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Abstract

The present study is concerned with unsteady natural convective boundary
layer flow and heat transfer of fractional second-grade nanofuids for different
particle shapes. Nonlinear boundary layer governing equations are formulated
with time fractional derivatives in the momentum equation. The governing
boundary layer equations of continuity, momentum and energy are reduced
by dimensionless variable. Numerical solutions of the momentum and ener-
gy equations are obtained by the finite difference method combined with L1-
algorithm. The quantites of physical interest are graphically presented and
discussed in details. It is found that particle shape, fractional derivative pa-
rameter and the Grashof number have profound influences on the the flow and
heat transfer.
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1 Introduction
The study of the non-Newtonian fluids has achieved much attention because

of well-established applications in a number of processes which occur in industry

such as damping and braking devices, personal protective equipment, machining,

rocket propellants. The shear stress and shear rate of the non-Newtonian fluids are

connected by a relation in a non-linear manner which is generally more complex

compared with Newtonian fluid flows. Many research works have been carried out

to explore various non-Newtonian fluid flows. Khan et al. [1] studied the heat and
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mass flux models on three-dimensional flow of Burgers fluid over a stretching surface.

The magnetohydrodynamics (MHD) three-dimensional flow of Oldroyd-B nanofluids

was discussed by Hayat et al. [2]. Ramzan et al. [3] studied on the effect of ther-

mal diffusion on the boundary layer flow of mixed convective viscoelastic nanofluids

in a porous medium. Alshomrani et al. [4] researched the heat and mass transfer

characteristics of steady-state flow of three-dimensional Burgers nanofluids on biax-

ially stretched surfaces. Bilal et al. [5] investigated the three-dimensional radiation

flow of Burgers nanofluids with mass flux effect. Effect of nonlinear radiation on

the flow of MHD Carreau nanofluids on a tensile surface with zero mass flux was

analyzed by Lu et al. [6]. One of the most popular models for non-Newtonian fluids

is the second-grade fluid model which was configured firstly by Coleman and Noll

[7]. Subsequently, Bose et al. [8] made a study on Couette flow of second-grade flu-

id through a porous medium with suction. Exact solutions of a second-grade fluid

movement owing to cylinder vibration were presented by Vieru et al. [9]. Jamil and

Fetecau [10] discussed exact analytic solutions of rotating flows of a second-grade

fluid between cylindrical regions.

Fractional derivatives are better than integer order models in some applications

because they can describe the hereditary and memory properties of diverse sub-

stances. For example, complex kinetics can be accurately described, and it can also

effectively treat viscoelastic properties. The study of fractional derivative models

of non-Newtonian fluids generally begins with classical differential equations, which

generally use fractional operators instead of integer-order time derivative. Natu-

ral convection flow of a second-grade fluid with non-integer order time-fractional

derivatives was studied by Imran et al. [11]. With the consideration of Soret and

Dufour effects, Zhao et al. [12] introduced the fractional derivative to characterise

the natural convection heat and mass transfer of a MHD viscoelastic fluid in a

porous medium. Ming et al. [13] derived analytical solutions of a class of new multi-

term fractional-order partial differential equations. Rasheed et al. [14] discussed

an unsteady flow of an anomalous Oldroyd-B fluid for solving fractional equation.

Zhao et al. [15] studied unsteady natural convection heat transfer of generalized

Oldroyd-B fluid in a porous medium saturated with modified fractional Darcy’s law.

Smooth travelling wave solutions of two fractional flow equations from porous media

resulting were analyzed by Hönig et al. [16].

The second-grade fluid model is one of the non-Newtonian models, but it is

rare to analyze its fractional derivative. This work is aimed to study the natural

convection flow of an incompressible fractional second-grade nanofluid near a vertical

plate with different particle shapes, and introduce Caputo fractional derivatives

into the stress tensor component. The expressions for dimensionless velocity and
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temperature are solved numerically. The influences of flow parameters as well as the

fractional derivative parameter α on the velocity and temperature field are analyzed

graphically.

2 Mathematical Formulation of the Problem

Consider the two-dimensional unsteady natural convective boundary layer flow

and heat conduction of second-grade nanofluids over a vertical plate. In the cartesian

coordinate system, the x-axis is along the upward direction of the plate and the y-

axis is perpendicular to the plate. The temperature of the vertical plate and the

ambient plate are Tw and T∞, respectively.

For fractional second-grade fluid model, the stress tensor component τxy can be

described as [17]

τxy = µ
∂u

∂y
+ λαDα

t

[∂u
∂y

]
, (1)

where µ is the effective viscosity, λ is relaxation time, Dα
t is the Caputo fractional

derivative and the fractional derivative of order α is defined as [18]

Dα
t f(t) =

1

Γ(1− α)

∫ t

0
f ′(η)(t− η)−αdη, (2)

where Γ is the Gamma function, α is the temperature fractional derivative parame-

ter. Under the boundary layer approximation and the assumption that the viscous

dissipation is neglected, the momentum and energy equations for the incompressible

flow of a second-grade fluid are

ρnf

(∂u
∂t

+ u
∂u

∂x
+ v

∂u

∂y

)
= µnf

[∂2u
∂y2

+ λαDα
t

(∂2u
∂y2

)]
+ (ρβ)nfg(T − T∞), (3)

(ρCp)nf

(∂T
∂t

+ u
∂T

∂x
+ v

∂T

∂y

)
= κnf

∂2T

∂y2
, (4)

where u and v are the velocity components along x and y directions respectively,

T is temperature, ρnf is the density of the nanofluid, βnf and (Cp)nf respectively

stand for the coefficient of thermal expansion and the specific heat at the constant

pressure. µnf is the viscosity of the nanofluid. Further, the expressions of ρnf , µnf ,

(ρβ)nf and (ρCp)nf are given [19-22] as follows:

ρnf = (1− φ)ρf + φρp, µnf =
µf

(1− φ)2.5
, (5)

(ρβ)nf = (1− φ)(ρβ)f + φ(ρβ)p, (ρCp)nf = (1− φ)(ρCp)f + φ(ρCp)p, (6)

where φ is the nanoparticle volume fraction, the subscripts nf , f and p respectively

represent the nanofluid, fluid, and nanosolid particles. Moreover, thermal conduc-

tivity κnf is given [23] by
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κnf
κf

=
(κp + (m− 1)κf )− (m− 1)φ(κf − κp)

(κp + (m− 1)κf ) + φ(κf − κp)
, (7)

where m is the nanoparticle shape factor. The thermophysical properties of the base

fluid and nanoparticle are given in Table 1 [24]. Five different types of nanoparticle

shapes including sphere, hexahedron, tetrahedron, column and lamina are consid-

ered, and the corresponding values of m for the different shapes are shown in Table

2 [25].

Table 1: Physical properties of fluid and nanoparticles

ρ(Kgm−3) Cp(JKg−1K−1) κ(Wm−1K−1) β × 10−5(K−1)
CTAC/NaSal-water 997.1 4179 0.613 21

Cu 8933 385 400 1.67

Table 2: Values of shape factor for different nanoparticle shapes

Sphere Hexahedron Tetrahedron Column Lamina
m 3 3.7221 4.0613 6.3698 16.1576

The initial and boundary conditions for this problem are

t ≤ 0 : u = 0, v = 0, T = T∞, as x ≥ 0; t > 0 : u = 0, v = 0, T = Tw, at y = 0;

t > 0 : u→ 0, T → T∞, as y →∞; t > 0 : u = 0, T = T∞, at x = 0.

The dimensionless variables are introduced in the following forms:

x∗ =
x

L
, y∗ =

y

L
Re

1
2 , t∗ =

tU0

L
, u∗ =

u

U0
, v∗ =

v

U0
Re

1
2 , θ =

T − T∞
Tω − T∞

,

λ∗ =
λU0

L
, Pr =

νf
αf
, αf =

κf
(ρCp)f

, νf =
µf
ρf
, Re =

U0L

νf
,

Gr =
gβ(Tω − T∞)L3

ν2f
, E1 =

1

(1− φ)2.5[1− φ+ φ
ρp
ρf

]
, E2 =

1− φ+ φ
(ρβ)p
(ρβ)f

1− φ+ φ
ρp
ρf

,

H(m,φ) =
[
(1− φ) + φ

(ρCp)p
(ρCp)f

] [κp + (m− 1)κf ] + φ(κf − κp)
[κp + (m− 1)κf ]− (m− 1)φ(κf − κp)

,

where Re is the generalized Reynolds number, Pr is the Prandtl number, ν is the
kinematic viscosity, and Gr is the Grashof number. Omitting the dimensionless
mart ∗ for brevity, the governing equations of continuity, momentum and energy
can be written as
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∂u

∂x
+
∂v

∂y
= 0, (8)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= E1

[∂2u
∂y2

+ λαDα
t

(∂2u
∂y2

)]
+
E2Gr

Re2
θ, (9)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=

1

Pr ·H(m,φ)

∂2θ

∂y2
. (10)

The corresponding boundary conditions become

t ≤ 0 : u = 0, v = 0, θ = 0, as x ≥ 0; t > 0 : u = 0, v = 0, θ = 1, at y = 0; (11)

t > 0 : u→ 0, θ → 0, as y →∞; t > 0 : u = 0, θ = 0, at x = 0. (12)

The physical quantity of interest is the local Nusselt number, which is defined [26]
as

Nu =
xqw

k(Tw − T∞)
, (13)

where qw is the heat flux from the flat plate, given by

qw = −k
(∂T
∂y

)
y=0

. (14)

The corresponding dimensionless parameters are given by

Nu = −xRe
1
2

(∂θ
∂y

)
y=0

, (15)

Similarly, the average Nusselt number satisfies:

Nu = −Re
1
2

∫ 1

0

(∂θ
∂y

)
y=0

dx. (16)

3 Numerical Techniques
In view of the initial conditions and boundary conditions, the numerical solutions

of equations (8)-(10) are defined as uki,j , v
k
i,j and θki,j at the mesh points (xi, yj , tk).

Define xi = i∆x (i = 0, 1, 2, · · · ,M), yj = j∆y (j = 0, 1, 2, · · · , N) and tk = k∆t
(k = 0, 1, 2, · · · , R), where ∆x = L/M and ∆y = Ymax/N are space steps, ∆t is
time step. Based on the definition of Caputo fractional derivative operate, the time
fractional derivative (0 < α < 1) is discretized by using the L1-algorithm as [27]

Dα
t f(tk)=

∆t−α

Γ(2−α)

[
f(tk)−αk−1f(t0)−

k−1∑
s=0

(αs−1−αs)f(tk−s)
]
+O(∆t2−α), (17)

where αs = (s + 1)1−α − s1−α (s = 0, 1, 2, · · · , R). The integer-order terms in the
governing equations are discretized as
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∂u

∂t

∣∣∣
t=tk

=
u(xi, yj , tk)− u(xi, yj , tk−1)

∆t
+O(∆t), (18)

u
∂u

∂x

∣∣∣
t=tk

= u(xi, yj , tk−1)
u(xi, yj , tk)− u(xi−1, yj , tk)

∆x
+O(∆x+ ∆t), (19)

v
∂u

∂y

∣∣∣
t=tk

= v(xi, yj , tk−1)
u(xi, yj , tk)− u(xi, yj−1, tk)

∆y
+O(∆y + ∆t), (20)

∂2u

∂y2

∣∣∣
t=tk

=
u(xi, yj+1, tk)− 2u(xi, yj , tk) + u(xi, yj−1, tk)

∆y2
+O(∆y2), (21)

∂2θ

∂y2

∣∣∣
t=tk

=
θ(xi, yj+1, tk)− 2θ(xi, yj , tk) + θ(xi, yj−1, tk)

∆y2
+O(∆y2). (22)

For simplicity, note

r1 =
E1∆t

∆y2
, r2 =

∆t

∆y2
, r3 =

λα∆t−α

Γ(2− α)
, C =

k−1∑
s=1

(αs−1 − αs)δ2yuk−si,j ,

where δ2yu
k−s
i,j = uk−si,j+1 − 2uk−si,j + uk−si,j−1.

Finally, the iteration equations are achieved as follows:

−∆t

∆x
uk−1i,j θki−1,j −

(∆t

∆y
vk−1i,j +

r2
Pr ·H(m,φ)

)
θki,j−1 +

(
1 +

∆t

∆x
uk−1i,j

+
∆t

∆y
vk−1i,j +

2r2
Pr ·H(m,φ)

)
θki,j −

r2
Pr ·H(m,φ)

θki,j+1 = θk−1i,j , (23)

−∆t

∆x
uk−1i,j uki−1,j −

(∆t

∆y
vk−1i,j + r1(1 + r3)

)
uki,j−1 +

(
1 +

∆t

∆x
uk−1i,j +

∆t

∆y
vk−1i,j

+2r1(1 + r3)
)
uki,j − r1(1 + r3)u

k
i,j+1 = uk−1i,j − r1r3C +

E2Gr

Re2
θki,j , (24)

vki,j = vki,j−1 −
∆y

∆x
(uki,j − uki−1,j). (25)

4 Results and Discussion
Iteration equations (23)-(25) can be written in the tri-diagonal systems, which

were solved by the Thomas algorithm [28]. The iteration tends to be stable when
the interpolation between u and θ is less than 10−5 at two adjacent time steps. The
calculation area can be seen as a rectangle with xmax = 2 and ymax = 8, where ymax

corresponds to y →∞. In the calculation process, the space and time steps are fixed
as ∆x = 0.02, ∆y = 0.08 and ∆t = 0.15. As shown in Figure 1, the resulting numer-
ical solution is stable and convergent by comparing u and θ of different grid sizes.

It is revealed from Figure 2 that the nanoparticle shape has a significant impact
on temperature and heat transfer of the nanofluid. It can be observed that temper-
ature profile declines uniformly with the decreasing of m. The results imply that
sphere < hexahedron < tetrahedron < column < lamina for the thickness of thermal
boundary layer, so the sphere nanoparticle has the best heat conduction among the
five different shapes. Figures 3 and 4 illustrate the effect of α on the velocity and
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temperature profiles. The increasing α leads to a obvious increase of the velocity
before the turning point as shown in Figure 3, then intersects at a point after the
turning point. Therefore, the boundary layer thickness becomes thinner as α evolves
after the intersection point. Appearance of the intersection point implies that the
fractional equation with relaxation time has temporary memory characteristics with
apparent state and response to the outside. From Figure 4, it is easy to see that the
decreasing α results in the increase of temperature and the boundary layer.

Figure 1: Grid independence test for different mesh sizes

Figure 2: Influence of shapes on temperature profiles
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Figure 3: Influence of α on velocity profiles

Figure 4: Influence of α on temperature profiles

The influence of φ on the velocity and temperature profiles are illustrated in
Figures 5 and 6. It is observed from Figure 5 that the maximum values of the velocity
profiles reduce as the nanoparticle volume fraction φ rises, because the nanoparticles
are solid particles, which bring the additional flow resistance. As shown in Figure
6, it can be observed that the temperature and thermal boundary layer thickness
increase as φ rises. These phenomenons indicate that an increase in the number of
nanoparticles weakens heat and momentum transfer of fluid.
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Figure 5: Influence of φ on velocity profiles

Figure 6: Influence of φ on temperature profiles

The Grashof number approximates the ratio of buoyancy to viscous forces acting
on the fluid. The impacts of the Grashof number on velocity and temperature profiles
are respectively shown in Figures 7 and 8. It is found that the maximum value of
the fluid velocity rises as the Grashof number rises as shown in Figure 7. However,
the values of temperature and the thermal boundary layer thickness diminish as Gr
evolves. This is due to the fact that the parameter Gr is a non-dimensional physical
quantity to reflect buoyancy on the fluid, which provides the power of flow.
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Figure 7: Influence of Gr on velocity profiles

Figure 8: Influence of Gr on temperature profiles

The average Nusselt number is an important physical quantity to investigate the
heat transfer of the flow. The impact ofm on the average Nusselt number is displayed
in Figure 9. This result indicates that sphere > hexahedron > tetrahedron> column
> lamina for the average Nusselt number. It is due to the fact that the ratio of
thermal conductivity κnf/κf increases with m. The value of the average Nusselt
number for the sphere nanoparticle is the largest among the five different shapes,
which is in accordance with the results illustrated by Figure 2. It is worth noting
that the average Nusselt number drops rapidly first and then slowly rises until it
stabilizes.
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Figure 9: Influence of shapes on the Average Nusselt number

5 Conclusion
The paper is concerned with the natural convection flow of a fractional second-

grade nanofluid. The effects of nanoparticle shapes on the flow and heat transfer
are probed in this paper. The worth mentioning points are obtained as follows:

1) Sphere nanoparticle has the minimum thermal boundary layer thickness and
the maximum average Nusselt number. Therefore, the heat transfer of spherical
nanoparticles is superior to other nanoparticles.

2) The velocity increases with y before reaching the maximum values with the
impact of α. Then the velocity profiles intersect at a point after the turning point,
which implies the fractional nanofluids model with Caputo time derivatives has a
short memory of previous states.

3) The nanoparticle volume fraction φ has an opposite effect on temperature
and velocity profiles. The maximum values of the velocity profiles reduce as the
nanoparticle volume fraction φ rises because solid particles bring the additional flow
resistance.

4) The Grashof number has a similar influence on velocity and temperature
profiles with α. The values of temperature and the thermal boundary layer thickness
diminish as Gr evolves because of the thermal buoyancy effect.
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