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Abstract

In this paper, we consider a planar piecewise smooth differential system
consisting of a linear system and a quadratic Hamiltonian system. The quadra-
tic system has some folds on the discontinuity line. The linear system may have
a focus, saddle or node. Our results show that this piecewise smooth differential
system will have two limit cycles and a sliding cycle. Moreover, this piecewise
smooth system will undergo pseudo-homoclinic bifurcation, Hopf bifurcation
and critical crossing bifurcation CC. Some examples are given to illustrate our
results.
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1 Introduction

The bifurcation theory of planar smooth differential systems has developed very

fast since D. Hilbert put up the famous Hilbert’s 16th problem (see e.g. [19] and [23]).

In recent years, piecewise smooth (PWS for short) dynamical systems with some

parameters have been widely applied in many fields, such as mechanics, electronics,

control theory, biology, economy and so on. They are also used to explain some

phenomena such as pest control or model some mechanical systems exhibiting dry
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friction and electrical circuits having switches and so on. These wide applications

and study of Hilbert’s 16th problem are important sources of motivation of bifurca-

tion analysis in PWS systems (see e.g. [7,16,20,30-32]).

Filippov established some systematic methods to study qualitative theory of

PWS systems in his book [9]. Kuznetsov et al. studied one-parameter bifurcations

in planar Filippov systems. They gave an overview of all codimension one bifurca-

tions including some novel bifurcation phenomena that can only appear in planar

PWS systems in [21]. Guardia et al. studied local and global bifurcation in PWS

systems in [14]. Many novel bifurcation phenomena that will not be seen in smooth

systems have been hot issues of bifurcation problems of PWS systems such as sliding

bifurcation, critical crossing cycle bifurcation and so on. Freire et al. studied criti-

cal crossing cycle bifurcation and pointed out that critical crossing cycle bifurcation

CC can occur in co-dimension one bifurcation, but critical crossing cycle bifurcation

CC2 cannot occur in co-dimension one bifurcation problems (see [12]).

When subsystems of planar PWS systems have the same type of singularities and

different types of singularities, their bifurcation problems have been widely studied

in the past few years. Even for planar PWS linear systems defined in two zones,

their bifurcation problems are not easy to be studied. People have found many novel

bifurcation phenomena that will not appear in smooth linear systems (see [13, 15]).

It is not easy for people to discuss bifurcation phenomena of planar piecewise linear

systems with many parameters. Luckily, Freire et al. gave a Liénard-like canonical

form for a class of piecewise linear systems with two zones. When each subsystem has

no equilibrium point in its own zone and if each subsystem has a focus, they showed

that two limit cycles can exist (see e.g. [10]). PWS linear systems with node-node

dynamics and saddle-saddle types were considered in [17] and [18], respectively.

Recently, bifurcation phenomena of planar PWS systems that are constituted by

linear system and quadratic Hamiltonian system have been studied by some authors

(see e.g. [22,27-29]).

Li and Huang [22] considered the following PWS system

(u̇, v̇) =

{
(a0 + η, b+1 u+ b+2 u

2 + ϵ+), if v > 0,

(−a0 + a−1 u+ a−2 v − η, b−1 u+ ϵ−), if v < 0.
(1)

Under their assumptions, the linear system has a saddle. They got the following

system which is topologically equivalent to system (1)

(ẋ, ẏ) =

{
(1,−2x+ 3lx2 + ϵ1), if y > 0,

(−1 +mx+ ny,−x+ ϵ2), if y < 0.
(2)

The unperturbed system of (2) is the following system (3). See equation (7) in [22].
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This PWS system is made up of a quadratic Hamiltonian system and a linear system(
ẋ
ẏ

)
=

(
F1(x, y)
F2(x, y)

)
(3)

with (
F1(x, y)
F2(x, y)

)
=

(
1

−2x+ 3lx2

)
, for y > 0, (4)

and (
F1(x, y)
F2(x, y)

)
=

(
−1 +mx+ ny

−x

)
, for y < 0, (5)

where l( ̸= 0), m, n are 3 real parameters.

When the subsystem of PWS systems has a fold, many bifurcation phenomena

will occur. PWS systems with 3 parameters were discussed by Buzzi et al. in [4].

They discussed a special unfolding for PWS systems having a fold-cusp singularity.

System (4) also has some folds (that is tangency points of second order). The

definition of fold and cusp can be found in [14] (see Definition 2.1).

Li and Huang [22] assumed that these parameters satisfy some conditions, then

the linear system has a saddle and its quadratic system has some folds. They

discussed the homoclinic bifurcation of system (3). Moreover, they discussed Hopf

bifurcation for a perturbed system of system (3). For more general scenarios, the

stability and perturbations of generalized loops of planar PWS systems have been

studied by applying Melnikov function. The loop has a saddle and a tangency

point (see Figure 1 of [5]). Limit cycles bifurcating from generalized homoclinic

loops having a tangent points were studied by analyzing Poincaré map and the

authors found at most two limit cycles can appear in the related planar PWS systems

(see [24]). Under the assumption that there exists a family of periodic orbits on the

inner (resp., outer) side of the homoclinic loop, Liang and his collaborators studied

homoclinic bifurcations of planar PWS systems with a generalized homoclinic loop

having a saddle-fold point by analyzing the asymptotic expansion of the first order

Melnikov function corresponding to the period annulus in [25].

As the parameters vary, the linear system of (1) will have a focus or a node.

We can still have similar form as given by system (2). To our knowledge, when one

subsystem has a fold and the other subsystem has a focus or a node, we still know

little on their bifurcation phenomena. However, Li did not consider these scenarios

in [22]. A natural question is: Does system (2) have other bifurcation phenomena

when its linear subsystem has a node or a focus? This problem deserves to be further

studied. Indeed, we find some interesting bifurcation phenomena in this paper.

In this paper we shall first investigate bifurcation phenomena of the unperturbed

system (3). In the sequel, we study bifurcation phenomena of system (2). At this
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moment, the linear system (5) has a focus or a node. Let Σ = {(x, 0)|x ∈ R}. In

what follows we call equation (3) with (4) the upper system of (3) and equation

(3) with (5) the lower system of (3). We denote upper system and lower system

of (3) by f+(x, y) and f−(x, y), respectively. Our results will show that when the

linear system (5) has a focus or a node, system (3) has a sliding cycle and undergoes

pseudo-homoclinic bifurcation and critical crossing bifurcation CC. These novel

bifurcation phenomena will not appear in smooth planar differential systems.

From [21] (see P2171), we know that one can construct a local transversal section

to a stable sliding cycle and define Poincaré map in the usual way forward in time.

Note that all nearby points will be mapped into the fixed point of Poincaré map,

the derivative of Poincaré map at the fixed point corresponding to the sliding cycle

will be zero. This is referred to as superstability. In this case Poincaré map is

not invertible. However, a generic crossing cycle has a smooth invertible Poincaré

map. We often use the derivative of Poincaré map to discuss the stability of a

crossing cycle. If the derivative µ of Poincaré map satisfies µ < 1, the crossing cycle

is exponentially stable. If the derivative µ of Poincaré map satisfies µ > 1, the

crossing cycle is exponentially unstable. A crossing critical cycle is a crossing cycle

passing through the boundary of a sliding segment. The crossing critical cycle is the

intermediate situation between a sliding cycle and a crossing cycle.

We recall definitions of critical crossing cycle bifurcations CC and CC2 for the

sake of completeness (see [12] and [21]). When planar PWS systems with parameter

α undergo critical crossing bifurcation CC, there is a sliding cycle with a single

sliding segment ending at a tangency point when the parameter α < 0. This sliding

segment shrinks for α → 0. The sliding cycle becomes a crossing critical cycle when

α = 0. Then the critical crossing cycle disappears for α > 0 forming an exponentially

stable crossing limit cycle. See CC of Figure 17 in [21].

When planar PWS systems with the parameter α undergo critical crossing bi-

furcation CC2, a superstable sliding cycle coexists with an exponentially unstable

crossing cycle for sufficiently small parameter α < 0. The two cycles collide at α = 0

forming a critical crossing cycle and then disappear for α > 0. This bifurcation im-

plies the catastrophic disappearance of a stable sliding cycle.

This paper is organized as follows. In Section 2 we will state our main results.

Their proofs will be given in Section 3. Some examples will be given to apply our

results in Section 4. We give our conclusions in Section 5.

2 Statement of the Main Results

Before we state our main results, we need some basic facts on the upper and

lower systems of (3). The orbits of upper system (4) are some cubic curves
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y = −x2 + lx3 + c, for c ≥ 0. (6)

The upper half system of (3) has two folds on Σ, that is, the origin O(0, 0) and point

B = ( 2
3l , 0). Moreover, the point B is visible and the point O is invisible. Its orbit

passing through the point B will have another intersection point with Σ, denoted

by B. We substitute the coordinates of the point B into equation (6), we get that

c = 4
27l2

. So the expression of the orbit that goes through the point B is

y = −x2 + lx3 +
4

27l2
. (7)

Let −x2 + lx3 + 4
27l2

= 0, and factor the left-hand side, we have

−x2 + lx3 +
4

27l2
= l ·

(
x− 2

3l

)2(
x+

1

3l

)
= 0. (8)

Thus we get that B = (− 1
3l , 0). Based on the analysis of system (4), we know that

when l < 0 the orbits starting at point (x0, 0) with x0 ∈ [ 23l , 0] will enter the upper

half-plane under the action of the flows of the upper subsystem. These orbits will

reach Σ again at some point (x1, 0) with x1 ∈ [0,− 1
3l ], after certain time t > 0.

Analogously, if l > 0 the orbits starting at point (x0, 0) with x0 ∈ [− 1
3l , 0] will

go into the upper half-plane under the action of the flows of the upper subsystem.

These orbits can reach Σ again at some points (x1, 0) with x1 ∈ [0, 2
3l ], after certain

time t > 0. We define a upper Poincaré map P+ as x1 = P+(x0) with P+(0) = 0.

Solving the upper system (4) gives

0 = −x21 + lx31 + x20 − lx30. (9)

If system (3) has a closed cycle (except sliding closed cycle), it must intersect Σ

and is located between B and B. The following lemma will be used in the proof of

our main results (see [9]).

Lemma 1 Consider the equation

dy

dx
= ax+ by +G(x, y), a ̸= 0, (10)

where G is of class C4 at the origin satisfying

G(x, y) = cx2 + dxy + ey2 + fx3 + gx2y + hx4 + o(x4 + y2),

for (x, y) near the origin. Let y = Y (x) be the solution of (10) satisfying

Y (−r) = Y (σ) = 0, −r < x < 0, and aY (x) < 0 for − r < x < 0,

then for small enough r > 0

σ = r + µr2 + µ2r3 + kr4 + o(r4), (11)
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where

µ =
2

3

(
b− c

a

)
, k =

11

10
µ3+

µ

5
d+

2

15
L, L =

bc2

a2
− 2c3

a3
−2ae− 2bf

a
+

5cf

a2
+g− 3h

a
.

For the upper Poincaré map P+, we have the following results.

Proposition 1 Suppose that l ̸= 0, then the following statements hold.

(1) Define P+(0) = 0, then P+ is continuous at the point x0 = 0. In addition,

the first four derivatives of P+ at the point x0 = 0 are

P ′
+(0) = −1, P ′′

+(0) = 2l, P ′′′
+ (0) = −6l2, P

(4)
+ (0) = 48l3.

(2) P+ is decreasing with respect to x0, and concave from below (above) if l <

0 (l > 0).

Proof (1) The upper system (4) can be rewritten as the

dy

dx
= −2x+ 3lx2, y > 0.

We get from Lemma 1 that

P+(x0) = −x0 + µ+x20 − (µ+)2x30 + k+x40 + o((−x0)
4), (12)

for small enough −x0 > 0, where

µ+ = l, k+ = 2l3.

By equation (12), we have

lim
x0→0

P+(x0) = 0.

Moreover, we obtain first four derivatives of P+ at the point x0 = 0. Thus the

statement (1) of Proposition 1 follows.

(2) We only need to prove the statement when l < 0. When l > 0, the statement

can be proved similarly. By (9), if l < 0, we have

(x1 − x0)(lx
2
1 + (lx0 − 1)x1 + lx20 − x0) = 0, (13)

where x0 ∈ ( 2
3l , 0) and x1 ∈ (0,− 1

3l ). Let h(x1) = lx21 + (lx0 − 1)x1 + lx20 − x0, then

the root of discriminant of h(x1) satisfies

∆ = (lx0 − 1)2 − 4lx0(lx0 − 1) = −3lx0

(
lx0 −

2

3

)
+ 1 > 1 > 0,

for all x0 ∈ ( 2
3l , 0). Thus equation h(x1) = 0 has the following two roots

x11 =
1− lx0 −

√
−3lx0(lx0 − 2

3) + 1

2l
, x12 =

1− lx0 +
√
−3lx0(lx0 − 2

3) + 1

2l
.

It is clear that x11 > 0 and x12 < 0 when l < 0. Since x1 ∈ (0,− 1
3l ), x12 should be

discarded. The useful root of h(x1) = 0 is
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x1 = x11 =
1− lx0 −

√
−3lx0(lx0 − 2

3) + 1

2l
=

1− lx0 −
√
∆

2l
.

Since x1 = P+(x0), we have

P ′
+(x0) = x′1 = −1

2
+

3lx0 − 1

2

[
− 3lx0

(
lx0 −

2

3

)
+ 1

]−1/2
=

3lx0 − 1−
√
∆

2∆
. (14)

Since 3lx0 − 1 < 1 and (−3lx0(lx0 − 2
3) + 1)−1/2 < 1 for all x0 ∈ ( 2

3l , 0), we know

that P ′
+(x0) < 0 and P+(x0) is decreasing with respect to x0.

Easy calculation shows that

P ′′
+(x0) =

l

2

{
3
[
− 3lx0

(
lx0 −

2

3

)
+ 1

]−1/2
+ (3lx0 − 1)2

[
− 3lx0

(
lx0 −

2

3

)
+ 1

]−3/2}
=

l(3∆ + (3lx0 − 1)2)

2∆
√
∆

.

It is clear that P
′′
+(x0) < 0 when l < 0. Therefore, P+ is decreasing with respect

to x0 and concave from below. The proof is complete.

Figure 1: Graphs of the Poincaré map P+ with different l

System (5) has a unique singularity S = (0, 1
n). In what follows we will discuss

the scenarios when S is a focus of the lower linear system and then S is a node of

the linear system. For each scenario, we will provide a bifurcation analysis for the

planar PWS system.

2.1 The lower system with focus dynamic
In this case, the singularity S = (0, 1

n) of lower system is a focus. We need the

assumption n > m2

4 . Let β =
√
4n−m2

2 > 0, the eigenvalues of A =

(
m n
−1 0

)
are the

following

λ1 =
m

2
+ iβ, λ2 =

m

2
− iβ. (15)

The solution of the lower system with initial value (x0, 0) at t = 0 is
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x−1 (t) = exp
(m
2
t
)[

x0 cos(βt) +
(m

2β
x0 −

1

β

)
sin(βt)

]
,

y−1 (t) = − exp
(m
2
t
)[ 1

n
cos(βt)−

( m

2nβ
− x0

β

)
sin(βt)

]
+

1

n
, (16)

where t > 0. The orbits of lower system surrounding origin O rotate clockwise.

Then the orbit of lower system starting at (x0, 0) with x0 > 0, will arrive at Σ at

the point (x1, 0) with x1 < 0 after a certain time t1 > 0. We define a lower Poincaré

map P− as x1 = P−(x0) with P−(0) = 0. Then we have

y−1 (t1) = 0, x−1 (t1) = x1. (17)

Here, we ask the t1 > 0 to be minimum time such that (17) holds. Since the

singularity S is not in the lower half plane, βt1 ∈ (0, π). It means that sinβt1 > 0 for

βt1 ∈ (0, π). Therefore, we obtain the parametric representations of lower Poincaré

map P− from equations (16) and (17)

x0 =
βe−

m
2
t1

n sin(βt1)

[
1− e

m
2
t1
(
cos(βt1)−

m

2β
sin(βt1)

)]
, t1 > 0,

x1 = − βe
m
2
t1

n sin(βt1)

[
1− e−

m
2
t1
(
cos(βt1) +

m

2β
sin(βt1)

)]
. (18)

For brevity, set s = βt1 and γ = 1
2β > 0, the above two equations can be written as

x0(s) =
βe−mγs

n sin s
φmγ(s), x1(s) = −βemγs

n sin s
φ−mγ(s), (19)

where s ∈ (0, π), φmγ(s) = 1 − emγs(cos s − mγ sin s). This function has been

introduced in [1] and [10]. It has the following symmetry properties

φ−mγ(−s) = φmγ(s), φ−mγ(s) = φmγ(−s), for any m, γ, s ∈ R.

Figure 2 gives the graph of φmγ(s). For the lower Poincaré map P−, we have the

following proposition.

Figure 2: The graph of φmγ(·) for a positive value of m
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Proposition 2 Suppose that system (5) satisfies the assumption n > m2

4 , m ∈
R, s = βt1 and γ = 1

2β , then the following statements hold.

(1) x0 is increasing with respect to s and x1 is decreasing with respect to s, with

lim
s→0+

x0(s) = lim
s→0+

x1(s) = 0, lim
s→π−

x0(s) = +∞, lim
s→π−

x1(s) = −∞.

(2) When m = 0, P−(x0) = −x0 for all x0 > 0.

(3) When m ̸= 0, for all x0 > 0, we have P ′
−(x0) < 0 and

lim
x0→0+

P ′
−(x0) = −1, lim

x0→+∞
P ′
−(x0) = −emγπ, signP ′′

−(x0) = −signm.

Proof It follows from (19) that

x′0(s) =
β

n(sin s)2
φ−mγ(s), x′1(s) = − β

n(sin s)2
φmγ(s), s ∈ (0, π). (20)

Figure 2 and the symmetry properties of φmγ(s) imply that φmγ(s) and φ−mγ(s)

are always positive when s ∈ (0, π). Using the fact n > 0, β > 0, x′0(s) > 0, we have

x′1(s) < 0 for s ∈ (0, π). Moreover, easy calculation shows that

lim
s→0+

x0(s) = lim
s→0+

x1(s) = 0, lim
s→π−

x0(s) = +∞, lim
s→π−

x1(s) = −∞.

We get from (20) that

P ′
−(x0) =

x′1(s)

x′0(s)
= − φmγ(s)

φ−mγ(s)
=

x0
P−(x0)

e2mγs < 0. (21)

When m = 0, P ′
−(x0) = −1. By (21), P−(x0) = −x0, for all x0 > 0. When m ̸= 0,

it is clear that P ′
−(x0) < 0, for all x0 > 0. P− is decreasing with respect to x0.

Furthermore,

lim
x0→0+

P ′
−(x0) = lim

s→0+
− φmγ(s)

φ−mγ(s)
= −1, lim

x0→+∞
P ′
−(x0) = lim

s→π−
− φmγ(s)

φ−mγ(s)
= −emγπ.

From (21), we have

P ′′
−(x0) = − 2n2(sin s)3

β3(φ−mγ(s))3
· θ(s),

where θ(s) = sinhmγs−mγ sin s. We get from signθ(s) = signm that signP
′′
−(x0) =

−signm. The proof is complete.

2.2 Sliding dynamics
In this part, we shall discuss the sliding dynamics of PWS system (3). When

l < 0, system (3) has an attracting sliding region Σ−
s =

{
(x, 0)|x ≤ 2

3l , l < 0
}
. When
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l > 0, system (3) has a repulsive sliding region
(
Σ+
s =

{
(x, 0)|x ≥ 2

3l , l > 0
})

. Let

M(x, 0) ∈ Σ, then the vector fields of upper and lower systems at point M are as

follows (
f+
1 (x, 0)
f+
2 (x, 0)

)
=

(
1

−2x+ 3lx2

)
, for y = 0, (22)

and (
f−
1 (x, 0)
f−
2 (x, 0)

)
=

(
−1 +mx

−x

)
, for y = 0. (23)

In fact, since the points in the sliding region must satisfy

f+
2 (x, 0)f−

2 (x, 0) = −x2(3lx− 2) ≤ 0.

It follows that the sliding regions Σ−
s and Σ+

s are aforementioned. Now we establish

the sliding vector field on Σ−
s (Σ+

s ) by Filippov convex method. The sliding vector

field

Ẋ = αf+(X) + (1− α)f−(X), X ∈ Σ−
s (Σ

+
s ), α ∈ [0, 1]

should be tangent to Σ, it follows that

α(−2x+ 3lx2) + (1− α)(−x) = 0, α ∈ [0, 1].

Thus α = 1
3lx−1 . The sliding vector field is given by

Ys =
(3lmx2 − (3l + 2m)x+ 3

3lx− 1
, 0
)
.

In the following proposition, we will find that the sliding vector field Ys may

have a pseudo-saddle. The definition of pseudo-saddle was given in Definition 2.8

of [14].

Proposition 3 For the sliding vector field Ys with l < 0, m > 0, there exists a

unique singularity M− = (x−M , 0) in Σ−
s , which is a pseudo-saddle.

Proof Set g(x) = 3lmx2 − (3l + 2m)x+ 3. When l < 0 and m > 0, the root of

discriminant of g(x) satisfies ∆ = (3l+2m)2− 36lm > 0. Two roots of g(x) = 0 are

the following

x−M =
3l+2m+

√
(3l+2m)2−36lm

6lm
<0, x+M =

3l+2m−
√

(3l+2m)2−36lm

6lm
>0.

Since x+M > 0 > 2
3l , x

+
M is not in the interior of sliding region Σ−

s . As for x−M ,

x−M − xB =
3l + 2m+

√
(3l + 2m)2 − 36lm

6lm
− 2

3l

=
3l − 2m+

√
(3l + 2m)2 − 36lm

6lm

=
3l − 2m+

√
(3l − 2m)2 − 12lm

6lm
< 0,
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where xB is the abscissa of point B. Since 3lx−1 > 0 for all x ≤ 2
3l , M

− = (x−M , 0) is

always on the left of point B. Moreover, Ys has a unique singularity M− = (x−M , 0)

in the region Σ−
s when l < 0, m > 0. M− is a pseudo-saddle. The proof is complete.

Analogously, we have the following results when l > 0 and m < 0.

Proposition 4 For the sliding vector field Ys with l > 0 and m < 0, there exists

a unique singularity M+ = (x+M , 0) in Σ+
s , which is a pseudo-saddle.

In what follows we present two main results when the lower linear system has a

focus.

Theorem 1 Suppose that system (3) satisfies the basic assumption n > m2

4 and

l < 0. Then the following statements hold.

(1) If m ≤ 0, system (3) has no periodic orbit.

(2) If m > 0 and l > −2
3m, there exist l1, l2 satisfying −2

3m < l1 < l2 < 0 such

that the following statements hold.

(a) If −2
3m<l<l1, system (3) has a stable limit cycle (crossing periodic orbit).

(b) If l = l1, system (3) has a stable crossing critical cycle.

(c) If l1 < l < l2, system (3) has a stable sliding cycle.

(d) If l = l2, system (3) has a sliding homoclinic cycle, which is stable.

(e) If l2 < l < 0, system (3) has neither periodic orbits nor sliding cycles.

(3) If m > 0 and l ≤ −2
3m, there are no corresponding l1, l2 that satisfy −∞ <

l1 < l2 < −2
3m. So system (3) has no periodic orbit.

Theorem 2 Suppose that system (3) satisfies the basic assumption n > m2

4 and

l > 0. Then the following statements hold.

(1) If m ≥ 0, system (3) has no periodic orbit.

(2) If m < 0 and l < −2
3m, then there exist l1, l2 satisfying 0 < l2 < l1 < −2

3m

such that the following statements hold.

(a) If −2
3m > l > l1, system (3) has an unstable limit cycle (crossing periodic

orbit).

(b) If l = l1, system (3) has an unstable crossing critical cycle.

(c) If l1 > l > l2, system (3) has an unstable sliding cycle.

(d) If l = l2, system (3) has a sliding homoclinic cycle, which is unstable.

(e) If 0 < l < l2, system (3) has no periodic orbit.

(3) If m < 0 and l ≥ −2
3m, then there are no corresponding l1, l2 that satisfy

+∞ > l1 > l2 > −2
3m. So system (3) has no periodic orbit.

2.3 The lower linear system with node dynamics
In this section, we assume that m2 > 4n > 0. S is a node of the lower linear

system. Direct computation shows that

x0(t) =
1

n
·
Ψλ1,λ2(t)

eλ1t − eλ2t
, x1(t) = − 1

n
·
emtΨλ1,λ2(−t)

eλ1t − eλ2t
, t > 0, (24)



No.3 Q.W. Xiu, etc., Bifurcation Analysis of A Linear-Quadratic Sys. 293

where λ1, λ2 are the eigenvalues of A =

(
m n
−1 0

)
and Ψλ1,λ2(t) = λ1−λ2+λ2e

λ1t−

λ1e
λ2t. Let l1 and l2 be the invariant manifolds of lower system, then we have

l1 =
{
(x, y)| y = − 1

λ2
x+

1

n
, y ≤ 0

}
, l2 =

{
(x, y)| y = − 1

λ1
x+

1

n
, y ≤ 0

}
.

l1 and l2 intersect Σ at points A1 = (λ2
n , 0) and A2 = (λ1

n , 0) , respectively.

Proposition 5 Suppose that system (5) satisfies the assumption m2 > 4n > 0

and λ1 > λ2, then the following statements hold.

(1) x0(t) is increasing with respect to t and x1(t) is decreasing with respect to t.

(2) When λ1>λ2>0 (that is, m>0), P− given in (24) is defined on (0, λ2
n ) and

(a) P− is decreasing and convex with respect to x0.

(b) P− has x0 =
λ2
n as an asymptote.

(3) When 0 > λ1 > λ2 (that is, m < 0), P− is defined on (0,+∞) and

(a) P− is decreasing and concave with respect to x0.

(b) P− has x1 =
λ1
n as an asymptote.

(4) Define P−(0) = 0, then P− is continuous at the point x0 = 0. In addition to

this, the first four derivatives of the P− at the point x0 = 0 are

P ′
−(0) = −1, P ′′

−(0) = −4m

3
, P ′′′

− (0) = −8

3
m2, P

(4)
− (0) = −16

45
(22m3 − 9mn).

Graphs of P− for different m are shown in Figure 3.

(a) λ1 > λ2 > 0 (m > 0) (b) 0 > λ1 > λ2 (m < 0)

Figure 3: Graphs of the lower Poincaré map P− for different m

Proof (1) We get from (24) that for t > 0

x′0(t) =
λ1 − λ2

n
·
emtΨλ1,λ2(−t)

(eλ1t − eλ2t)2
, x′1(t) = −λ1 − λ2

n
·
emtΨλ1,λ2(t)

(eλ1t − eλ2t)2
. (25)
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Since n > 0, λ1λ2 > 0, λ1 > λ2, we have Ψλ1,λ2(t) > 0, Ψλ1,λ2(−t) > 0. Then
x′0(t) > 0, x′1(t) < 0 for t > 0. This implies that x0(t) is increasing with respect to
t and x1(t) is decreasing with respect to t.

(2) When λ1 > λ2 > 0, we obtain

lim
t→0+

x0(t) = lim
t→0+

x1(t) = 0, lim
t→+∞

x0(t) =
λ2

n
, lim

t→+∞
x1(t) = −∞.

Moreover, by (25) we have

P ′
−(x0) =

x′1(t)

x′0(t)
= −

Ψλ1,λ2(t)

Ψλ1,λ2(−t)
< 0. (26)

Thus P− is decreasing with respect to x0 with a domain given by (0, λ2
n ) and has

x0 =
λ2
n as an asymptote. Direct calculation from (25) gives

P ′′
−(x0) =

x′0x
′′
1 − x′′0x

′
1

(x′0)
3

= −n2e−2mt

λ1 − λ2
·
[
eλ1t − eλ2t

Ψλ1,λ2(−t)

]3
· σ(t),

where σ(t) = emt · Ψλ1,λ2(−t) − Ψλ1,λ2(t). Then σ′(t) = memt · Ψλ1,λ2(−t) > 0. So
P ′′
−(x0) < 0, and P− is convex with respect to x0.
(3) When 0 > λ1 > λ2, by (24), we know that

lim
t→0+

x0(t) = lim
t→0+

x1(t) = 0, lim
t→+∞

x0(t) = −∞, lim
t→+∞

x1(t) =
λ1

n
.

Thus, the domain of P− is (0,+∞) and the asymptote is x1 = λ1
n . Since m < 0,

similarly we have P ′
−(x0) = − Ψλ1,λ2

(t)

Ψλ1,λ2
(−t) < 0, signP ′′

− = −signm, P ′′
−(x0) > 0. So P−

is decreasing and concave with respect to x0.
(4) According to the analysis given in proving statement (2), the continuity of

P− at the point x0 = 0 is obvious. Using an approach similar to that in [18], we
obtain

P−(x0) = −x0 −
2

3
mx20 −

4

9
m2x30 −

2

135
(22m3 − 9mn)x40 + o(x0

4).

Finally we have the first four derivatives of P− at this point.
Figure 4 shows phase portraits of the lower system of (3) when λ1 > λ2 > 0 and

0 > λ1 > λ2, respectively. The domain of P− is (0, λ2
n ) ((0,+∞)) and the range of

P− is (−∞, 0) ((λ1
n , 0)) when λ1 > λ2 > 0 (0 > λ1 > λ2).

Theorem 3 Suppose that system (3) satisfies m2 > 4n > 0 and l < 0. Then
the following statements hold.

(1) If m < 0, system (3) has no periodic orbit.
(2) If m>0 (that is, λ1>λ2>0), − n

3λ2
≤ l<0, system (3) has no periodic orbit.

(3) If m > 0 (that is, λ1 > λ2 > 0), −2m
3 < l < − n

3λ2
, there exist l1, l2 satisfying

−2m
3 < l1 < l2 < − n

3λ2
such that the following statements hold.

(a) If −2m
3 < l < l1, system (3) has a stable limit cycle.

(b) If l = l1, system (3) has a stable crossing critical cycle.
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(a) λ1 > λ2 > 0 (b) 0 > λ1 > λ2

Figure 4: Phase portraits of lower system of (3)

(c) If l1 < l < l2, system (3) has a stable sliding cycle.
(d) If l = l2, system (3) has a sliding homoclinic cycle, which is stable.
(e) If l2 < l < − n

3λ2
, system (3) has no periodic orbit.

(4) If m > 0 (that is, λ1 > λ2 > 0), l ≤ −2m
3 , there are no corresponding l1, l2

that satisfy −∞ < l1 < l2 < −2m
3 . So system (3) has no periodic orbit.

Theorem 4 Suppose that system (3) satisfies m2 > 4n > 0, l > 0. Then the
following statements hold.

(1) If m > 0, system (3) has no periodic orbit.
(2) If m<0 (that is, 0>λ1>λ2), 0<l≤− n

3λ2
, system (3) has no periodic orbit.

(3) If m < 0 (that is, 0 > λ1 > λ2), − n
3λ2

< l < −2m
3 , then there exist l1, l2

satisfying − n
3λ2

< l2 < l1 < −2m
3 such that the following statements hold:

(a) If l1 < l < −2m
3 , system (3) has an unstable limit cycle (crossing periodic

orbit).
(b) If l = l1, system (3) has an unstable crossing critical cycle.
(c) If l2 < l < l1, system (3) has an unstable sliding cycle.
(d) If l = l2, system (3) has a sliding homoclinic cycle, which is unstable.
(e) If − n

3λ2
< l < l2, system (3) has no periodic orbit.

(4) If m < 0 (that is, 0 > λ1 > λ2), l ≥ −2m
3 , then there are no corresponding

l1, l2 that satisfy −2m
3 < l2 < l1 < +∞. So system (3) has no periodic orbit.

2.4 Hopf bifurcation
From [6, 15, 22] we know planar piecewise smooth system will undergo Hopf

bifurcation near singular points of focus-focus (F-F) type, focus-parabolic (F-P)
type, parabolic-parabolic (P-P) type. When the linear system has a focus, the
origin of system (1) is a pseudo-focus of P-P type. We have the following results.
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Theorem 5 Assume that n > m2

4 , l < 0, the following statements hold.
(i) If l+ 2m

3 < 0 and ϵ1 = 2ϵ2 − 3lϵ22 hold, then for 0 < ϵ2 ≪ 1, the P-P focus Pϵ

of system (2) is asymptotically stable.
(ii) If l+ 2m

3 = 0, the origin of system (3) is an asymptotically stable pseudo-focus
of order 4.

(iii) If −2m
3 < l < l1 and ϵ1 = 2ϵ2−3lϵ22 hold, then for 0 < ϵ2 ≪ 1, the P-P focus

Pϵ of system (2) is unstable. Moreover, system (2) has a stable limit cycle and an
unstable limit cycle if ϵ1 > 2ϵ2 − 3lϵ22 and 0 < ϵ2 ≪ 1.

Theorem 6 Assume that n > m2

4 and l > 0, the following statements hold.
(i) If l + 2m

3 > 0 and ϵ1 = 2ϵ2 − 3lϵ22 hold, then for 0 < −ϵ2 ≪ 1, the P-P focus
Pϵ of system (2) is unstable.

(ii) If l+ 2m
3 = 0, the origin of system (3) is an unstable pseudo-focus of order 4.

(iii) If −2m
3 > l > l1 and ϵ1 = 2ϵ2−3lϵ22 hold, then for 0 < ϵ2 ≪ 1, the P-P focus

Pϵ of system (2) is asymptotically stable. Moreover, system (2) has an unstable limit
cycle and a stable limit cycle if ϵ1 < 2ϵ2 − 3lϵ22 and 0 < −ϵ2 ≪ 1.

From the above two theorems, we find that Hopf Bifurcation and critical crossing
bifurcation occur. If l > 0, we shall have similar results. When the linear system
has a node, the origin of system (1) is a pseudo-focus of P-P type. We have similar
bifurcation phenomena.

3 Proof of the Main Results
In this section, we will prove our main results.
We recall some results in [22]. The equilibrium point of linear system is a saddle.

The eigenvalues of A =

(
m n
−1 0

)
are the following λ1 and λ2. Other notations in

the following proposition have similar meanings with Proposition 5.
Proposition 6 Suppose that system (5) satisfies the assumptions n < 0, m ∈ R

and λ1 > 0 > λ2, then the following statements hold.
(1) x0(t) is increasing with respect to t and x1(t) is decreasing with respect to t,

lim
t→0+

x0(t) = lim
t→0+

x1(t) = 0, lim
t→∞

x0(t) =
λ2

n
, lim

t→∞
x1(t) =

λ1

n
.

(2) P− is decreasing with respect to x0, P− is concave (convex) when m<0 (m>0).
(3) When m = 0, P−(x0) = −x0, where x0 ∈ (0, λ2

n ).
(4) Define P−(0) = 0, then P− is continuous at the point x0 = 0. In addition to

this, the first four derivatives of the P− at the point x0 = 0 are

P ′
−(0) = −1, P ′′

−(0) = −4m

3
, P ′′′

− (0) = −8

3
m2, P

(4)
− (0) = −16

45
(22m3 − 9mn).

Remark 1 Easy calculation shows that the process of obtaining P−(x0) has
nothing to do with the sign of n and the fact that whether λ1, λ2 are real roots or not,
it follows that P−(x0) still has the above expression in the case of focus. Moreover,
direct calculation shows that the inverse of P−(x0) has the following expression
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P−1
− (x0) = −x0 −

2

3
mx20 −

4

9
m2x30 −

2

135
(22m3 − 9mn)x40 + o((−x0)

4).

The graph of P−(x0) is similar to that of P−1
− (x0).

3.1 Proof of Theorem 1
(1) By Proposition 1, P+(x0) is convex and decreasing with respect to x0 when

l < 0. Since P ′
+(0) = −1, P+(x0) < −x0 for all x0 ∈ (xB, 0). By Proposition 2,

P−1
− (x0) ≥ −x0 for x0 ∈ (−∞, 0) when m ≤ 0. Then

P+(x0) < P−1
− (x0), x0 ∈ (xB, 0).

It means that the graphs of P+ and P−1
− have no intersection point, thus system (3)

has no periodic orbit.
(2) By Proposition 2, x0 is increasing with respect to s for s ∈ (0, π)

lim
s→0+

x0(s) = 0, lim
s→π−

x0(s) = +∞.

For a given l < 0, there exists a unique s0 ∈ (0, π) such that

− 1

3l
=

β

n sin s0

[
e−mγs0 − (cos s0 −mγ sin s0)

]
. (27)

System (3) has a critical crossing cycle which is equivalent to there exists an
s0 ∈ (0, π) such that x0(s0,m) = − 1

3l and x1(s0,m) = 2
3l , that is 2x0(s0,m) +

x1(s0,m) = 0. Note that l is unknown, we should determine s0. By (19), we have

2e−mγs0φmγ(s0)− emγs0φ−mγ(s0) = 0. (28)

It follows that
2e−mγs0 − cos s0 + 3mγ sin s0 − emγs0 = 0. (29)

Actually, in this case s0 is independent of l. We will give a graph to show that for
suitable values of k = mγ > 0, indeed there exists an s0 ∈ (0, π) such that equation
(29) holds. With the help of computer, we know there exists an s0 ∈ (0, π) such
that the equation holds for suitable values of k > 0. See Figure 5.

2 exp(-k s)-exp(k s)-cos(s)+3 k sin(s) = 0

0 0.5 1 1.5 2 2.5 3

s

0

1

2

3

4

5

6

7

8

9

10

k

Figure 5: The graph of the function in equation (29)
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Set

l1 = − n sin s0
3β[e−mγs0 − (cos s0 −mγ sin s0)]

< 0. (30)

If l = l1, then x1(s0,m) = 2
3l , thus system (3) exists a critical crossing cycle.

If there exists an s1 ∈ (0, π) such that x0(s1,m) = − 1
3l and x1(s1,m) = x−M , then

system (3) will have a sliding homoclinic cycle. Therefore, we need the following
equations

x0(s1,m) =
β

n sin s1

[
e−mγs1 − (cos s1 −mγ sin s1)

]
= − 1

3l
,

x1(s1,m) = − β

n sin s1
[emγs1 − (cos s1 +mγ sin s1)]

=
3l + 2m+

√
(3l + 2m)2 − 36lm

6lm
.

We eliminate l from the above two equations and note that l < 0, we have the
following equation

2mγT

sin s1(1 +m2γ2)
+ emγs1 − 3e−mγs1 + 2 cos s1 − 4mγ sin s1 = 0, (31)

where T = (emγs1 − e−mγs1 − 2mγ sin s1)
2 − (e−mγs1 − cos s1 +mγ sin s1)

2. Analo-
gously, s1 is independent of l. There are suitable values k = mγ > 0, indeed there
exists an s1 such that equation (31) holds. Since it is not easy to solve equation
(31), in what follows we will give another graph to show there exists an s1 ∈ (0, π)
such that equation (31) holds. Let k = mγ > 0, then we have the following equation

2k

sin s1(1 + k2)
[(eks1 − e−ks1 − 2k sin s1)

2 − (e−ks1 − cos s1 + k sin s1)
2]

+ eks1 − 3e−ks1 + 2 cos s1 − 4k sin s1 = 0.

With the help of Matlab, we have Figure 6. It shows that there exists an s1 ∈
(0, π) such that the equation holds for suitable values of k > 0.

2 k/[sin(s) (1+k2)] [(exp(k s)-exp(-k s)-2 k sin(s))2-...-4 k sin(s) = 0

0 0.5 1 1.5 2 2.5 3

s
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k

Figure 6: The graph of the function in equation (31)
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Set

l2 = − n sin s1
3β[e−mγs1 − (cos s1 −mγ sin s1)]

< 0.

If l = l2, then x1(s0,m) = 2
3l , thus system (3) exists a sliding homoclinic cycle.

From Proposition 1 and the above remark, we have

P+(x0)− P−1
− (x0) =

(
l +

2

3
m
)
x20 +

(4
9
m2 − l2

)
x30

+
(
2l3 +

2

135
(22m3 − 9mn)

)
x40 + o((−x0)

4), (32)

where −x0 > 0 is small enough.
If l > −2

3m, then P+(x0)−P−1
− (x0) > 0 when −x0 > 0 is small enough. Suppose

that lower orbits starting at the point B will arrive Σ again at the point C. From
x0(s,m) = − 1

3l and
dx1
dl = dx1

ds
ds
dl , we have the following derivative of x1 with respect

to l,

dx1
dl

= −β(1+mγ sin s · emγs−cos s · emγs)

n(sin s)2
· n(sin s)2

3l2β(1−mγ sin s · e−mγs−cos s · e−mγs)

= − φmγ(s)

3l2φ−mγ(s)
,

where γ = 1√
4n−m2

. Note that mγ > 0, we obtain dx1
dl < 0. Furthermore, note that

xM− < xB, x1 is decreasing with respect to s, then s1 > s0. Since ds
dl > 0, we have

l2 > l1.
Therefore, if −2

3m < l < l1, then x1(s,m) > 2
3l . We conclude from Proposition

2 that
lim

x0→0+
P ′
−(x0) = −1, P ′′

−(x0) < 0.

Then we have P−(x0) < −x0 and xC < 1
3l , where xC is the abscissa of the point C.

It follows that
2

3l
< x1(s,m) <

1

3l
.

This means that C is always on the right of B. Moreover, P−1
− (xB) > xB = P+(xB).

Using the monotonicity and concave properties of P+, P
−1
− , there exists a unique

x10 ∈ ( 2
3l , 0) such that P−1

− (x10) = P+(x
1
0), and

P+(x0) > P−1
− (x0), x0 ∈ (x10, 0),

P+(x0) < P−1
− (x0), x0 ∈

( 2

3l
, x10

)
.

Hence system (3) has a stable limit cycle (crossing periodic orbit), see Figure 7(a).
If l = l1, then

x1(s,m) =
2

3l
.
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This means that C coincides with B. System (3) has a stable crossing critical cycle,
see Figure 7(b).

If l1 < l < l2, we have x−M < x1(s,m) < 2
3l . This means that C is in the sliding

region Σ−
s and is located between M− and B. Based on the analysis about the

sliding vector field Ys, we see that the orbits arriving at Σ−
s and between M− and

B will turn right and move to B along Σ−
s . Therefore, there exists a sliding cycle.

Moreover, it also implies that P−1
− (xB) < xB = P+(xB). The monotonicity and

concave properties of P+, P
−1
− imply that

P+(x0) > P−1
− (x0), x0 ∈

( 2

3l
, 0
)
,

when x0 ∈ (xC ,
2
3l ) and x0 ∈ (x−M , xC), the lower orbits will arrive at Σ−

s and finally
coincide with the sliding cycle when time is large enough. It means that system (3)
has a stable sliding cycle, see Figure 7(c).

If l = l2, then
x1(s,m) = x−M .

This means that C coincides with M−. The sliding homoclinic cycle is stable, see
Figure 7(d).

If l2 < l < 0, then x1(s,m) < x−M . This means that C is always on the left of
M−. Based on the analysis about the sliding vector field Ys, the orbits arriving at
certain points which are located on the left of M− will turn left and move to −∞
along Σ−

s . Therefore, system (3) has neither periodic orbits nor sliding cycles, see
Figure 7(e).

(a) − 2
3m < l < l1 (b) l = l1 (c) l1 < l < l2

(d) l = l2 (e) l2 < l < 0

Figure 7: The topological structures of trajectories in (3) of Theorem 1

(3) We prove this part by contradiction. If there are l1, l2 that satisfy −∞ <
l1 < l2 < −2

3m. That is, when m > 0, l ≤ −2
3m, the orbit of the lower system will

coincide with the orbit of upper system that starts from the point B to the point
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M− on Σ. So system (3) has a periodic orbit in this case. Moreover, system (3) will
undergo critical crossing bifurcation CC2. However, according to the result in [12],
critical crossing bifurcation CC2 will not occur. We reach a contradiction.

Remark 2 In this case, when l = l1, system (3) will undergo critical crossing
bifurcation CC. When l = l2, system (3) will undergo pseudo-homoclinic bifurcation.
The homoclinic loop will pass through the pseudo-saddle M−.

Remark 3 Notice that if we let x → −x, y → y, t → −t, m → −m, l → −l and
n → n, system (3) is invariant. So Theorem 2 is a direct consequence of Theorem 1.

Remark 4 In Theorem 2 it should be noted that if l > 0, then xM+ > xB > 0.
x1 is decreasing with respect to s, s is increasing with respect to l, so s1 < s0 and
l2 < l1. Although we have use the same notations l1 and l2 in our main results,
we have illustrated l1 and l2 in the proof of related theorems. Thus we should not
confuse them.

3.2 Proof of Theorem 3
(1). Suppose that l < 0, by Proposition 1, we have P+(x0) < −x0 for all

x0 ∈ (xB, 0). By Proposition 5, P−1
− (x0) > −x0 for x0 ∈ (−∞, 0) when m < 0.

Then
P+(x0) < P−1

− (x0), x0 ∈ (xB, 0).

It means that the graphs of P+ and P−1
− have no intersection point, thus system (3)

has no periodic orbit when l < 0 and m < 0.
(2) Suppose that m > 0 and − n

3λ2
≤ l < 0. It follows that

λ2

n
=

m−
√
m2 − 4n

2n
≤ − 1

3l
.

This is xA1 ≤ xB. In this case, P+(
2
3l ) > P−1

− ( 2
3l ). In fact, P+(

2
3l ) = − 1

3l ≥
λ2
n > P−1

− ( 2
3l ). It is not difficult to check that − n

3λ2
= −λ1

3 > −2m
3 = −2(λ1+λ2)

3 .

So l > −2m
3 . By (32), P+(x0) > P−1

− (x0) when −x0 > 0 is small enough. The
monotonicity and concave properties of P+, P

−1
− imply that

P+(x0) > P−1
− (x0), x0 ∈

( 2

3l
, 0
)
.

Then the graphs of P+ and P−1
− have no intersection point and system (3) has no

periodic orbit.
(3) Suppose that m > 0 and l < − n

3λ2
. We conclude that − 1

3l = xB < n
λ2

= xA1

and − 1
3l is in the domain of x0. Using the monotonicity of x0(t), there exists a

unique t ∈ (0,+∞) such that

x0(t) =
1

n
·
Ψλ1,λ2(t)

eλ1t − eλ2t
= − 1

3l
.

System (3) has a critical crossing cycle which is equivalent to there exist a t0 > 0
and a constant l1 < 0 such that x0(t0) = − 1

3l1
and x1(t0) =

2
3l1

. That is
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emt0Ψλ1,λ2(−t0)− 2Ψλ1,λ2(t0) = 0. (33)

This implies that t0 is independent of l. In the next section, we will give some
examples to show that for suitable values of m,n, there exists a t0 such that equation
(33) holds. Set

l1 = −n(eλ1t0 − eλ2t0)

3Ψλ1,λ2(t0)
< 0. (34)

If l = l1, then x1(t0) =
2
3l , system (3) has a critical crossing cycle.

Moreover, by Proposition 5, it is easy to know that x1(t) is decreasing with
respect to l,

lim
l→− n

3λ2

x1(t) = lim
x0(t)→ n

λ2

x1(t) = −∞, lim
l→−∞

x1(t) = lim
x0(t)→0

x1(t) = 0. (35)

So there exist a unique t = t0 and a constant l1 satisfying −∞ < l1 < − n
3λ2

such

that x0(t0) = − 1
3l1

and x1(t0) =
2
3l1

.
System (3) will have a sliding homoclinic cycle if there exist a t1 > 0 and a

constant l2 such that x0(t1) = − 1
3l2

and x1(t1, l2) = x−M . Analogously, we eliminate
l from the above two equations, we have

memt1Ψλ1,λ2(−t1)[e
mt1Ψλ1,λ2(−t1)− 2Ψλ1,λ2(t1)]

+ n(eλ1t1 − eλ2t1)[emt1Ψλ1,λ2(−t1)− 3Ψλ1,λ2(t1)] = 0. (36)

Then t1 is independent of l. There are suitable values m and n such that the above
equation holds. The monotonicity of x1(t) with respect to l verifies our results. Set

l2 = −n(eλ1t1 − eλ2t1)

3Ψλ1,λ2(t1)
< 0. (37)

If l = l2, then x1(t1) =
2
3l , system (3) exists a sliding homoclinic cycle. Using the

monotonicity, we know that 0 < t0 < t1, −∞ < l1 < l2 < − n
3λ2

. The remaining
proof of each condition for l can be discussed similarly as the statement of Theorem
1. Here we omit it.

(4) The proof is similar to that of case (3) in Theorem 1. Notice

l1 = −λ1λ2(e
λ1t0 − eλ2t0)

3Φλ1,λ2(t0)
= −2

3
m · λ1λ2(e

λ1t0 − eλ2t0)

2(λ1 + λ2)Φλ1,λ2(t0)
, (38)

we take the objective function

f(t0, λ1, λ2) = λ1λ2(e
λ1t0 − eλ2t0)− 2(λ1 + λ2)(λ1 − λ2 + λ2e

λ1t0 − λ1e
λ2t0). (39)

Under the constraint of equation (33), when t0 = λ1 = λ2 = 0, the objective function
f(t0, λ1, λ2) gets the maximum value of 0 with the help of Matlab. Therefore, when
t0 > 0, λ1 > λ2 > 0, the value of f(t0, λ1, λ2) is less than 0. That is

λ1λ2(e
λ1t0 − eλ2t0)

2(λ1 + λ2)Φλ1,λ2(t0)
< 1, (40)

so it is always true that l1 > −2
3m.
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For l2, if we take the same objective function, we will get the same result under
the constraint of equation (36) as in the case of l1. That is, when t1 = λ1 = λ2 = 0,
the objective function f(t1, λ1, λ2) gets the maximum value of 0. Similarly, it is
always true that l2 > −2

3m.
To sum up, there is no corresponding l1, l2 that satisfy −∞ < l1 < l2 < −2

3m.
That is, when m > 0, l ≤ −2

3m, system (3) has no periodic orbit.
Remark 5 Similarly, if we let x → −x, y → y, t → −t, m → −m, l → −l

and n → n, system (3) is invariant. This shows that system (3) has the symmetry
property, so Theorem 4 is a direct consequence of Theorem 3. In what follows we
give main topological structures of trajectories in (3) of Theorem 4. We need to
notice that there exists a pseudo-saddle M+ in the repulsive sliding region Σ+

s , see
Proposition 4.

O

B B M
+

(a) case (1) (b) case (2) (c) case (3)(a)

(d) case (3)(b) (e) case (3)(c) (f) case (3)(e)

O

B B M
+

(g) case (3)(e) (h) case (4)

Figure 8: The topological structures of trajectories in (3) of Theorem 4

3.3 Proof of Theorem 5
In this part, we shall discuss the existence of Hopf bifurcation. We shall prove

Theorem 5. The main ideas are from [22].
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(i) Denote by P+
ϵ = (1−

√
1−3lϵ1
3l , 0), P−

ϵ = (ϵ2, 0). We know that if ϵ1 = 2ϵ2−3lϵ22,
P+
ϵ coincides with P−

ϵ as one point Pϵ. Pϵ has the same stability as O(0, 0) for the
same reason as we can find in [22]. For −x0 > 0 sufficiently small, we get from
(32) that if l + 2m

3 > 0, we have P+(x0) − P−1
− (x0) > 0. If l + 2m

3 < 0, we have
P+(x0)−P−1

− (x0) < 0. This shows that O(0, 0) is asymptotically stable if l+ 2m
3 < 0

and O(0, 0) is unstable if l + 2m
3 > 0.

(ii) If l + 2m
3 = 0, it follows from (32) that

P+(x0)− P−1
− (x0) =

[
2l3 +

2(22m3 − 9mn)

135

]
x40 + o((−x40))

= −18m(n+ 2m2)

135
x40 + o((−x40)).

Notice that when the linear system has a focus, we have n > m2

4 > 0. We get

−18m(n+2m2)
135 > 0 if m < 0 and −18m(n+2m2)

135 < 0 if m > 0. We conclude that the
origin O(0, 0) is a focus of 4th order. Since l+ 2m

3 = 0, the origin O(0, 0) is unstable
if l > 0 and it is asymptotically stable if l < 0.

(iii) Under the assumptions, Hopf bifurcation occurs similarly to [22]. Hence we
shall get a limit cycle from Hopf bifurcation. For the unperturbed system (3), there
exists a limit cycle due to critical crossing bifurcation. Since this limit cycle is stable
or unstable, it is hyperbolic. Hence it will persist under small perturbation. Finally,
system (2) has two limit cycles with different stability in total. Theorem 6 can be
proved similarly.

4 Some Examples
In this section, we will give some examples to show that the conditions in The-

orems 1 and 3 hold.
Example 1 Let m = 1, n = 5

4 , then n > m2

4 , β =
√
4n−m2

2 = 1, γ = 1
2β = 1

2 ,

k = mγ = 1
2 . (29) is rewritten as

2e−
s0
2 − cos s0 +

3

2
sin s0 − e

s0
2 = 0. (41)

There is a unique root s0 ≈ 1.84 for equation (41). It follows that l1 ≈ −0.35.
Therefore, we have l1 > −2m

3 .
For k = mγ = 1

2 , equation (31) is rewritten as

1
5
4 sin s1

[
(e

1
2
s1 − e−

1
2
s1 − sin s1)

2 −
(
e−

1
2
s1 − cos s1 +

1

2
sin s1

)2]
+e

1
2
s1 − 3e−

1
2
s1 + 2 cos s1 − 2 sin s1 = 0. (42)

Using Matlab, we get a unique root s1 ≈ 2.09 ∈ (0, π) of equation (42). Moreover,
s1 > s0 ≈ 1.84. Now
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l2 =
−n sin s1

3β[(e−
s1
2 )− (cos s1 − 1

2 sin s1)]
≈ −0.28.

It follows that 0 > l2 > l1.
Example 2 Let m = 2, n = 2, then n > m2

4 , β =
√
4n−m2

2 = 1, γ = 1
2β = 1

2 ,
k = mγ = 1. Similarly, there is a unique root s0 ≈ 1.00 ∈ (0, π) of equation (29).
We have l1 ≈ −0.84. Equation (31) is

(es1 − e−s1 − 2 sin s1)
2 − (e−s1 − cos s1 + sin s1)

2 + es1 sin s1

− 3e−s1 sin s1 + 2 sin s1 cos s1 − 4(sin s1)
2 = 0.

With the help of computer, we get a unique root s1 ≈ 1.19 for the above equation.
Note that l2 ≈ −0.72, this means that l1 < l2 < 0 holds.

Example 3 Let m = 5, n = 6, m2 > 4n > 0. Then λ1 = 3, λ2 = 2, λ1 > λ2 > 0,
and − n

3λ2
= −1. Then (33) is

2 + 7e3t0 − 8e2t0 − e5t0 = 0. (43)

With the help of computer, we obtain a unique root t0 ≈ 0.41 > 0 for the above
equation. Substituting t0 into (34), we have l1 ≈ −2.23. (36) is

5(e5t1 + 2e2t1 − 3e3t1)(8e2t1 + e5t1 − 7e3t1 − 2)

+6(e3t1 − e2t1)(e5t1 + 11e2t1 − 9e3t1 − 3) = 0. (44)

With the help of computer, we obtain a unique root t1 ≈ 0.51 > 0 for the above
equation (44). Substituting t1 into (37), we have l2 ≈ −1.92. Indeed, we have
0 < t0 < t1, −∞ < l1 < l2 < − n

3λ2
. It follows that l2 > l1 > −2m

3 ≈ −3.33.

Example 4 Let m = 8, n = 15, m2 > 4n > 0. Then λ1 = 5, λ2 = 3,
λ1 > λ2 > 0, and − n

3λ2
= −5

3 . Then (33) is

4− 13e3t0 + 11e5t0 − 2e8t0 = 0. (45)

With the help of computer, we obtain a unique root t0 ≈ 0.26 > 0 for the above
equation. Substituting t0 into (34), we have l1 ≈ −3.54. (36) is

8(2e8t1 + 3e3t1 − 5e5t1)(2e8t1 + 13e3t1 − 11e5t1 − 4)

+15(e5t1 − e3t1)(2e8t1 + 18e3t1 − 14e5t1 − 6) = 0. (46)

With the help of computer, we obtain a unique root t1 ≈ 0.32 > 0 for the above
equation (46). Substituting t1 into (37), we have l2 ≈ −3.08. Indeed, we have
0 < t0 < t1, −∞ < l1 < l2 < − n

3λ2
. It follows that l2 > l1 > −2m

3 ≈ −5.33.

5 Conclusions
In this paper we provide a bifurcation analysis for a planar PWS system which

consists of a quadratic Hamiltonian system and a linear system. If its linear system
has a focus, we prove that PWS system (3) has a periodic orbit and a sliding cycle.
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Moreover, PWS system (2) will have two limit cycles and undergo pseudo-homoclinic
bifurcation and critical crossing bifurcation CC.

If the linear system has a node, we also find that this PWS system will have a
sliding cycle and undergo pseudo-homoclinic bifurcation and critical crossing bifur-
cation CC. Although we have some similar bifurcation phenomena when the linear
system has a focus or a node. As far as we know, the results that we see a sliding
cycle in a PWS system with a node are new.

Compared with some existing works, although pseudo-homoclinic bifurcation
and sliding cycle were mentioned in [14] and [21], we have only seen them in a PWS
system whose subsystem has a focus (see e.g. [10, 13, 28, 29]). We don’t see them
in a piecewise smooth system whose subsystem has a node (see e.g. [18] and [27]).
The first reason for there do not exist sliding phenomena in paper [18] is that the
trajectories are controlled by the invariant straight lines of the two linear subsystems.
Moreover, there does not exist a tangency point. A tangency point is usually an
exit point for a sliding cycle. This implies that even if the trajectories slide on the
discontinuity line, we cannot get a sliding cycle.

In [18], the authors did not find a sliding cycle. However, when the PWS system
has a node, we have a sliding cycle. On one hand, our sliding set is an infinite interval.
Our trajectories have more freedom. On the other hand, the upper quadratic system
has a visible tangency point on the discontinuity line, which ensures that the orbits
sliding on the discontinuity line can exit from there. Finally, our PWS system has a
pseudo-saddle which is independent of the parameter n. These reasons improve the
possibility of sliding phenomena, pseudo-homoclinic bifurcation and critical crossing
cycle bifurcation CC.

Another thing we need mention is that as we can see from [11], when a subsystem
of PWS system has a focus on the discontinuity line, three limit cycles can bifurcate
from this PWS system, even if the subsystem is a linear system. Hence if we choose
other perturbation such that the perturbed system has a focus on the discontinuity
line, it is possible for this PWS to have three limit cycles.

Acknowledgements We would like to thank the referee for their valuable sugges-
tions which improve the presentation of the paper.
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