total wirelength (Ltotal(mm)), the total num-
bers of vias (Vtotal) and routing layers (Rl), respectively. The experimental results
show that, our algorithm with the tree-based net’s components points selection can
decrease the total wirelength by 82% averagely, and the number of total vias by 10%
on the industrial benchmarks.

4.2 Effectiveness of optimizing initial routing result
In this subsection, we compare our final optimized results (denoted by Ours)

with those generated by replacing A* algorithm in our algorithm with the classic
depth-first search algorithm (denoted by DFS). The test results are put in Table 3.
In the table, five evaluation metrics are listed in the second row, that is, out-of-



No.1 X.Q. Bai, etc., An Effective Detailed Routing Algorithm 45

Table 2: Comparison of several metrics without and with our tree-based
net’s components points selection

Benchmark
Ltotal×(µm) Vtotal Rl

w/o w/ w/o w/ w/o w/
case1 802 741 890 885 4 4
case2 2 087 1 952 2 230 2 209 5 5
case3 335 324 8 559 10 546 7 446 6 6
case4 35 658 35 595 2 299 2 318 9 9
case5 129 768 129 584 4 685 4 195 9 9
case6 277 502 276 730 8 578 8 898 9 8

Average 1.828 1.000 1.085 1.000 1.000 1.000

Table 3: Comparison of final detailed routing results between DFS and Ours

Benchmark
DFS results Ours

(Loc) (Voc) (Lwl) (Vot) times (Loc) (Voc) (Lwl) (Vot) times
(µm) (µm) (s) (µm) (µm) (s)

case1 1 032.53 237 0 0 3 759.63 632 289 0 0 8.45
case2 2 493.49 603 0 0 8 459.26 256.18 691 0 0 24.12
case3 - - - - - 667.06 2 318 0 0 69.85
case4 5 719.84 595 0 0 2 719.16 274 664 0 0 448.08
case5 - - - - - 33 432.38 947 0 0 1 589.62
case6 - - - - - 72 101.40 2 338 0 0 10 541.60

rectangle wirelength (Loc), out-of-rectangle vias (Voc), wrong wires (Lwl), off-track
vias (Vot) and actual running time. The experimental results demonstrated in Table
3 show that, our detailed router can complete 100% routability for all different sizes
of nets. What’s more, it can satisfy the advanced technology nodes as much as
possible, and reduce out-of-rectangle wirelength and vias in a reasonable runtime.

Figure 6 shows our final detailed routing results for Benchmark 3 generated by
our algorithm. Figure 6 (a) is the full detailed routing result, and Figure 6 (b) is a
partial routing result magnified from Figure 6 (a). Furthermore, blue lines in Figure
6 are routed nets and red rectangles are our pin shapes.

5 Conclusion
In this work, an effective algorithm has been presented to solve the modern de-

tailed routing problem. All nets, blockages and pin information are complicated and
irregular. The primary purpose of our algorithm is to minimize the total wirelength
and total vias by considering the advanced technology nodes. The first two parts
of our algorithm focus mainly on preprocessing and local optimizing our pin-access
candidates and other connection points of nets. After that, our algorithm completes
detailed routing by using an optimized path search method. Experimental results on
industrial benchmarks show that, our proposed algorithm not only achieves 100%
routability in a reasonable runtime, but also handles connection constraints and
honors global routing results efficiently. With the development of modern manufac-



46 ANN. OF APPL. MATH. Vol.36

turing requirements, the detailed routing process with other constraints also need
to be further considered in our algorithm.

Figure 6: Full and partial detailed routing results of Benchmark 3

References
[1] C.J. Alpert and D.P. Mehta, Handbook of Algorithm for Physical Design Automation,

New York: Auerbach Publications, 2008, pp.469-484.

[2] M.M. Ozdal, Detailed-routing algorithms for dense pin clusters in integrated circuit-
s, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
28:3(2009),340-349.

[3] M.-K. Hsu and Y.-F. Chen and C.-C. Huang and S. Chou and T.-H. Lin and T.-C.
Chen and Y.-W. Chang, A novel routability-driven placement algorithm for hierarchical
mixed-size circuit designs, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 33:12(2014),1914-1927.

[4] S.M.M. Goncalves and L.S. da. Rosa. Jr and F.S. Marques, A survey of path search
algorithms for VLSI detailed routing, Proceedings of IEEE International Symposium
on Circuits and Systems (ISCAS), 2017.

[5] C.Y. Lee, An algorithm for path connections and its applications, IRE transactions on
electronic computers, 10:3(1961),346-365.

[6] F. Rubin, The lee path connection algorithm, IEEE Transactions on Computers, C-
23:9(1974),907-914.

[7] P.E. Hart and N.J. Nilsson and B. Raphael, A formal basis for the heuristic determina-
tion of minimum cost paths, IEEE transactions on Systems Science and Cybernetics,
4:2(1968),100-107.

[8] J. Soukup, Fast Maze Router, Proceedings of the 15th Design Automation Conference
on Computer-aided Design, 1978.

[9] A. Heztel, A sequential detailed router for huge grid graphs, Proceedings of Design,
Automation and Test in Europe, 1998.

[10] S. Peyer and D. Rautenbach and J. Vygen, A generalization of Dijkstras shortest
path algorithm with applications to VLSI routing, Journal of Discrete Algorithms,
7:4(2009),377-390.

[11] B.K. Nielsen and P. Winter and M. Zachariasen, An exact algorithm for the uniformly-
oriented steiner tree problem, Proceedings of European Symposium on Algorithms,
2002.



No.1 X.Q. Bai, etc., An Effective Detailed Routing Algorithm 47

[12] E. Shragowitz and S. Keel, A global router based on a multicommodity flow model,
Integration: The VLSI Journal, 5:1(1987),3-16.

[13] P. Raghavan and C.D. Thompson, Multiterminal global routing: a deterministic ap-
proximation scheme, Algorithmica, 6(1991),73-82.

[14] C. Albrecht, Provably good global routing by a new approximation algorithm for mul-
ticommodity flow, Proceedings of ACM International Symposium on Physical Design,
2000.

[15] J. Seo and J. Jung and S. Kim and Y. Shin, Pin accessibility-driven cell layout redesign
and placement optimization, Proceedings of ACM/EDAC/IEEE Design Automation
Conference, June, 2017.

[16] X. Xu and B. Yu and J.-R. Gao and C.-L. Hsu and D.Z. Pan, Pin-access planning
and regular routing for self-aligned double patterning, ACM Transactions on Design
Automation of Electronic Systems, 21:3(2016),1-21.

[17] Z. Heng and Chris Chu, An efficient detailed router with regular routing patterns, IEEE
Transcations on Very Large Scale Intergration(VLSI) Systems, 21:9(2013),1655-1668.

[18] X. Xu and B. Cline and G. Yeric and B. Yu and D.Z. Pan, Self-aligned double pattern-
ing aware pin access and standard cell layout co-optimization, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 34:5(2015),699-712.

[19] N. Tim, Gridless pin access in detailed routing, Proceedings of the ACM/EDAC/IEEE
Design Automation Conference on Computer-aided design, June, 2011.

[20] Y. Ding and C. Chu and W.-K. Mak, Self-Aligned Double Patterning Lithography
Aware Detailed Routing with Color Preassignment, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 36:8(2017),1381-1394.

[21] J.R. Gao and D.Z. Pan, Flexible self-aligned double patterning aware detailed routing
with prescribed layout planning, Proceedings of the ACM international symposium on
International Symposium on Physical Design, 2012, pp.25-32.

[22] F.O. Hadlock, A shortest path algorithm for grid graphs, Networks, 7:4(1977),323-334.

[23] Y.-H. Su and Y.-W. Chang, Nanowire-aware routing considering high cut mask com-
plexity, IEEE Transactions on Computer-Aid Design of Integrated Circuits and Sys-
tems, 36:6(2017),964-977.

[24] J.Y. Hsiao and C.Y. Tang and R.S. Chang, An efficient algorithm for finding a max-
imum weight 2-independent set on interval graphs, Information Processing Letters,
43:5(1992),229-235.

[25] C.C. Huang and H.-Y. Lee and B.-Q. Lin and S.-W. Yang and C.-H. Chang and S.-T.
Chen and Y.-W. Chang and T.-C. Chen and I. Bustany, A detailed-routing-driven plac-
er for mixed-size circuit designs with technology and region constraints, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 37:3(2018),669-
681.

[26] I.-J. Liu and S.-Y. Fang and Y.-W. Chang, Overlay-aware detailed routing for self-
aligned double patterning lithography using the cut process, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 35:9(2016),1519-1531.

[27] S.K. Han and K. Jeong and A.B. Kahng, Stability and scalability in global routing,

Proceedings of IEEE International Workshop on System Level Interconnect Prediction,

June, 2011. (edited by Mengxin He)


