POSITIVE SOLUTIONS TO A BVP WITH TWO INTEGRAL BOUNDARY CONDITIONS* ${ }^{*}$

Kaikai Liu, Yunrui Yang \ddagger Yang Yang
(School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, PR China)

Abstract

Based on the Guo-Krasnoselskii's fixed-point theorem, the existence and multiplicity of positive solutions to a boundary value problem (BVP) with two integral boundary conditions $$
\left\{\begin{array}{l} v^{(4)}=f\left(s, v(s), v^{\prime}(s), v^{\prime \prime}(s)\right), \quad s \in[0,1] \\ v^{\prime}(1)=v^{\prime \prime \prime}(1)=0 \\ v(0)=\int_{0}^{1} g_{1}(\tau) v(\tau) \mathrm{d} \tau, \quad v^{\prime \prime}(0)=\int_{0}^{1} g_{2}(\tau) v^{\prime \prime}(\tau) \mathrm{d} \tau \end{array}\right.
$$ are obtained, where f, g_{1}, g_{2} are all continuous. It generalizes the results of one positive solution to multiplicity and improves some results for integral BVPs. Moreover, some examples are also included to demonstrate our results as applications.

Keywords integral boundary conditions; positive solutions; cone
2000 Mathematics Subject Classification 34B15

1 Introduction

Boundary value problems (BVPs) for ordinary differential equations have wide applications in many scientific areas such as physics, mechanics of materials, ecology and so on. For example, deformations of elastic beams can be represented for some fourth-order BVPs, and there are some appealing results [1-3] can be referred.

Especially, much attention has been drawn to BVPs with integral boundary conditions [4-9] recent years because of their applications in thermodynamics and chemical engineering. In 2011, by global bifurcation theory and the Krein-Rutman theorem, Ma [4] investigated positive solutions to a class of BVP with integral boundary conditions. Hereafter, based on the famous Krasnoselskii's fixed-point theorem,

[^0]Lv [5] considered the monotone and concave positive solutions to the following integral BVP

$$
\left\{\begin{array}{l}
v^{(4)}(s)=f\left(s, v(s), v^{\prime}(s), v^{\prime \prime}(s)\right), \quad s \in[0,1], \tag{1.1}\\
v(0)=v^{\prime}(1)=v^{\prime \prime \prime}(1)=0, \\
v^{\prime \prime}(0)=\int_{0}^{1} g(\tau) v^{\prime \prime}(\tau) \mathrm{d} \tau,
\end{array}\right.
$$

where $f \in C([0,1] \times[0,+\infty) \times[0,+\infty) \times(-\infty, 0],[0,+\infty)), g \in C([0,1],[0,+\infty))$. For more this kind of results, one can refer to [7-9].

Nevertheless, there are few results on multiplicity and the properties of positive solutions to BVPs with integral boundary conditions. Recently, Yang [6] investigated the multiplicity of positive solutions to a fourth-order integral BVP. Motivated by Yang's ideas in [6] and based on the work of Lv [5], this paper deals with the following BVP with two integral boundary conditions

$$
\left\{\begin{array}{l}
v^{(4)}(s)=f\left(s, v(s), v^{\prime}(s), v^{\prime \prime}(s)\right), \quad s \in[0,1] \tag{1.2}\\
v^{\prime}(1)=v^{\prime \prime \prime}(1)=0, \\
v(0)=\int_{0}^{1} g_{1}(\tau) v(\tau) \mathrm{d} \tau, \quad v^{\prime \prime}(0)=\int_{0}^{1} g_{2}(\tau) v^{\prime \prime}(\tau) \mathrm{d} \tau,
\end{array}\right.
$$

and the existence and multiplicity of positive solutions are thus established. Notice that (1.2) is reduced to (1.1) when $g_{1} \equiv 0$ in (1.2), and therefore we generalize the result of one positive solution in [5] to the case of multiple positive solutions. Moreover, some results of positive solutions to integral BVPs we mentioned in [4,5,9] are also improved.

2 Preliminaries

We first state several notations and lemmas in this paper.
We always assume that, throughout this paper, $f:[0,1] \times[0,+\infty) \times[0,+\infty) \times$ $(-\infty, 0] \rightarrow[0,+\infty)$ and $g_{1}, g_{2}:[0,1] \rightarrow[0,+\infty)$ are all continuous. Furthermore,

$$
\zeta_{1}:=\int_{0}^{1} g_{1}(\tau) \mathrm{d} \tau<\frac{1}{2}, \quad \zeta_{2}:=\int_{0}^{1} g_{2}(\tau) \mathrm{d} \tau<1 \quad \text { and } \quad g_{1} \leq \frac{1-2 \zeta_{1}}{2\left(1-\zeta_{2}\right)} g_{2} .
$$

Denote

$$
\begin{aligned}
& \overline{f_{0}}=\limsup _{v_{0}+v_{1}-v_{2} \rightarrow 0^{+}} \max _{s \in[0,1]} \frac{f\left(s, v_{0}, v_{1}, v_{2}\right)}{v_{0}+v_{1}-v_{2}}, \quad \overline{f_{\infty}}=\limsup _{v_{0}+v_{1}-v_{2} \rightarrow+\infty} \max _{s \in[0,1]} \frac{f\left(s, v_{0}, v_{1}, v_{2}\right)}{v_{0}+v_{1}-v_{2}}, \\
& \underline{f_{0}}=\liminf _{v_{0}+v_{1}-v_{2} \rightarrow 0^{+}} \min _{s \in[0,1]} \frac{f\left(s, v_{0}, v_{1}, v_{2}\right)}{v_{0}+v_{1}-v_{2}}, \quad \underline{f_{\infty}}=\liminf _{v_{0}+v_{1}-v_{2} \rightarrow+\infty} \min _{s \in[0,1]} \frac{f\left(s, v_{0}, v_{1}, v_{2}\right)}{v_{0}+v_{1}-v_{2}}, \\
& M_{1}=\frac{3}{2\left(1-\zeta_{2}\right)}, \quad M_{2}=\frac{1}{4} \int_{0}^{1} \tau^{2}\left(1-\frac{1}{2} \tau\right)\left[\frac{1}{2}+\frac{1}{1-\zeta_{2}} \int_{0}^{1} s g_{2}(s) \mathrm{d} s\right] \mathrm{d} \tau .
\end{aligned}
$$

Lemma 2.1 ${ }^{[10]}$ (Guo-Krasnoselskii's fixed-point theorem) Let E be a Banach space, $J \subset E$ is a cone. Suppose that I_{1} and I_{2} are bounded open subsets of E with $\theta \in I_{1}$ and $\bar{I}_{1} \subset I_{2}$, and let $L: J \cap\left(\bar{I}_{2} \backslash I_{1}\right) \longrightarrow J$ be a completely continuous operator such that either
(i) $\|L v\| \geq\|v\|, v \in J \cap \partial I_{1}$ and $\|L v\| \leq\|v\|, v \in J \cap \partial I_{2}$; or
(ii) $\|L v\| \leq\|v\|, v \in J \cap \partial I_{1}$ and $\|L v\| \geq\|v\|, v \in J \cap \partial I_{2}$
holds, then L has a fixed point in $J \cap\left(\bar{I}_{2} \backslash I_{1}\right)$.
Let $C^{2}[0,1]$ be bestowed on the maximum norm

$$
\|v\|_{2}=\max \left\{\max _{s \in[0,1]}|v(s)|, \max _{s \in[0,1]}\left|v^{\prime}(s)\right|, \max _{s \in[0,1]}\left|v^{\prime \prime}(s)\right|\right\} .
$$

Similar to Lemma 2.1 in [5], we obtain the following result by a direct computation.

Lemma 2.2 If $y \in C[0,1]$, then the following $B V P$

$$
\left\{\begin{array}{l}
v^{(4)}(s)=y(s), \quad s \in[0,1] \tag{2.1}\\
v^{\prime}(1)=v^{\prime \prime \prime}(1)=0, \\
v(0)=\int_{0}^{1} g_{1}(\tau) v(\tau) \mathrm{d} \tau, \quad v^{\prime \prime}(0)=\int_{0}^{1} g_{2}(\tau) v^{\prime \prime}(\tau) \mathrm{d} \tau
\end{array}\right.
$$

has a unique solution

$$
\begin{equation*}
v(s)=\int_{0}^{1}\left[G_{1}(s, \tau)+H(s, \tau)\right] y(\tau) \mathrm{d} \tau \tag{2.2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { where } \\
& \qquad \begin{array}{l}
H(s, \tau)=\frac{1}{1-\zeta_{1}} \int_{0}^{1} G_{1}(\eta, \tau) g_{1}(\eta) \mathrm{d} \eta+\frac{2 \beta+s(2-s)\left(1-\zeta_{1}\right)}{2\left(1-\zeta_{1}\right)\left(1-\zeta_{2}\right)} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta \\
G_{1}(s, \tau)= \\
s \tau-\frac{1}{2} s \tau^{2}-\frac{1}{6} s^{3}, \quad 0 \leq s \leq \tau \leq 1, \quad G_{2}(s, \tau)= \begin{cases}s, & 0 \leq s \leq \tau \leq 1 \\
\tau, & 0 \leq \tau \leq s \leq 1\end{cases}
\end{array} . \begin{array}{l}
\tau-\frac{1}{2} \tau s^{2}-\frac{1}{6} \tau^{3}, \quad 0 \leq \tau \leq s \leq 1,
\end{array}
\end{aligned}
$$

and

$$
\beta=\int_{0}^{1} \frac{\tau(2-\tau)}{2} g_{1}(\tau) \mathrm{d} \tau
$$

Lemma 2.3 ${ }^{[5]}$ Let $G_{1}(s, \tau)$ be as in Lemma 2.2. For $s, \tau \in[0,1]$,

$$
\frac{1}{2} s \tau-\frac{1}{4} s^{2} \tau \leq G_{1}(s, \tau) .
$$

Lemma 2.4 If $y \in C([0,1],[0,+\infty))$, then the unique solution $v=v(s)$ to the BVP (2.1) satisfies the following assertions:
(i) $v(s) \geq 0, v^{\prime}(s) \geq 0, v^{\prime \prime}(s) \leq 0$ for $s \in[0,1]$;
(ii) $\|v\| \leq\left\|v^{\prime \prime}\right\|$ and $\left\|v^{\prime}\right\| \leq\left\|v^{\prime \prime}\right\|$ for $v(s) \in C^{2}[0,1]$;
(iii) $v(s) \geq \frac{1}{2}\left(s-\frac{1}{2} s^{2}\right)\|v\|_{2}$ for $s \in[0,1]$.

Proof The proof of (i) is analogous to Lemma 2.3 in [5] and so we omit it here. (ii) By the facts that $v^{\prime}(1)=0$ and $v^{\prime}(s) \geq 0$ for $s \in[0,1]$, it follows that

$$
0 \leq v^{\prime}(s) \leq \int_{s}^{1}\left|v^{\prime \prime}(\tau)\right| \mathrm{d} \tau \leq\left\|v^{\prime \prime}\right\|, \quad s \in[0,1] .
$$

Therefore, $\left\|v^{\prime}\right\| \leq\left\|v^{\prime \prime}\right\|$.
In turn, according to the facts that $g_{1}(s) \leq \frac{1-2 \zeta_{1}}{2\left(1-\zeta_{2}\right)} g_{2}(s)$ for any $s \in[0,1]$,

$$
\begin{equation*}
\beta=\int_{0}^{1} \frac{\tau(2-\tau)}{2} g_{1}(\tau) \mathrm{d} \tau \leq \frac{1}{2} \int_{0}^{1} g_{1}(\tau) \mathrm{d} \tau=\frac{1}{2} \zeta_{1} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{1}(s, \tau) \leq s \tau \leq G_{2}(s, \tau), \quad \text { for any }(s, \tau) \in[0,1] \times[0,1], \tag{2.4}
\end{equation*}
$$

we get

$$
\begin{align*}
H(s, \tau) & =\frac{1}{1-\zeta_{1}} \int_{0}^{1} G_{1}(\eta, \tau) g_{1}(\eta) \mathrm{d} \eta+\frac{2 \beta+s(2-s)\left(1-\zeta_{1}\right)}{2\left(1-\zeta_{1}\right)\left(1-\zeta_{2}\right)} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta \\
& \leq \frac{1}{1-\zeta_{1}} \int_{0}^{1} G_{2}(\eta, \tau) g_{1}(\eta) \mathrm{d} \eta+\frac{1}{2\left(1-\zeta_{1}\right)\left(1-\zeta_{2}\right)} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta \\
& \leq \frac{1-2 \zeta_{1}}{2\left(1-\zeta_{1}\right)\left(1-\zeta_{2}\right)} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta+\frac{1}{2\left(1-\zeta_{1}\right)\left(1-\zeta_{2}\right)} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta \\
& =\frac{1}{1-\zeta_{2}} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta, \quad(s, \tau) \in[0,1] \times[0,1] . \tag{2.5}
\end{align*}
$$

Recalling that (2.2) and $\frac{\partial^{2}}{\partial s^{2}} G_{1}(s, \tau)=-G_{2}(s, \tau)$, we have

$$
\begin{equation*}
v^{\prime}(s)=\int_{0}^{1}\left[\frac{\partial}{\partial s} G_{1}(s, \tau)+\frac{1-s}{1-\zeta_{2}} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta\right] y(\tau) \mathrm{d} \tau, \quad s \in[0,1] \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
v^{\prime \prime}(s)=-\int_{0}^{1}\left[G_{2}(s, \tau)+\frac{1}{1-\zeta_{2}} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta\right] y(\tau) \mathrm{d} \tau, \quad s \in[0,1] . \tag{2.7}
\end{equation*}
$$

Therefore, by (2.2), (2.4)-(2.7), one has

$$
\begin{align*}
v(s) & =\int_{0}^{1}\left[G_{1}(s, \tau)+H(s, \tau)\right] y(\tau) \mathrm{d} \tau \\
& \leq \int_{0}^{1}\left[G_{2}(s, \tau)+\frac{1}{1-\zeta_{2}} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta\right] y(\tau) \mathrm{d} \tau \\
& =-v^{\prime \prime}(s), \quad s \in[0,1] \tag{2.8}
\end{align*}
$$

which means that $\|v\| \leq\left\|v^{\prime \prime}\right\|$. Combining the fact that $\left\|v^{\prime}\right\| \leq\left\|v^{\prime \prime}\right\|$, it is natural that

$$
\|v\|_{2}=\max \left\{\max _{s \in[0,1]}|v(s)|, \max _{s \in[0,1]}\left|v^{\prime}(s)\right|, \max _{s \in[0,1]}\left|v^{\prime \prime}(s)\right|\right\}=\left\|v^{\prime \prime}\right\|
$$

(iii) By (2.7), we have

$$
\begin{equation*}
\|v\|_{2} \leq \int_{0}^{1}\left[\tau+\frac{1}{1-\zeta_{2}} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta\right] y(\tau) \mathrm{d} \tau \tag{2.9}
\end{equation*}
$$

Moreover, by Lemma 2.3 and (2.2), we obtain

$$
\begin{align*}
v(s) & =\int_{0}^{1}\left[G_{1}(s, \tau)+H(s, \tau)\right] y(\tau) \mathrm{d} \tau \\
& \geq \int_{0}^{1}\left[G_{1}(s, \tau)+\frac{s(2-s)}{2\left(1-\zeta_{2}\right)} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta\right] y(\tau) \mathrm{d} \tau \\
& \geq \int_{0}^{1}\left[\frac{1}{2} s \tau-\frac{1}{4} s^{2} \tau+\frac{s(2-s)}{2\left(1-\zeta_{2}\right)} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta\right] y(\tau) \mathrm{d} \tau \\
& \geq \frac{1}{2}\left(s-\frac{1}{2} s^{2}\right) \int_{0}^{1}\left[\tau+\frac{1}{1-\zeta_{2}} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta\right] y(\tau) \mathrm{d} \tau, \quad s \in[0,1] \tag{2.10}
\end{align*}
$$

Therefore, $v(s) \geq \frac{1}{2}\left(s-\frac{1}{2} s^{2}\right)\|v\|_{2}$ for $s \in[0,1]$ by (2.9)-(2.10). The proof is completed.

Define a cone J in $C^{2}[0,1]$ by

$$
J=\left\{v \in C^{2}[0,1]: v(s) \geq \frac{1}{2}\left(s-\frac{1}{2} s^{2}\right)\|v\|_{2}, v^{\prime}(s) \geq 0, v^{\prime \prime}(s) \leq 0, s \in[0,1]\right\}
$$

and define an operator $L: J \rightarrow C^{2}[0,1]$ by

$$
L v(s)=\int_{0}^{1}\left[G_{1}(s, \tau)+H(s, \tau)\right] f\left(\tau, v(\tau), v^{\prime}(\tau), v^{\prime \prime}(\tau)\right) \mathrm{d} \tau
$$

Clearly, $v(\cdot)$ is a positive solution with monotonicity and concavity of the BVP (1.2) if and only if $v(\cdot)$ is a fixed point of L. In addition, in view of the fact $L(J) \subset J$ and by Lemma 2.4, it is trivial to establish the following result:

Lemma 2.5 $L: J \rightarrow J$ is completely continuous.

3 Existence of One Positive Solution

In this section, our purpose is to investigate the existence of one positive solution to the BVP (1.2).

Theorem 3.1 There is at least one monotone and concave positive solution to the $B V P$ (1.2) if either
(i) $\overline{f_{0}}<\frac{1}{M_{1}}, \underline{f_{\infty}}>\frac{1}{M_{2}}$; or
(ii) $\underline{f_{0}}>\frac{1}{M_{2}}, \overline{f_{\infty}}<\frac{1}{M_{1}}$
holds.

Proof (i) Since $\overline{f_{0}}<\frac{1}{M_{1}}$, there exists a number $\delta_{1}>0$ such that

$$
\begin{equation*}
M_{1}\left(\overline{f_{0}}+\delta_{1}\right)<1 . \tag{3.1}
\end{equation*}
$$

From the continuity of f and the definition of $\overline{f_{0}}$, there is a number $\lambda>0$ such that, for $s \in[0,1]$ and $v_{0}+v_{1}-v_{2} \in[0, \lambda]$,

$$
\begin{equation*}
f\left(s, v_{0}, v_{1}, v_{2}\right)<\left(\overline{f_{0}}+\delta_{1}\right)\left(v_{0}+v_{1}-v_{2}\right) . \tag{3.2}
\end{equation*}
$$

Let $I_{1}=\left\{v \in C^{2}[0,1]:\|v\|_{2}<\frac{\lambda}{3}\right\}$ for all $v \in J \cap \partial I_{1}$, by (3.1) and (3.2), one can obtain

$$
\begin{aligned}
\left|(L v)^{\prime \prime}(s)\right| & =\int_{0}^{1}\left[G_{2}(s, \tau)+\frac{1}{1-\zeta_{2}} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) \mathrm{d} \eta\right] f\left(\tau, v(\tau), v^{\prime}(\tau), v^{\prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \leq \int_{0}^{1}\left[\tau+\frac{1}{1-\zeta_{2}} \int_{0}^{1} \tau g_{2}(\eta) \mathrm{d} \eta\right]\left(\overline{f_{0}}+\delta_{1}\right)\left(v(\tau)+v^{\prime}(\tau)-v^{\prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \leq M_{1}\left(\overline{f_{0}}+\delta_{1}\right)\|v\|_{2}<\|v\|_{2}, \quad s \in[0,1] .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\|L v\|_{2}=\left\|(L v)^{\prime \prime}\right\|<\|v\|_{2}, \quad \text { for any } v \in J \cap \partial I_{1} . \tag{3.3}
\end{equation*}
$$

In addition, since $\underline{f}_{\infty}>\frac{1}{M_{2}}$, there exists a number $\delta_{2}>0$ such that

$$
\begin{equation*}
M_{2}\left(\underline{f_{\infty}}-\delta_{2}\right)>1 . \tag{3.4}
\end{equation*}
$$

Similar to the case of $\overline{f_{0}}<\frac{1}{M_{1}}$, when $\underline{f_{\infty}}>\frac{1}{M_{2}}$, there is a number $\Lambda \gg \lambda$ such that, for $s \in[0,1]$ and $v_{0}+v_{1}-v_{2} \in[\Lambda,+\infty)$,

$$
\begin{equation*}
f\left(s, v_{0}, v_{1}, v_{2}\right)>\left(\underline{f_{\infty}}-\delta_{2}\right)\left(v_{0}+v_{1}-v_{2}\right) . \tag{3.5}
\end{equation*}
$$

Let $I_{2}=\left\{v \in C^{2}[0,1]:\|v\|_{2}<\Lambda\right\}$ for all $v \in J \cap \partial I_{2}$, by Lemma 2.3, (3.4) and (3.5), we have

$$
\begin{aligned}
L v(1)= & \int_{0}^{1}\left[G_{1}(1, \tau)+\frac{1}{1-\zeta_{1}} \int_{0}^{1} G_{1}(\eta, \tau) g_{1}(\eta) \mathrm{d} \eta\right] f\left(\tau, v(\tau), v^{\prime}(\tau), v^{\prime \prime}(\tau)\right) \mathrm{d} \tau \\
& +\frac{2 \beta+\left(1-\zeta_{1}\right)}{2\left(1-\zeta_{1}\right)\left(1-\zeta_{2}\right)} \int_{0}^{1} \int_{0}^{1} G_{2}(\eta, \tau) g_{2}(\eta) f\left(\tau, v(\tau), v^{\prime}(\tau), v^{\prime \prime}(\tau)\right) \mathrm{d} \eta \mathrm{~d} \tau \\
\geq & \int_{0}^{1}\left[\frac{1}{4} \tau+\frac{1}{2\left(1-\zeta_{2}\right)} \int_{0}^{1} \eta \tau g_{2}(\eta) \mathrm{d} \eta\right]\left(\underline{f_{\infty}}-\delta_{2}\right)\left(v(\tau)+v^{\prime}(\tau)-v^{\prime \prime}(\tau)\right) \mathrm{d} \tau \\
\geq & \frac{1}{2} \int_{0}^{1}\left[\frac{1}{2} \tau+\frac{\tau}{1-\zeta_{2}} \int_{0}^{1} \eta g_{2}(\eta) \mathrm{d} \eta\right]\left(\underline{f_{\infty}}-\delta_{2}\right) \frac{1}{2}\left(\tau-\frac{1}{2} \tau^{2}\right)\|v\|_{2} \mathrm{~d} \tau \\
= & M_{2}\left(\underline{f_{\infty}}-\delta_{2}\right)\|v\|_{2}>\|v\|_{2}, \quad s \in[0,1],
\end{aligned}
$$

which indicates

$$
\begin{equation*}
\|L v\|_{2} \geq\|L v\| \geq L v(1)>\|v\|_{2}, \quad \text { for any } v \in J \cap \partial I_{2} . \tag{3.6}
\end{equation*}
$$

Therefore, the operator L has at least one fixed point $v \in J \cap\left(\overline{I_{2}} \backslash I_{1}\right)$ by (3.3), (3.6) and Lemma 2.1, that is, there is at least one monotone and concave positive solution to the BVP (1.2).

The proof of (ii) is much similarly, and thus we omit it here. The proof is complete.

Corollary 3.1 There is at least one monotone and concave positive solution to the $B V P$ (1.2) if either
(i) $\overline{f_{0}}=0, \underline{f_{\infty}}=+\infty$; or
(ii) $\underline{f_{0}}=+\infty, \overline{f_{\infty}}=0$
holds.
Example 3.1 Consider the following BVP

$$
\begin{cases}v^{(4)}(s)=f\left(s, v, v^{\prime}, v^{\prime \prime}\right), & s \in[0,1] \tag{3.7}\\ v^{\prime}(1)=v^{\prime \prime \prime}(1)=0 \\ v(0)=\int_{0}^{1} \frac{3}{11} \tau^{3} v(\tau) \mathrm{d} \tau, & v^{\prime \prime}(0)=\int_{0}^{1} 3 \tau^{3} v^{\prime \prime}(\tau) \mathrm{d} \tau\end{cases}
$$

where

$$
\begin{aligned}
& f\left(s, v, v^{\prime}, v^{\prime \prime}\right)=\frac{1}{1+s}\left[\frac{20\left(v+v^{\prime}-v^{\prime \prime}\right)}{1+\ln \left(1+v+v^{\prime}-v^{\prime \prime}\right)}+\frac{\left(v+v^{\prime}-v^{\prime \prime}\right)^{2}}{7\left(1+v+v^{\prime}-v^{\prime \prime}\right)}\right], \\
& g_{1}(\tau)=\frac{3}{11} \tau^{3}, \quad g_{2}(\tau)=3 \tau^{3} .
\end{aligned}
$$

It is not difficult to examine that f, g_{1} and g_{2} satisfy the assumptions of Section 2 in this paper. By some calculations, we also obtain that $\overline{f_{\infty}}=\frac{1}{7}, \underline{f_{0}}=10, M_{1}=6$ and $M_{2}=\frac{29}{192}$, which means (ii) of Theorem 3.1 holds. Therefore, there exists at least one monotone and concave positive solution to the BVP (3.7) by Theorem 3.1.

4 Existence of Multiple Positive Solutions

In this section, our aim is to establish the existence of multiple positive solutions to the BVP (1.2).

Theorem 4.1 There are at least two monotone and concave positive solutions to the $B V P(1.2)$ if one of the following conditions holds:
(i) $\overline{f_{0}}, \overline{f_{\infty}}<\frac{1}{M_{1}}$ and there is a number $R_{0}>0$ satisfying $\lambda \ll R_{0} \ll \Lambda$, such that $N_{1}\left(R_{0}\right) \geq \frac{64}{3} R_{0}$, where $N_{1}(\Lambda)=\min \left\{f\left(s, v_{0}, v_{1}, v_{2}\right): \frac{7}{64} \Lambda \leq v(s) \leq \Lambda,\left|v^{\prime \prime}(s)\right| \leq\right.$ $\left.\Lambda, s \in\left[\frac{1}{4}, \frac{3}{4}\right]\right\}, \lambda>0$ is small enough and $\Lambda>0$ is large enough;
(ii) $\underline{f_{0}}, \underline{f_{\infty}}>\frac{1}{M_{2}}$ and there is a number $\widetilde{R_{0}}>0$ satisfying $\widetilde{\lambda} \ll \widetilde{R_{0}} \ll \widetilde{\Lambda}$, such that $N_{2}\left(\widetilde{R_{0}}\right) \leq 2\left(1-\zeta_{2}\right) \widetilde{R_{0}}$, where $N_{2}(\widetilde{\Lambda})=\max \left\{f\left(s, v_{0}, v_{1}, v_{2}\right):\left|v^{\prime \prime}(s)\right| \leq \widetilde{\Lambda}, s \in[0,1]\right\}$, $\tilde{\lambda}>0$ is small enough and $\widetilde{\Lambda}>0$ is large enough.

Proof (i) Let $E=C^{2}[0,1], I_{1}=\left\{v \in E:\|v\|_{2}<\frac{\lambda}{3}\right\}, I_{2}=\left\{v \in E:\|v\|_{2}<\Lambda\right\}$. By Theorem 3.1, it follows that $\|L v\|_{2} \leq\|v\|_{2}$ when $v \in J \cap \partial I_{1}$ or $v \in J \cap \partial I_{2}$. Choose $I_{3}=\left\{v \in E:\|v\|_{2}<R_{0}\right\}$ such that $\overline{I_{1}} \subset I_{3}, \overline{I_{3}} \subset I_{2}$. For all $v \in J \cap \partial I_{3}$, we get

$$
\begin{aligned}
L v\left(\frac{1}{2}\right) & \geq \int_{\frac{1}{4}}^{\frac{3}{4}} G_{1}\left(\frac{1}{2}, \tau\right) f\left(s, v(\tau), v^{\prime}(\tau), v^{\prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \geq \int_{\frac{1}{4}}^{\frac{3}{4}} G_{1}\left(\frac{1}{2}, \tau\right) N_{1}\left(R_{0}\right) \mathrm{d} \tau \geq \frac{3}{64} N_{1}\left(R_{0}\right) \geq R_{0}=\|v\|_{2} .
\end{aligned}
$$

Therefore, $\|L v\|_{2} \geq\|L v\| \geq L v\left(\frac{1}{2}\right) \geq\|v\|_{2}$, for any $v \in J \cap \partial I_{3}$. By Lemma 2.1, there exist two positive solutions $v_{1} \in J \cap\left(\overline{I_{3}} \backslash I_{1}\right)$ and $v_{2} \in J \cap\left(\overline{I_{2}} \backslash I_{3}\right)$ to the BVP (1.2). Furthermore, they are two distinct monotone and concave positive solutions to the BVP (1.2) by Theorem 3.1.

The proof of (ii) is much similar, so we omit it here. The proof is complete.
Corollary 4.1 There are at least two monotone and concave positive solutions to the $B V P(1.2)$ if either
(i) $\overline{f_{0}}=\overline{f_{\infty}}=0, N_{1}(1) \geq \frac{64}{3}$; or
(ii) $\underline{f_{0}}=\underline{f_{\infty}}=+\infty, N_{2}(1) \leq 2\left(1-\zeta_{2}\right)$ holds.

Example 4.1 Consider the following BVP

$$
\left\{\begin{array}{l}
v^{(4)}(s)=f\left(s, v, v^{\prime}, v^{\prime \prime}\right), \quad s \in[0,1] \tag{4.1}\\
v^{\prime}(1)=v^{\prime \prime \prime}(1)=0, \\
v(0)=\int_{0}^{1} \frac{1}{5} \tau v(\tau) \mathrm{d} \tau, \quad v^{\prime \prime}(0)=\int_{0}^{1} \tau v^{\prime \prime}(\tau) \mathrm{d} \tau
\end{array}\right.
$$

where

$$
f\left(s, v, v^{\prime}, v^{\prime \prime}\right)=\frac{1}{1+s}\left[\frac{\left(v+v^{\prime}-v^{\prime \prime}\right)^{\frac{1}{2}}}{10}+\frac{\left(v+v^{\prime}-v^{\prime \prime}\right)^{2}}{15}\right], \quad g_{1}(\tau)=\frac{1}{5} \tau, \quad g_{2}(\tau)=\tau
$$

It is not difficult to check that f, g_{1} and g_{2} satisfy the assumptions of Section 2 in this paper. By some calculations, we also obtain $f_{0}=f_{\infty}=+\infty$ and $N_{2}(1)=$ $\max \left\{f:\left|v^{\prime \prime}(s)\right| \leq 1, s \in[0,1]\right\}=\frac{\sqrt{3}}{10}+\frac{3}{5} \approx 0.773 \leq 2\left(1-\zeta_{2}\right)=2\left(1-\frac{1}{2}\right)=1$, which implies condition (ii) of Corollary 4.1 holds. Therefore, there are at least two monotone and concave positive solutions to the BVP (4.1) by Corollary 4.1.

References

[1] A. Benham and N. Kosmatov, Multiple positive solutions of a fourth-order boundary value problem, Mediterranean Journal of Mathematics, 14:2(2017),78.
[2] Y.R. Yang and L. An, Note on a supported beam problem, Appl. Math. E-Notes, 12(2012),175-181.
[3] Y.R. Yang, Triple positive solutions of a class of fourth-order two-point boundary value problems, Appl. Math. Lett., 23(2010),366-370.
[4] R.Y. Ma and T.L. Chen, Existence of positive solutions of fourth-order problems with integral boundary conditions, Boundary Value Problems, 2011(2011),1-17.
[5] X.Z. Lv, L.B. Wang and M.H. Pei, Monotone positive solution of a fourth-order BVP with integral boundary conditions, Boundary Value Problems, 172(2015), 12 pages.
[6] Y. Yang, Y.R. Yang and K.P. Liu, Multiple positive solutions for a class of integral boundary value problem, Ann. of Appl. Math., 35(2019),364-373.
[7] Y.Q. He and X.L. Han, Monotone positive solutions of fourth-order boundary value problems with integral boundary conditions, Journal of Shandong University (Natural Science), 54(2019),32-37.
[8] A. Ghanmii, R. Jebari and Z.H. Zhang, Multiplicity results for a boundary value problem with integral boundary conditions, SeMA, 76(2019),365-381.
[9] Q.A. Dang and Q.L. Dang, Existence results and iterative method for a fully fourthorder nonlinear integral boundary value problem, Numer Algor, 54(2019), 21 pages.
[10] D. Guo and V. Lskshmikanthan, Nonlinear problems in abstract cones, Academic Press, San Diego, 1988.

[^0]: *Supported by the NSF of China (11761046).
 ${ }^{\dagger}$ Manuscript received February 20, 2020
 ${ }^{\ddagger}$ Corresponding author. E-mail: lily1979101@163.com

