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Abstract

A diffusive predator-prey system with Holling-Tanner functional response
and no-flux boundary condition is considered in this work. By using upper
and lower solutions combined with iteration method, sufficient condition which
ensures the global asymptotical stability of the unique positive equilibrium of
the system is obtained. It is shown that the prey refuge and the proportional
harvesting can influence the global asymptotical stability of unique positive
equilibrium of the system, furthermore, they can change the position of the
unique interior equilibrium and make species coexist more easily.
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1 Introduction

To accurately describe the real ecological interactions between some species such

as lynx and hare, mite and spider mite, sparrow and sparrow hawk, etc. described by

Wollkind et al. [1] and Tanner [2], Robert May proposed a Holling-Tanner predator-

prey model [3], in which the author incorporated Holling’s rate [4,5]. In [6], Hsu and

Huang studied the following predator-prey system
du

dt
= ru

(
1− u

K

)
− vp(u),

dv

dt
= v
[
s
(

1− hv

u

)]
,

u(0) > 0, u(0) > 0,

(1.1)
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where u and v are the populations of the prey and the predator respectively. K is

the carrying capacity of the prey and r is the intrinsic growth rate in the absence of

predation. s is the intrinsic growth rate of the predator and p(u) is the functional

response. The carrying capacity of the predator is proportional to the population

size of the prey. By using Dulacs criterion and constructing Liapunov functions,

they established the global stability of the positive locally asymptotically stable

equilibrium of system (1.1). For more biological background of system (1.1), one

could refer to [6-8] and the references cited therein.

Taking into account the distribution of the prey and predators in spatial location

within a fixed bounded domain Ω ⊂ RN (N ≤ 3), Wonlyul Ko and Kimun Ryu [9]

considered a Holling-Tanner predator-prey system with reaction-diffusion. In [10],

Peng and Wang studied the following system

∂u

∂t
= d14u+ u

(
a− u− v

m+ u

)
, x ∈ Ω, t > 0,

∂v

∂t
= d24v + bv − v2

γu
, x ∈ Ω, t > 0,

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (6≡)0, x ∈ Ω,

(1.2)

where u(x, t) and v(x, t) are the species densities of the prey and predator respec-

tively. The constants di (i = 1, 2) are the diffusion coefficients of prey and predator

respectively. n is the outward unit normal vector on the smooth boundary ∂Ω.

The initial datas u0(x) and v0(x) are continuous functions on Ω, the homogeneous

Neumann boundary condition means that the system is self-contained and has no

population flux across the boundary ∂Ω. Obviously, as mentioned in [10], the above

system has a unique coexisting positive equilibrium (u, v) = (u, v), where

u =
1

2

{
a−m− bγ +

√
(a−m− bγ)2 + 4am

}
, v = bγu. (1.3)

They studied the stability of the positive constant solution of system (1.2) and

obtained sufficient conditions for the global stability of the positive equilibrium by

constructing a suitable Lyapunov function. For the ecological sense of system (1.2)

we can refer to [10] and the references cited therein.

Recently, Chen and Shi [11] reconsidered the above system (1.2), and proved

that if

m > bγ (1.4)

holds, then the unique constant equilibrium of system (1.2) is globally asymptotically
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stable, which shows that condition (1.4) is simpler and weaker than the condition

obtained in [10].

As is well known, the existence of refuge has important effects on the coexistence

of prey and predators, and research on the dynamic behaviors of predator-prey

model with prey refuges has become a popular topic during the last decade [12-21].

If we extend model (1.2) by incorporating a refuge protecting su of the prey, where

s ∈ [0, 1) is a constant, (1− s)u of the prey is available to the predator. Modifying

model (1.2) accordingly becomes the following model:

∂u

∂t
= d14u+ u(a− u)− (1− s)uv

m+ (1− s)u
, x ∈ Ω, t > 0,

∂v

∂t
= d24v + bv − v2

γ(1− s)u
, x ∈ Ω, t > 0,

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (6≡)0, x ∈ Ω.

(1.5)

Clearly, biological resources in the predator-prey model are most likely to be har-

vested and sold with the purpose of achieving the economic interest which motivates

the introduction of harvesting in the predator-prey model. If we subject each pop-

ulation to a proportional harvesting effort specific to the population, the equations

of model (1.2) become the following model

∂u

∂t
= d14u+ u

(
a− u− v

m+ u

)
− e1u, x ∈ Ω, t > 0,

∂v

∂t
= d24v + bv − v2

γu
− e2v, x ∈ Ω, t > 0,

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (6≡)0, x ∈ Ω,

(1.6)

where constants ei (i = 1, 2) are harvesting efforts on respective populations.

To the best of the author’s knowledge, seldom did scholars consider effect of

the refuge and the proportional harvesting. Specially, to this day, still no scholars

investigate whether the refuge and the proportional harvesting can influence the

global stability of the positive equilibrium of system (1.2) or not.

Motivated by the above question, the main concern of this paper is to study

the effect of the refuge and the proportional harvesting. More concretely, in the

following section we will investigate that the unique interior equilibrium of system

(1.5) is globally asymptotically stable under some simple conditions by using upper



238 ANN. OF APPL. MATH. Vol.36

and lower solutions method, and we will also discuss the influence of the prey refuge.

Secondly, we will discuss the influence of the proportional harvesting in Section 3.

Finally, we end this paper with a brief conclusion in Section 4.

2 The Influence of Prey Refuge

It is easy to verify that system (1.5) has a unique positive equilibrium (u∗, v∗),

where

u∗ =
a(1− s)−m− (1− s)2bγ +

√
[a(1− s)−m− (1− s)2bγ]2 + 4am(1− s)

2(1− s)
,

v∗ = bγ(1− s)u∗. (2.1)

Now, we give the result of the global stability of (u∗, v∗) for system (1.5), which

implies the prey and predators are spatially homogeneously distributed as the time

converges to infinity.

Theorem 2.1 Assume that

m > bγ(1− s)2, (2.2)

then the positive equilibrium (u∗, v∗) is globally attractive for system (1.5), that is,

for any initial values u0(x) > 0, v0(x) > 0,

lim
t→+∞

u(x, t) = u∗, lim
t→+∞

v(x, t) = v∗,

uniformly for x ∈ Ω.

Proof It is well known that if c > 0 and ω(x, t) satisfies the equation
∂ω

∂t
= D4ω + ω(c− ω), x ∈ Ω, t > 0,

∂ω(t, x)

∂υ
= 0, x ∈ ∂Ω, t > 0,

ω(x, 0) ≥ ( 6≡)0, x ∈ Ω.

(2.3)

then ω(t, x)→ c uniformly for x ∈ Ω as t→ +∞ (see [9]).

Since (2.2) holds, we can choose an ε0 satisfying

0 < ε0 <
[m− bγ(1− s)2]a

bγ(1− s)2 + (1− s) +m+m[bγ(1− s)]−1
. (2.4)

From the first equation of system (1.5), we can easily obtain that

∂u

∂t
= d14u+ u(a− u)− (1− s)uv

m+ (1− s)u
≤ d14u+ u(a− u), (2.5)
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then from comparison principle of parabolic equations, there exists a t1 > 0 such

that for any t > t1, u(x, t) ≤ c1, where c1 = a+ ε0.

Therefore, from the second equation of system (1.5), we have

∂v

∂t
= d24v + v

(
b− v

γ(1− s)u

)
≤ d24v + v

(
b− v

γ(1− s)(a+ ε0)

)
, (2.6)

for t > t1. Hence there exists a t2 > t1 such that for any t > t2, v(x, t) ≤ c2, where

c2 = bγ(1− s)(a+ ε0) + ε0. Again this implies

∂u

∂t
= d14u+ u

(
a− u− (1− s)v

m+ (1− s)u

)
≥ d14u+ u

(
a− u− (1− s)[bγ(1− s)(a+ ε0) + ε0]

m

)
= d14u+ u

(
a− (1− s)[bγ(1− s)(a+ ε0) + ε0]

m
− u
)
, (2.7)

for t > t2. Since (2.2) holds, for ε0 chosen as in (2.4), there are

a− (1− s)[bγ(1− s)(a+ ε0) + ε0]

m
> 0 (2.8)

and

a− (1− s)[bγ(1− s)(a+ ε0) + ε0]

m
− ε0 > 0. (2.9)

Hence there exists a t3 > t2 such that for any t > t3, u(x, t) ≥ c1, where

c1 = a− (1− s)[bγ(1− s)(a+ ε0) + ε0]

m
− ε0.

Finally we apply the lower bound of u to the second equation of system (1.5),

and have

∂v

∂t
= d24v + v

(
b− v

γ(1− s)u

)
≥ d24v + v

(
b− v

γ(1− s)
[
a− (1−s)[bγ(1−s)(a+ε0)+ε0]

m − ε0
]), (2.10)

for t > t3. Since for ε0 chosen as in (2.4),

bγ(1− s)
[
a− (1− s)[bγ(1− s)(a+ ε0) + ε0]

m
− ε0

]
− ε0 > 0. (2.11)

Then there exists a t4 > t3 such that for any t > t4, v(x, t) ≥ c2, where

c2 = bγ(1− s)
[
a− (1− s)[bγ(1− s)(a+ ε0) + ε0]

m
− ε0

]
− ε0 > 0.
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Therefore, for t > t4 we obtain that

c1 ≤ u(x, t) ≤ c1, c2 ≤ v(x, t) ≤ c2, (2.12)

and c1, c2, c1, c2 satisfy

a− c1 −
(1− s)c2

m+ (1− s)c1
≤ 0 ≤ a− c1 −

(1− s)c2
m+ (1− s)c1

,

b− c2
γ(1− s)c1

≤ 0 ≤ b− c2
γ(1− s)c1

. (2.13)

The inequalities (2.13) show that (c1, c2) and (c1, c2) are a pair of coupled upper

and lower solutions of system (1.5) as in the definition in [22,23], as the nonlinearities

in (1.5) are mixed quasimonotone. It is clear that there exists a K > 0 such that

for any (c1, c2) ≤ (u1, v1), (u2, v2) ≤ (c1, c2),∣∣∣[u1(a−u1)− (1−s)u1v1
m+(1−s)u1

]
−
[
u2(a−u2)−

(1−s)u2v2
m+(1−s)u2

]∣∣∣≤K(|u1−u2|+|v1−v2|),∣∣∣v1(b− v1
γ(1−s)u1

)
−v2

(
b− v2

γ(1−s)u2

)∣∣∣ ≤ K(|u1−u2|+|v1−v2|). (2.14)

We define two iteration sequences (c
(n)
1 , c

(n)
2 ) and (c

(n)
1 , c

(n)
2 ) as follows: For n ≥ 1,

c
(n)
1 = c

(n−1)
1 +

1

K
c
(n−1)
1

(
a− c(n−1)1 − (1− s)c(n−1)2

m+ (1− s)c(n−1)1

)
,

c
(n)
2 = c

(n−1)
2 +

1

K
c
(n−1)
2

(
b− c

(n−1)
2

γ(1− s)c(n−1)1

)
,

c
(n)
1 = c

(n−1)
1 +

1

K
c
(n−1)
1

(
a− c(n−1)1 − (1− s)c(n−1)2

m+ (1− s)c(n−1)1

)
,

c
(n)
2 = c

(n−1)
2 +

1

K
c
(n−1)
2

(
b− c

(n−1)
2

γ(1− s)c(n−1)1

)
, (2.15)

where (c
(0)
1 , c

(0)
2 ) = (c1, c2) and (c

(0)
1 , c

(0)
2 ) = (c1, c2). Then for n ≥ 1,

(c1, c2) ≤ (c
(n)
1 , c

(n)
2 ) ≤ (c

(n+1)
1 , c

(n+1)
2 ) ≤ (c

(n+1)
1 , c

(n+1)
2 ) ≤ (c

(n)
1 , c

(n)
2 ) ≤ (c1, c2),

and there exist (c̃1, c̃2) and (c̆1, c̆2) such that

(c1, c2) ≤ (c̆1, c̆2) ≤ (c̃1, c̃2) ≤ (c1, c2).

So
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lim
n→+∞

c
(n)
1 = c̃1, lim

n→+∞
c
(n)
2 = c̃2, lim

n→+∞
c
(n)
1 = c̆1, lim

n→+∞
c
(n)
2 = c̆2. (2.16)

Hence, from (2.15) and (2.16) we have

a− c̃1 −
(1− s)c̆2

m+ (1− s)c̃1
= 0, a− c̆1 −

(1− s)c̃2
m+ (1− s)c̆1

= 0,

b− c̃2
γ(1− s)c̃1

= 0, b− c̆2
γ(1− s)c̆1

= 0. (2.17)

Simplifying (2.17) we obtain

(a− c̃1)[m+ (1− s)c̃1] = bγ(1− s)2c̆1,
(a− c̆1)[m+ (1− s)c̆1] = bγ(1− s)2c̃1. (2.18)

Subtracting the first equation of (2.18) from the second equation of (2.18), we can

obtain that

(c̃1 − c̆1)
[
m− a(1− s)− bγ(1− s)2 + (1− s)(c̃1 + c̆1)

]
= 0. (2.19)

If we assume that c̃1 6= c̆1, then

c̃1 + c̆1 = a− m− bγ(1− s)2

1− s
. (2.20)

Substituting equation (2.20) into (2.18), we have

(a− c̃1)[m+ (1− s)c̃1] = bγ(1− s)2
[
a− m− bγ(1− s)2

1− s
− c̃1

]
,

(a− c̆1)[m+ (1− s)c̆1] = bγ(1− s)2
[
a− m− bγ(1− s)2

1− s
− c̆1

]
. (2.21)

Hence the following equation

(a− y)[m+ (1− s)y] = bγ(1− s)2
[
a− m− bγ(1− s)2

1− s
− y
]

(2.22)

has two positive roots c̃1, c̆1. From (2.2) and (2.20), we have

0 < a− m− bγ(1− s)2

1− s
< a. (2.23)

(2.22) can be written as follows

(1−s)y2+[m−a(1−s)−(1−s)2bγ]y+(1−s)2bγ
[
a−m− bγ(1− s)2

1− s

]
−am = 0. (2.24)
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From (2.2) and (2.23), it follows that

(1− s)2bγ
[
a− m− bγ(1− s)2

1− s

]
− am < (1− s)2bγa− am = a(bγ(1− s)2 −m) < 0.

(2.25)

From (2.25), we can easily obtain that (2.22) do not exist two positive roots. Hence

c̃1 = c̆1, and consequently, c̃2 = c̆2. Then from the results in [17,18], the solution

(u(x, t), v(x, t)) of system (1.5) satisfies

lim
t→+∞

u(x, t) = u∗, lim
t→+∞

v(x, t) = v∗,

uniformly for x ∈ Ω. So the constant equilibrium (u∗, v∗) is globally asymptotically

stable for system (1.5).

This completes the proof of Theorem 2.1.

Remark 2.1 If we consider system (1.5) with s = 0, Theorem 2.1 is reduced

to the main results of Chen and Shi [11], so our results generalize the main results

in [11].

Remark 2.2 In [11], Chen and Shi considered system (1.2). Under the assump-

tion m > bγ, the unique positive equilibrium of system (1.2) is globally asymptoti-

cally stable. In Theorem 2.1, we obtain that if m > bγ(1−s)2 holds, then the unique

positive equilibrium of system (1.5) is globally asymptotically stable. One can show

that the parameter region given by m > bγ(1− s)2 is contained in the set given by

m > bγ. That is, if m > bγ holds, then m > bγ(1− s)2 also holds. It is shown that

the prey refuge has influence on the global asymptotical stability of unique positive

equilibrium of system (1.5), furthermore, they can change the position of the unique

interior equilibrium and make species coexist more easily.

Remark 2.3 From condition (2.2) of Theorem 2.1, we can easily obtain that if

the suturation constant and refuge constant of prey are large enough, the intrinsic

growth rate of predator and the conversion factor of prey into predator are relatively

small, then the positive equilibrium (u∗, v∗) is globally attractive for system (1.5).

From the viewpoint of biology, this implies that the prey and predator will be spa-

tially homogeneously distributed as the time converges to infinity, no matter what

their diffusion coefficients are.

Remark 2.4 We will give numerical simulation to show the feasibility of our

results. In system (1.5), set a = 1; m = 2; b = 1; γ = 1; s = 0.5. By computation,

one has

m > bγ(1− s)2,

then condition (2.2) of Theorem 2.1 holds. Figure 1 shows the dynamics behavior

of system (1.5).
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Figure 1: Dynamics behavior of system (1.5) with a = 1; m = 2; b = 1; γ = 1; s = 0.5.

3 The Influence of Proportional Harvesting

By simple computation, system (1.6) admits a unique positive equilibrium (u, v) =

(u∗, v∗), if
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a > e1, b > e2, (3.1)

holds, where

u∗ =
1

2

{
a− e1 −m− (b− e2)γ +

√
[a− e1 −m− (b− e2)γ]2 + 4(a− e1)m

}
,

v∗ = (b− e2)γu∗. (3.2)

Similar to the proofs of Theorem 2.1 in Section 2, by using upper and lower solutions

method, we can easily obtain the following theorem.

Theorem 3.1 If (3.1) and the following inequality

m > (b− e2)γ, (3.3)

holds, then the unique positive equilibrium of system (1.6) is globally asymptotically

stable.

Remark 3.1 From Theorem 3.1, we obtain that under assumption (3.1), if

m > (b − e2)γ holds, then the unique positive equilibrium of system (1.6) is glob-

ally asymptotically stable. One can also show that the parameter region given by

m > (b− e2)γ is contained in the set given by m > bγ. It is also shown that under

some assumption, the proportional harvesting has influence on the global asymptot-

ical stability of unique positive equilibrium of system (1.6), furthermore, they can

change the position of the unique interior equilibrium and make species coexist more

easily. As we know, biological resources in the prey-predator system are most likely

to be harvested and sold with the purpose of achieving the economic interest. From

Theorem 3.1, if we choose and control the harvesting efforts ei, i = 1, 2, appropri-

ately, we can not only harvest the biological resources and achieve the economic

interest, but also protect the biological resources.

Remark 3.2 We will give numerical simulation to show the feasibility of our

results. In system (1.6), set a = 1; m = 2; b = 1; γ = 1; e1 = 0.5; e2 = 0.5. By

computation, one can easily obtain that conditions (3.1) and (3.3) of Theorem 3.1

hold. Figure 2 shows the dynamics behavior of system (1.6).

4 Conclusion and Discussion

In this paper, by using upper and lower solutions combined with the iteration

method, we obtain the global asymptotical stability of systems (1.5) and (1.6).

It is shown that the prey refuge and the proportional harvesting have influence

on the global asymptotical stability of unique positive equilibrium of system (1.2),

furthermore, they can change the position of the unique interior equilibrium and

make species coexist more easily. Indeed, similar to proofs of Theorem 2.1 in Section
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Figure 2: Dynamics behavior of system (1.6) with a = 1; m = 2; b = 1; γ = 1; e1 = 0.5;
e2 = 0.5.

2, we can easily obtain that the unique positive equilibrium of the following diffusive

predator-prey system with prey refuge and proportional harvesting
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

∂u

∂t
= d14u+ u(a− u)− (1− s)uv

m+ (1− s)u
− e1u, x ∈ Ω, t > 0,

∂v

∂t
= d24v + bv − v2

γ(1− s)u
− e2u, x ∈ Ω, t > 0,

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (6≡)0, x ∈ Ω

(4.1)

is also globally asymptotically stable, if

a > e1, b > e2, (4.2)

and

m > (b− e2)γ(1− s)2, (4.3)

hold. Therefore, if we choose and control the prey refuge parameter and the har-

vesting efforts appropriately, we can not only harvest the biological resources and

achieve the economic interest, but also protect the biological resources.

References

[1] D.J. Wollkind, J.B. Collings, J.A. Logan, Metastability in a temperature-dependent
model system for predator-prey mite outbreak interactions on fruit flies, Bull. Math.
Biol., 50(1988),379-409.

[2] J.T. Tanner, The stability and the intrinsic growth rates of prey and predator popula-
tions, Ecology, 56(1975),855-867.

[3] E. Saez, E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl.
Math., 59(1999),1867-1878.

[4] M.P. Hassell, The Dynamics of Arthropod Predator-Prey Systems, Princeton University
Press, Princeton, NJ, 1978.

[5] C.S. Holling, The functional response of invertebrate predators to prey density, Mem.
Entomol. Soc. Can., 45(1965),3-60.

[6] S.B. Hsu, T.W. Huang, Global stability for a class of predator-prey systems, SIAM J.
Appl. Math., 55(1995),763-783.

[7] M.C. Montano, B.Lisena, Diffusive Holling-Tanner predator-prey models in periodic
environments, Applied Mathematics Letters, 87(2019),42-49.

[8] W.S. Yang, Dynamical behaviors of a diffusive predator-prey model with Beddington-
DeAngelis functional response and disease in the prey, International Journal of
Biomathematics, 10:8(2017),1750119.

[9] W. Ko, K. Ryu, Non-constant positive steady-states of a diffusive predator-prey system
in homogeneous environment, J. Math. Anal. Appl., 327(2007),539-549.

[10] R. Peng, M.X. Wang, Global stability of the equilibrium of a diffusive Holling-Tanner
prey-predator model, Appl. Math. Lett., 20(2007),664-670.



No.3 X.R. Lin, A Predator-Prey System with Reaction-Diffusion 247

[11] S.S. Chen, J.P. Shi, Global stability in a diffusive Holling-Tanner predator-prey model,
Applied Mathematics Letters, 25(2012),614-618.

[12] T. Kumar Kar, Modelling and analysis of a harvested prey-predator system incorpo-
rating a prey refuge, J. Comput. Appl. Math., 185(2006),19-33.

[13] W. Ko, K. Ryu, Qualitative analysis of a predator-prey model with Holling type II func-
tional response incorporating a prey refuge, J. Differential Equations, 231(2006),534-
550.

[14] Y. Huang, F. Chen, Z. Li, Stability analysis of a prey-predator model with Holling type
III response function incorporating a prey refuge, Appl. Math. Comput., 182(2006),672-
683.

[15] L.L. Ji, C.Q. Wu, Qualitative analysis of a predator-prey model with constant-rate prey
harvesting incorporating a constant prey refuge, Nonlinear Anal.: Real World Appl.,
11:4(2010),2285-2295.

[16] X.N. Guan, W.M. Wang, Y.L. Cai, Spatiotemporal dynamics of a Leslie-Gower
predator-prey model incorporating a prey refuge, Nonlinear Anal.: Real World Ap-
pl., 12:4(2011),2385-2395.

[17] Z.H. Ma, The research of predator-prey models incorporating prey refuges, Ph.D. The-
sis, Lanzhou University, 2010.

[18] F.D. Chen, Z.Z. Ma, H.Y. Zhang, Global asymptotical stability of the positive equi-
librium of the Lotka-Volterra prey-predator model incorporating a constant number of
prey refuges, Nonlinear Anal.: Real World Appl., 13(2012),2790-2793.

[19] X.L. Zou, J.L. Lv, Y.P. Wu, A note on a stochastic Holling-II predatorCprey model
with a prey refuge, Journal of the Franklin Institute, 357:7(2020),4486-4502.

[20] U. Ufuktepe, Stability analysis of a prey refuge predator-prey model with Allee effects,
Journal of Biosciences, 44:4(2019),85.

[21] P. Yang, Hopf bifurcation of an age-structured prey-predator model with Holling type
II functional response incorporating a prey refuge, Nonlinear Analysis: Real World
Applications, 49(2019),368-385.

[22] C.V. Pao, On nonlinear reaction-diffusion systems, J. Math. Anal. Appl.,
87:1(1982),165-198.

[23] C.V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Publishing Corporation,
1992.

(edited by Mengxin He)


