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Abstract

The theme of this article is to provide some sufficient conditions for the
asymptotic property and oscillation of all solutions of third-order half-linear
differential equations with advanced argument of the form(

r2(t)((r1(t)(y
′(t))α)′)β

)′
+ q(t)yγ (σ(t)) = 0, t ≥ t0 > 0,

where
∫∞

r
− 1

α
1 (s)ds < ∞ and

∫∞
r
− 1

β

2 (s)ds < ∞. The criteria in this paper
improve and complement some existing ones. The results are illustrated by
two Euler-type differential equations.
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1 Introduction

In 2019, Chatzarakis ([1]) offered sufficient conditions for the oscillation and

asymptotic behavior of second-order half-linear differential equations with advanced

argument of the form (
r(y′)α

)′
(t) + q(t)yα (σ(t)) = 0,

where
∫∞

r−
1
α (s)ds < ∞.

In 2018, Džurina ([2]) presented new oscillation criteria for third-order delay

differential equations with noncanonical operators of the form(
r2
(
r1y

′)′ )′(t) + q(t)y (τ(t)) = 0, t ≥ t0 > 0.
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In this paper, we consider the oscillatory and asymptotic behavior of solutions

to the third-order half-linear advanced differential equations of the form(
r2(t)((r1(t)(y

′(t))α)′)β
)′
+ q(t)yγ (σ(t)) = 0, t ≥ t0 > 0. (1.1)

Throughout the whole paper, we assume that

(H1) α, β and γ are quotients of odd positive integers;

(H2) the functions r1, r2 ∈ C ([t0,∞), (0,∞)) are of noncanonical type (see

Trench [2]), that is,

π1 (t0) :=

∫ ∞

t0

r
− 1

α
1 (s)ds < ∞, π2 (t0) :=

∫ ∞

t0

r
− 1

β

2 (s)ds < ∞;

(H3) q ∈ C ([t0,∞), [0,∞)) does not vanish eventually;

(H4) σ ∈ C1 ([t0,∞), (0,∞)), σ(t) ≥ t, σ′(t) ≥ 0 for all t ≥ t0.

By a solution of equation (1.1), we mean a nontrivial real valued function y ∈
C([Tx,∞),R), Tx ≥ t0, which has the property that y, r1(y

′)α, r2
(
(r1(y

′)α)′
)β

are

continuous and differentiable for all t ∈ [Tx,∞), and satisfy (1.1) on [Tx,∞). We

only need to consider those solutions of (1.1) which exist on some half-line [Tx,∞)

and satisfy the condition

sup{|y(t)| : T ≤ t < ∞} > 0

for any T ≥ Tx. In the sequel, we assume that (1.1) possesses such solutions.

As is customary, a solution y(t) of (1.1) is called oscillatory if it has arbitrary

large zeros on [Tx,∞). Otherwise, it is called nonoscillatory. Equation (1.1) is said

to be oscillatory if all its solutions oscillate.

Following classical results of Kiguradze and Kondrat’ev [3], we say that (1.1) has

property A if any solution y of (1.1) is either oscillatory or satisfies lim
t→∞

y(t) = 0,

which is also called that equation (1.1) is almost oscillatory.

For brevity, we define operators

L0y = y, L1y = r1(y
′)α, L2y = r2

(
(r1(y

′)α)′
)β
, L3y =

(
r2((r1(y

′)α)′)β
)′
.

Also, we use the symbols ↑ and ↓ to indicate whether the function is nondecreas-

ing and nonincreasing, respectively.

2 Main Results

As usual, all functional inequalities considered in this paper are supposed to hold

eventually, that is, they are satisfied for all t large enough.

Without loss of generality, we need only to consider eventually positive solutions

of (1.1), since if y satisfies (1.1), so does −y.
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The following lemma on the structure of possible nonoscillatory solutions of (1.1)

plays a crucial role in the proofs of the main results.

Lemma 2.1 Assume (H1)-(H4), and that y is an eventually positive solution

of equation (1.1). Then there exists a t1 ∈ [t0,∞) such that y eventually belongs to

one of the following classes:

S1 =
{
y : y > 0, L1y < 0, L2y < 0, L3y < 0

}
;

S2 =
{
y : y > 0, L1y < 0, L2y > 0, L3y < 0

}
;

S3 =
{
y : y > 0, L1y > 0, L2y > 0, L3y < 0

}
;

S4 =
{
y : y > 0, L1y > 0, L2y < 0, L3y < 0

}
,

for t ≥ t1.

The proof is straightforward and hence is omitted.

Now, we will establish one-condition criteria of property A of (1.1).

Theorem 2.1 Assume (H1)-(H4). If∫ ∞

t0

r
− 1

α
1 (v)

(∫ v

t0

r
− 1

β

2 (u)

(∫ u

t0

q(s)ds

) 1
β

du

) 1
α

dv = ∞, (2.1)

then (1.1) has property A.

Proof First of all, it is important to note that if (H2) and (2.1) hold, then∫ ∞

t0

r
− 1

β

2 (u)

(∫ u

t0

q(s)ds

) 1
β

du =

(∫ ∞

t0

q(s)ds

) 1
β

= ∞, (2.2)

that is, ∫ ∞

t0

q(s)ds = ∞. (2.3)

Now, suppose on the contrary that y is a nonoscillatory solution of (1.1) on

[t0,∞). Without loss of generality, we may assume that t1 ≥ t0 such that y(t) > 0

and y(σ(t)) > 0 for t ≥ t1. Using Lemma 2.1, we know that y eventually belongs to

one of the four classes in Lemma 2.1. We will consider each of them separately.

Assume y ∈ S1. Then from L1y < 0, that is, r1(y
′)α < 0, we see that y′ < 0 and

y is decreasing. On the other words, there exists a finite constant ℓ ≥ 0 such that

lim
t→∞

y(t) = ℓ. Obviously, lim
t→∞

y (σ(t)) = ℓ, too.

We claim that ℓ = 0. Assume on the contrary that ℓ > 0. Then there exists a

t2 ≥ t1 such that y(t) ≥ y(σ(t)) ≥ ℓ for t ≥ t2. Thus,

−L3y(t) = q(t)yγ(σ(t)) ≥ ℓγ · q(t), (2.4)

for t ≥ t2. Integrating (2.4) from t2 to t, we have
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−L2y(t) ≥ −L2y(t2) + ℓγ
∫ t

t2

q(s)ds ≥ ℓγ
∫ t

t2

q(s)ds.

Therefore,

− (L1y)
′ (t) ≥ ℓ

γ
β r

− 1
β

2 (t)

(∫ t

t2

q(s)ds

) 1
β

. (2.5)

Integrating (2.5) again from t2 to t, we have

−L1y(t) ≥ −L1y(t2) + ℓ
γ
β

∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

q(s)ds

) 1
β

du

≥ ℓ
γ
β

∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

q(s)ds

) 1
β

du,

that is,

−y′(t) ≥ ℓ
γ
αβ r

− 1
α

1 (t)

(∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

q(s)ds

) 1
β

du

) 1
α

. (2.6)

Integrating (2.6) from t2 to t, and taking account of (2.1), we have

y(t) ≤ y(t2)− ℓ
γ
αβ

∫ t

t2

r
− 1

α
1 (v)

(∫ v

t2

r
− 1

β

2 (u)

(∫ u

t2

q(s)ds

) 1
β

du

) 1
α

dv → −∞,

as t → ∞, which contradicts the positivity of y. Thus, lim
t→∞

y(t) = 0.

Assume y ∈ S2. Proceeding the same steps as above, we arrive at (2.4). Inte-

grating (2.4) from t2 to t, we have

L2y(t) ≤ L2y(t2)− ℓγ
∫ t

t2

q(s)ds → −∞, t → ∞, (2.7)

where we used (2.3). This contradicts the positivity of L2y and thus lim
t→∞

y(t) = 0.

Assume y ∈ S3. We define a function

w(t) :=
L2y(t)

yγ(σ(t))
, t ≥ t2.

Obviously, w(t) is positive for t ≥ t2. Using (1.1), we obtain

w′(t) =
(L2y)

′(t)

yγ(σ(t))
− L2y(t) · γ · yγ−1(σ(t)) · y′(σ(t)) · σ′(t)

y2γ(σ(t))

=
L3y(t)

yγ(σ(t))
− γ

L2y(t) · y′(σ(t)) · σ′(t)

yγ+1(σ(t))

≤ L3y(t)

yγ(σ(t))
= −q(t).
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Integrating the above inequality from t2 to t, and taking (2.3) into account, we have

w(t) ≤ w(t2)−
∫ t

t2

q(s)ds → −∞, t → ∞.

This contradicts the positivity of w. Hence, S3 = Ø.

Assume y ∈ S4. Considering that y is increasing, and integrating (1.1) from t2
to t, we obtain

−L2y(t) = −L2y(t2) +

∫ t

t2

q(s)yγ(σ(s))ds ≥ yγ(σ(t2))

∫ t

t2

q(s)ds,

that is,

−(L1y)
′(t) ≥ k

1
β r

− 1
β

2 (t)

(∫ t

t2

q(s)ds

) 1
β

, (2.8)

where k := yγ(σ(t2)). Integrating (2.8) from t2 to t and using (2.2), we have

L1y(t) ≤ L1y(t2)− k
1
β

∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

q(s)ds

) 1
β

du → −∞, t → ∞. (2.9)

This contradicts the positivity of L1y. Thus, S4 = Ø. The proof is complete.

Remark 2.1 It is clear that any nonoscillatory solution in Theorem 2.1 even-

tually belongs to either S1 or S2 in Lemma 2.1, that is, S3 = S4 = Ø.

Next, we formulate some additional information about the monotonicity of so-

lutions in S2 or S1.

Lemma 2.2 Assume (H1)-(H4). Let y ∈ S2 in Lemma 2.1 on [t1,∞) for some

t1 ≥ t0, and define a function

π(t) :=

∫ ∞

t
r
− 1

α
1 (s)π

1
α
2 (s)ds. (2.10)

If ∫ ∞

t0

q(s)πγ(σ(s))ds = ∞, (2.11)

then there exists a t2 ≥ t1 such that

y(t)

π(t)
↓ 0, (2.12)

for t ≥ t2.

Proof Let y ∈ S2 in Lemma 2.1 on [t1,∞) for some t1 ≥ t0. First, we prove

that (2.11) implies

lim
t→∞

y(t)

π(t)
= 0. (2.13)

Using I’Hospital rule, we obtain
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lim
t→∞

y(t)

π(t)
= −

(
lim
t→∞

L1y(t)

π2(t)

) 1
α

=
(
lim
t→∞

L2y(t)
) 1

αβ
.

Taking the decrease of L2y(t) into account, there exists a finite constant ℓ ≥ 0 such

that lim
t→∞

L2y(t) = ℓ. We claim that ℓ = 0. If not, then L2y(t) ≥ ℓ > 0, and

y(t) ≥ ℓ
1
αβ π(t) eventually, for t ≥ t2 and t2 ∈ [t1,∞). Using this relation in (1.1),

we obtain

−L3y(t) ≥ ℓ
γ
αβ q(t)πγ(σ(t)), t ≥ t2.

Integrating the above inequality from t2 to t, we have

L2y(t) ≤ L2y(t2)− ℓ
γ
αβ

∫ t

t2

q(s)πγ(σ(s))ds → −∞, t → ∞,

which is a contradiction. Thus (2.13) holds and consequently, also

lim
t→∞

y(t) = lim
t→∞

L1y(t) = 0, (2.14)

due to the decreasing properties of π(t) and π2(t), respectively. Considering the

monotonicity of L2y together with (2.14) yields

−L1y(t) = L1y(∞)− L1y(t) =

∫ ∞

t
r
− 1

β

2 (s)(L2y(s))
1
β ds ≤ π2(t)(L2y(t))

1
β ,

hence, there exists a t3 ≥ t2 such that(
L1y

π2

)′
(t) =

(L2y(t))
1
β · π2(t) + L1y(t)

r
1
β

2 (t) · π2
2(t)

≥ 0, t ≥ t3.

Then L1y
π2

is increasing on [t3,∞). Using it together with (2.14) leads to

y(t) = y(t)− y(∞) = −
∫ ∞

t

π
1
α
2 (s)(L1y(s))

1
α

r
1
α
1 (s)π

1
α
2 (s)

ds ≤ −
(
L1y(t)

π2(t)

) 1
α

π(t).

Therefore, there exists a t4 ≥ t3 such that( y
π

)′
(t) =

(L1y(t))
1
απ(t) + y(t)π

1
α
2 (t)

r
1
α
1 (t)π2(t)

≤ 0, t ≥ t4,

and we conclude that y/π is decreasing on [t4,∞). Hence, (2.12) holds. The proof

is complete.

Corollary 2.1 Assume (H1)-(H4). Let y ∈ S2 in Lemma 2.1 on [t1,∞) for

some t1 ≥ t0, and a function π(t) be defined by (2.10). If (2.11) holds, then there

exists a t2 ≥ t1 such that

y(t) ≤ kπ(t), (2.15)

for every constant k > 0 and t ≥ t2.
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Lemma 2.3 Assume (H1)-(H4). Let y ∈ S1 in Lemma 2.1 on [t1,∞) for some

t1 ≥ t0. If (2.11) holds, then there exists a t2 ≥ t1 such that

y(t)

π1(t)
↑, (2.16)

for t ≥ t2.

Proof Let y ∈ S1 in Lemma 2.1 on [t1,∞) for some t1 ≥ t0. It follows from the

monotonicity of L1y that, for ℓ ≥ t,

y(t) ≥ −
∫ ℓ

t
r
− 1

α
1 (s)(L1y(s))

1
αds ≥ −(L1y(t))

1
α

∫ ℓ

t
r
− 1

α
1 (s)ds.

Letting ℓ to ∞, we have

y(t) ≥ −(L1y(t))
1
α · π1(t). (2.17)

From (2.17), we conclude that y/π1 is nondecreasing, since(
y

π1

)′
(t) =

(L1y(t))
1
απ1(t) + y(t)

r
1
α
1 (t)π2

1(t)
≥ 0. (2.18)

The proof is complete.

Theorem 2.2 Assume (H1)-(H4). If∫ ∞

t0

r
− 1

α
1 (v)

(∫ v

t0

r
− 1

β

2 (u)

(∫ u

t0

πγ(σ(s))q(s)ds

) 1
β

du

) 1
α

dv = ∞, (2.19)

then (1.1) has property A.

Proof Suppose on the contrary and assume that y is a nonoscillatory solution

of (1.1) on [t0,∞). Without loss of generality, we may assume that y(t) > 0 and

y(σ(t)) > 0 for t ∈ [t1,∞) ⊆ [t0,∞). Then we obtain that y eventually belongs to

one of the four classes in Lemma 2.1. We will consider each of them separately.

Assume y ∈ S1. Note that (2.3) and (2.11) are necessary for (2.19) to be valid.

In fact, since the function
∫ t
t0
πγ(σ(s))q(s)ds is unbounded due to (H2) and π′ < 0,

(2.3) and (2.11) must hold. Furthermore, by (2.19), we see that (2.1) holds, and we

also obtain∫ ∞

t0

r
− 1

α
1 (v)

(∫ v

t0

r
− 1

β

2 (u)

(∫ u

t0

πγ
1 (σ(s))q(s)ds

) 1
β

du

) 1
α

dv = ∞. (2.20)

Then using Lemma 2.3, it follows from (2.16) that there exist c > 0 and t2 ≥ t1 such

that y(t) ≥ cπ1(t) for t ≥ t2. Substituting this inequality into (1.1), we obtain

−(L2y)
′(t) = q(t)yγ(σ(t)) ≥ cγq(t)πγ

1 (σ(t)), t ≥ t2. (2.21)

Integrating (2.21) from t2 to t, we have
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−L2y(t) ≥ −L2y(t2) + cγ
∫ t

t2

q(s)πγ
1 (σ(s))ds ≥ cγ

∫ t

t2

πγ
1 (σ(s))q(s)ds,

that is,

−(L1y)
′(t) ≥ c

γ
β r

− 1
β

2 (t)

(∫ t

t2

πγ
1 (σ(s))q(s)ds

) 1
β

.

Integrating the above inequality from t2 to t, we have

−L1y(t) ≥ −L1y(t2) + c
γ
β

∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

πγ
1 (σ(s))q(s)ds

) 1
β

du

≥ c
γ
β

∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

πγ
1 (σ(s))q(s)ds

) 1
β

du,

that is,

−y′(t) ≥ c
γ
αβ r

− 1
α

1 (t)

(∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

πγ
1 (σ(s))q(s)ds

) 1
β

du

) 1
α

. (2.22)

Integrating (2.22) from t2 to t, and taking (2.20) into account, we have

y(t) ≤ y(t2)− c
γ
αβ

∫ t

t2

r
− 1

α
1 (v)

(∫ v

t2

r
− 1

β

2 (u)

(∫ u

t2

πγ
1 (σ(s))q(s)ds

) 1
β

du

) 1
α

dv

→ −∞, t → ∞,

which contradicts the positivity of y. Thus, S1 = Ø.

Assume y ∈ S2. Noting (2.1) is necessary for the validity of (2.20), we have

lim
t→∞

y(t) = 0.

Finally, noting (2.3) and (2.2) are necessary for the validity of (2.19), it follows

immediately from Remark 2.1 that S3 = S4 = Ø. The proof is complete.

Theorem 2.3 Assume (H1)-(H4). If

lim sup
t→∞

π
γ
β

1 (σ(t))

∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du > 1, (2.23)

for any t1 ≥ t0, and γ = αβ, then (1.1) has property A.

Proof On the contrary, suppose that y is a nonoscillatory solution of (1.1) on

[t0,∞). Without loss of generality, we may assume that y(t) > 0 and y(σ(t)) > 0

for t ∈ [t1,∞) ⊆ [t0,∞). Then we obtain that y eventually belongs to one of the

four classes in Lemma 2.1. We will consider each of them separately.

First, note that (2.23) along with (H2) implies (2.3) and (2.2). Then, using

Theorem 2.1, we get S3 = S4 = Ø. Moreover, if y ∈ S2, then lim
t→∞

y(t) = 0.
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Next, we consider the class S1. Assume y ∈ S1. Integrating (1.1) from t1 to t

and using the decrease of y, we have

−L2y(t) = −L2y(t1) +

∫ t

t1

q(s)yγ(σ(s))ds ≥
∫ t

t1

q(s)yγ(σ(s))ds

≥ yγ(σ(t))

∫ t

t1

q(s)ds, (2.24)

that is,

−(L1y)
′(t) ≥ y

γ
β (σ(t))r

− 1
β

2 (t)

(∫ t

t1

q(s)ds

) 1
β

. (2.25)

Integrating the above inequality from t1 to t, we have

−L1y(t) ≥ −L1y(t1) +

∫ t

t1

y
γ
β (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

≥ y
γ
β (σ(t))

∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du. (2.26)

Similar to the proof of Lemma 2.3, we obtain (2.17), which along with (2.26) leads

to

−L1y(t) ≥ −(L1y)
γ
αβ (σ(t))π

γ
β

1 (σ(t))

∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

≥ −(L1y)
γ
αβ (t)π

γ
β

1 (σ(t))

∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du.

Taking γ = αβ into account, the above inequality becomes

−L1y(t) ≥ −L1y(t)π
γ
β

1 (σ(t))

∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du,

which results in a contradiction

lim sup
t→∞

π
γ
β

1 (σ(t))

∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du ≤ 1.

Thus, S1 = Ø. The proof is complete.

Theorem 2.4 Assume (H1)-(H4) and suppose that (2.1) holds. If

lim sup
t→∞

π
γ
β

1 (σ(t))

∫ t

t0

r
− 1

β

2 (u)

(∫ u

t0

q(s)ds

) 1
β

du > 1, (2.27)

and γ = αβ, then (1.1) has property A.

Proof Using Theorem 2.1, we have S3=S4=Ø, and if y∈S2, then lim
t→∞

y(t)=0.
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Now, we only need to consider the class S1. Assume y ∈ S1. Similar to the proof

of Theorem 2.3, we arrive at

−L2y(t) ≥ −L2y(t1) + yγ(σ(t))

∫ t

t1

q(s)ds

≥ −L2y(t1)− yγ(σ(t))

∫ t1

t0

q(s)ds+ yγ(σ(t))

∫ t

t0

q(s)ds.

Since lim
t→∞

y(t) = 0, there exists a t2 > t1 such that

−L2y(t1)− yγ(σ(t))

∫ t1

t0

q(s)ds > 0,

for t ≥ t2. Thus, for t ≥ t2, we have

−L2y(t) ≥ yγ(σ(t))

∫ t

t0

q(s)ds.

Integrating the above inequality from t2 to t, we have

−L1y(t) ≥− L1y(t2)− y
γ
β (σ(t))

∫ t2

t0

r
− 1

β

2 (u)

(∫ u

t0

q(s)ds

) 1
β

du

+ y
γ
β (σ(t))

∫ t

t0

r
− 1

β

2 (u)

(∫ u

t0

q(s)ds

) 1
β

du.

There also exists a t3 > t2 such that

−L1y(t2)− y
γ
β (σ(t))

∫ t2

t0

r
− 1

β

2 (u)

(∫ u

t0

q(s)ds

) 1
β

du > 0,

for t ≥ t3. Thus, for t ≥ t3, we obtain

−L1y(t) ≥ y
γ
β (σ(t))

∫ t

t0

r
− 1

β

2 (u)

(∫ u

t0

q(s)ds

) 1
β

du.

The rest of proof is similar and hence we omit it. Finally, we obtain S1 = Ø. The

proof is complete.

Next, we will establish various oscillation criteria for (1.1).

Theorem 2.5 Assume (H1)-(H4). If

lim inf
t→∞

∫ σ(t)

t
r
− 1

α
1 (v)

(∫ v

t0

r
− 1

β

2 (u)

(∫ u

t0

q(s)ds

) 1
β

du

) 1
α

dv >
1

e
(2.28)

and

lim inf
t→∞

∫ σ(σ(t))

t
r
− 1

α
1 (v)

∫ σ(t)

v
r
− 1

β

2 (u)

(∫ σ(t)

u
q(s)ds

) 1
β

du


1
α

dv >
1

e
(2.29)

hold, and moreover, αβ = γ, then (1.1) is oscillatory.
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Proof Suppose that y is a nonoscillatory solution of (1.1) on [t0,∞). Without

loss of generality, we may assume that t1 ≥ t0 such that y(t) > 0 and y(σ(t)) > 0

for t ≥ t1. Then we obtain that y eventually belongs to one of the four classes in

Lemma 2.1. In following, we consider each of these classes separately.

Assume y ∈ S1. Similar to the proof of Theorem 2.3, we arrive at (2.26), that is

y′ +

r
− 1

α
1 (t)

(∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

) 1
α

 y
γ
αβ (σ(t)) ≤ 0.

Using αβ = γ, the above inequality becomes

y′ +

r
− 1

α
1 (t)

(∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

) 1
α

 y(σ(t)) ≤ 0. (2.30)

However, it is well-known (see, e.g., [5, Theorem 2.4.1]) that condition (2.28) implies

the oscillation of (2.30). Thus, it contradicts our initial assumption. Then S1 = Ø.

Assume y ∈ S2. Integrating (1.1) from t to u (t < u), and using the monotonicity

of y, we obtain

L2y(t) ≥ L2y(t)− L2y(u) =

∫ u

t
q(s)yγ(σ(s))ds ≥ yγ(σ(u))

∫ u

t
q(s)ds,

that is,

(L1y)
′(t) ≥ y

γ
β (σ(u))r

− 1
β

2 (t)

(∫ u

t
q(s)ds

) 1
β

.

Integrating the above inequality from t to u, we have

−L1y(t) ≥ y
γ
β (σ(u))

∫ u

t
r
− 1

β

2 (x)

(∫ u

x
q(s)ds

) 1
β

dx,

that is,

−y′(t) ≥ y
γ
αβ (σ(u))r

− 1
α

1 (t)

(∫ u

t
r
− 1

β

2 (x)

(∫ u

x
q(s)ds

) 1
β

dx

) 1
α

.

Taking γ = αβ into account, we have

−y′(t) ≥ y(σ(u))r
− 1

α
1 (t)

(∫ u

t
r
− 1

β

2 (x)

(∫ u

x
q(s)ds

) 1
β

dx

) 1
α

. (2.31)

Setting u = σ(t) in (2.31), we get

−y′(t) ≥ y(σ(σ(t)))r
− 1

α
1 (t)

∫ σ(t)

t
r
− 1

β

2 (x)

(∫ σ(t)

x
q(s)ds

) 1
β

dx


1
α

,
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that is,

y′(t) + y(σ(σ(t)))r
− 1

α
1 (t)

∫ σ(t)

t
r
− 1

β

2 (x)

(∫ σ(t)

x
q(s)ds

) 1
β

dx


1
α

≤ 0. (2.32)

However, condition (2.29) implies the oscillation of (2.32), (see, e.g., [5, Theorem

2.4.1]). It means that (1.1) cannot have a positive solution y in the class S2, which

is a contradiction. Thus, S2 = Ø.

Finally, noting that (2.1) is necessary for the validity of (2.28), it follows imme-

diately from Remark 2.1 that S3 = S4 = Ø. The proof is complete.

The following results are simple consequences of the above theorem and Corollary

2.1.

Theorem 2.6 Assume (H1)-(H4). If γ = αβ, (2.11) and (2.28) hold, then all

positive solutions of (1.1) satisfy (2.15) for any k > 0 and t large enough.

Theorem 2.7 Assume (H1)-(H4). If γ = αβ, (2.19) and (2.29) hold, then (1.1)

is oscillatory.

Remark 2.2 If

lim inf
t→∞

∫ σ(t)

t
r
− 1

α
1 (v)

∫ σ(t)

v
r
− 1

β

2 (u)

(∫ σ(t)

u
q(s)ds

) 1
β

du


1
α

dv >
1

e
, (2.33)

holds, we have the validity of (2.29). Thus, the conclusions of Theorems 2.5 and 2.7

remain valid if condition (2.29) is replaced by (2.33).

Theorem 2.8 Assume (H1)-(H4). If γ = αβ, (2.23) and (2.33) hold, then (1.1)

is oscillatory.

Theorem 2.9 Assume (H1)-(H4). If γ = αβ, (2.1), (2.27) and (2.33) hold,

then (1.1) is oscillatory.

In order to prove the following conclusions, we recall an auxiliary result which

is taken from Wu et al. [6,Lemma2.3].

Lemma 2.4[6, Lemma 2.3] Let g(u) = Au − B(u − C)
α+1
α , where B > 0, A and

C are constants, and α is a quotient of odd positive numbers. Then g attains its

maximum value on R at u∗ = C + ( αA
(α+1)B )α and

max
u∈R

g(u) = g(u∗) = AC +
αα

(α+ 1)α+1
· A

α+1

Bα
, (2.34)

for t ≥ t2.

Theorem 2.10 Assume (H1)-(H4) and γ = αβ. If (2.3) and (2.33) hold, and

also there exists a function ρ ∈ C1([t0,∞), (0,∞)) such that
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lim sup
t→∞

{
πα
1 (t)

ρ(t)

∫ t

T

(
ρ(u)r

− 1
β

2 (u)

(∫ u

T
q(s)ds

) 1
β
(
π1(σ(u))

π1(u)

)α

−r1(u)(ρ
′(u))α+1

(α+1)α+1ρα(u)

)
du

}
>1,

(2.35)

for any T ∈ [t0,∞), then (1.1) is oscillatory.

Proof On the contrary, suppose that y is a nonoscillatory solution of (1.1) on

[t0,∞). Without loss of generality, we may assume that y(t) > 0 and y(σ(t)) > 0

for t ∈ [t1,∞) ⊆ [t0,∞). Then we know that y eventually belongs to one of the four

classes in Lemma 2.1. We will consider each of them separately.

Assume y ∈ S1. Define the generalized Riccati substitution

w := ρ

L1y

y
γ
β

+
1

π
γ
β

1

 = ρ

(
L1y

yα
+

1

πα
1

)
on [t1,∞). (2.36)

Taking (2.17) into account, we see that w ≥ 0 on [t1,∞). Differentiating (2.36), we

arrive at

w′ =
ρ′

ρ
w + ρ

(L1y)
′

yα
− αρ

(L1y) · y′

yα+1
+ ρ(−α)

−1

πα+1
1 · r

1
α
1

=
ρ′

ρ
w + ρ

(L1y)
′

yα
− αρ

r
1
α
1

(
L1y

yα

)α+1
α

+
αρ

r
1
α
1 πα+1

1

=
ρ′

ρ
w + ρ

(L1y)
′

yα
− α

(r1ρ)
1
α

(
w − ρ

πα
1

)α+1
α

+
αρ

r
1
α
1 πα+1

1

. (2.37)

Similar to the proof of Theorem 2.3, we arrive at (2.25). Using (2.16) in (2.25), we

deduce that the inequality

(L1y)
′(t) ≤ −y

γ
β (σ(t))r

− 1
β

2 (t)

(∫ t

t2

q(s)ds

) 1
β

≤ −yα(σ(t))r
− 1

β

2 (t)

(∫ t

t2

q(s)ds

) 1
β

≤ −
(
π1(σ(t))

π1(t)

)α

r
− 1

β

2 (t)

(∫ t

t2

q(s)ds

) 1
β

yα(t) (2.38)

holds for t ≥ t2, where t2 ∈ [t1,∞) is large enough. Considering (2.37) and (2.38),

it follows that

w′(t) ≤− ρ(t)
πα
1 (σ(t))

πα
1 (t)

r
− 1

β

2 (t)

(∫ t

t2

q(s)ds

) 1
β

+
ρ′(t)

ρ(t)
w(t)

− α

(r1(t)ρ(t))
1
α

(
w(t)− ρ(t)

πα
1 (t)

)α+1
α

+
αρ(t)

r
1
α
1 (t)πα+1

1 (t)
.
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Let

A :=
ρ′(t)

ρ(t)
, B :=

α

(r1(t)ρ(t))
1
α

, C :=
ρ(t)

πα
1 (t)

.

Using (2.34) with the above inequality, we have

w′(t) ≤ −ρ(t)r
− 1

β

2 (t)

(∫ t

t2

q(s)ds

) 1
β πα

1 (σ(t))

πα
1 (t)

+
ρ′(t)

πα
1 (t)

+
r1(t)(ρ

′(t))α+1

(α+ 1)α+1ρα(t)
+

αρ(t)

r
1
α
1 (t)πα+1

1 (t)

= −ρ(t)r
− 1

β

2 (t)

(∫ t

t2

q(s)ds

) 1
β πα

1 (σ(t))

πα
1 (t)

+

(
ρ

πα
1

)′
(t) +

r1(t)(ρ
′(t))α+1

(α+ 1)α+1ρα(t)
. (2.39)

Integrating (2.39) from t2 to t, we obtain∫ t

t2

(
ρ(u)r

− 1
β

2 (u)

(∫ u

t2

q(s)ds

) 1
β
(
π1(σ(u))

π1(u)

)α

− r1(u)(ρ
′(u))α+1

(α+ 1)α+1ρα(u)

)
du

− ρ(t)

π1(t)
+

ρ(t2)

π1(t2)
≤ w(t2)− w(t).

Taking the definition of w into account, we get∫ t

t2

(
ρ(u)r

− 1
β

2 (u)

(∫ u

t2

q(s)ds

) 1
β (π1(σ(u))

π1(u)

)α
− r1(u)(ρ

′(u))α+1

(α+ 1)α+1ρα(u)

)
du

≤ρ(t2)
L1y(t2)

yα(t2)
− ρ(t)

L1y(t)

yα(t)
.

(2.40)

On the other hand, using (2.17), it follows that

− ρ(t)

πα
1 (t)

≤ ρ(t)
L1y(t)

yα(t)
≤ 0.

Substituting the above estimate into (2.40), we get∫ t

t2

(
ρ(u)r

− 1
β

2 (u)

(∫ u

t2

q(s)ds

) 1
β
(
π1(σ(u))

π1(u)

)α

− r1(u)(ρ
′(u))α+1

(α+ 1)α+1ρα(u)

)
du ≤ ρ(t)

πα
1 (t)

.

(2.41)

Multiplying (2.41) by πα
1 (t)/ρ(t) and taking the lim sup on both sides of the resulting

inequality, we obtain a contradiction with (2.35). Thus, S1 = Ø.

Assume y ∈ S2. Similar to the proof of Theorem 2.5, one arrives at a contradic-

tion with (2.33). Thus, S2 = Ø.
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In following, we show S3 = S4 = Ø. Since (2.3) holds due to (H2), then the

function ∫ t

t0

r
− 1

β

2 (u)

(∫ u

t0

q(s)ds

) 1
β

du

is unbounded, and so (2.2) holds. The rest of proof proceeds in the same manner as

that of Theorem 2.1. The proof is complete.

Depending on the appropriate choice of the function ρ, we can use Theorem

2.10 in a wide range of applications for studying the oscillation of (1.1). Thus, by

choosing ρ(t) = πα
1 (t), ρ(t) = π1(t) and ρ(t) = 1, we obtain the following results,

respectively.

Corollary 2.2 Assume (H1)-(H4) and γ = αβ. Moreover, assume that (2.3)

and (2.33) hold. If

lim sup
t→∞

∫ t

T

r
− 1

β

2 (u)

(∫ u

T
q(s)ds

) 1
β

πα
1 (σ(u))−

(
α

α+ 1

)α+1 1

r
1
α
1 (u)π1(u)

du > 1,

(2.42)

for any T ∈ [t0,∞), then (1.1) is oscillatory.

Corollary 2.3 Assume (H1)-(H4) and γ = αβ. Moreover, assume that (2.3)

and (2.33) hold. If

lim sup
t→∞

πα−1
1 (t)

∫ t

T

r
− 1

β

2 (u)

(∫ u

T
q(s)ds

) 1
β πα

1 (σ(u))

πα−1
1 (u)

− 1

(α+1)α+1r
1
α
1 (u)πα

1 (u)

 du>1,

(2.43)

for any T ∈ [t0,∞), then (1.1) is oscillatory.

Corollary 2.4 Assume (H1)-(H4) and γ = αβ. Moreover, assume that (2.3)

and (2.33) hold. If

lim sup
t→∞

πα
1 (t)

∫ t

T
r
− 1

β

2 (u)

(∫ u

T
q(s)ds

) 1
β
(
π1(σ(u))

π1(u)

)α

du > 1, (2.44)

for any T ∈ [t0,∞), then (1.1) is oscillatory.

Remark 2.3 The conclusions of Theorem 2.10 and Corollaries 2.2-2.4 remain

valid if condition (2.3) is replaced by (2.1).

Lemma 2.5 Assume (H1)-(H4) and γ = αβ. Furthermore, assume that (2.1)

holds. Suppose that (1.1) has a positive solution y ∈ S1 on [t1,∞) ⊆ [t0,∞) and

that λ and µ are constants satisfying

0 ≤ λ+ µ < α, (2.45)
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0 ≤ λ ≤ r
− 1

β

2 (t)

(∫ t

t1

q(s)ds

) 1
β

πα
1 (σ(t))π1(t)r

1
α
1 (t) (2.46)

and

0 ≤ µ ≤ α

(∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

) 1
α

π1(σ(t)). (2.47)

Then there exists a t∗ ∈ [t1,∞) such that

y

π
1− λ

α
1

↑ (2.48)

and
y

π
µ
α
1

↓ (2.49)

on [t∗,∞).

Proof Assume y ∈ S1. Similar to the proof of Theorem 2.3, we arrive at (2.25).

Considering (1.1), (2.17) and (2.37), we see that

(−(L1y) · πλ
1 )

′(t)

= −(L1y)
′(t)πλ

1 (t) + L1y(t)λπ
λ−1
1 (t)r

− 1
α

1 (t)

≥ r
− 1

β

2 (t)

(∫ t

t1

q(s)ds

) 1
β

y
γ
β (σ(t))πλ

1 (t) + λL1y(t)π
λ−1
1 (t)r

− 1
α

1 (t)

= r
− 1

β

2 (t)

(∫ t

t1

q(s)ds

) 1
β

yα(σ(t))πλ
1 (t) + λL1y(t)π

λ−1
1 (t)r

− 1
α

1 (t)

≥ −r
− 1

β

2 (t)

(∫ t

t1

q(s)ds

) 1
β

L1y(σ(t))π
α
1 (σ(t))π

λ
1 (t) + λL1y(t)π

λ−1
1 (t)r

− 1
α

1 (t)

≥ −r
− 1

β

2 (t)

(∫ t

t1

q(s)ds

) 1
β

L1y(t)π
α
1 (σ(t))π

λ
1 (t) + λL1y(t)π

λ−1
1 (t)r

− 1
α

1 (t)

= −L1y(t)π
λ
1 (t)

r
− 1

β

2 (t)

(∫ t

t1

q(s)ds

) 1
β

πα
1 (σ(t))−

λ

r
1
α
1 (t)π1(t)


≥ 0.

Thus, −(L1y)π
λ
1 is nondecreasing eventually for y ≥ t2, where t2 ∈ [t1,∞) is large

enough. Furthermore, using this property, we get

y(t) ≥ −
∫ ∞

t
r
− 1

α
1 (s)(L1y)

1
α (s)ds
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= −
∫ ∞

t
r
− 1

α
1 (s)

π
λ
α
1 (s)

π
λ
α
1 (s)

(L1y)
1
α (s)ds

≥ −
(
(L1y) · πλ

1

) 1
α (t)

∫ ∞

t

1

r
1
α
1 (s)π

λ
α
1 (s)

ds. (2.50)

It is easy to verify that ∫ ∞

t

1

r
1
α
1 (s)π

λ
α
1 (s)

ds =
π
1− λ

α
1 (t)

1− λ
α

, (2.51)

and thus, we get

y(t) ≥ −(L1y)
1
α (t) · π1(t)
1− λ

α

= −r
1
α
1 (t)y′(t)π1(t)

1− λ
α

. (2.52)

Therefore, (
y

π
1− λ

α
1

)′

(t) =
r

1
α
1 (t)y′(t)π1(t) + (1− λ

α)y(t)

r
1
α
1 (t)π

2− λ
α

1 (t)
≥ 0,

thus y/π
1− λ

α
1 is nondecreasing.

Next, we will prove the last monotonicity. Similar to the proof of Theorem 2.3,

we arrive at (2.26), that is

−r1(t)(y
′(t))α ≥ yα(σ(t))

∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du.

Using (2.16) with the above inequality, we have

−r1(t)(y
′(t))α ≥ πα

1 (σ(t))

πα
1 (t)

yα(t)

∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

q(s)ds

) 1
β

du,

that is,

y(t) ≤ −r
1
α
1 (t)y′(t)

π1(t)

π1(σ(t))

(∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

q(s)ds

) 1
β

du

)− 1
α

,

for t ≥ t2, where t2 ≥ t1. Using the above relation in the equality(
y

π
µ
α
1

)′

(t) =
y′(t)

π
µ
α
1 (t)

+
µ
αy(t)

π
µ
α
+1

1 (t)r
1
α
1 (t)

,

and taking the condition (2.47) into account, we get
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(
y

π
µ
α
1

)′

(t) ≤ y′(t)

π
µ
α
1 (t)

−
µ
αy

′(t)

π
µ
α
(t)

1 π1(σ(t))

(∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

q(s)ds

) 1
β

du

)− 1
α

=
y′(t)

π
µ
α
1 (t)

1− µ

απ1(σ(t))

(∫ t

t2

r
− 1

β

2 (u)

(∫ u

t2

q(s)ds

) 1
β

du

)− 1
α


≤ y′(t)

π
µ
α
1 (t)

1− µ

απ1(σ(t))

(∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

)− 1
α


≤ 0.

Thus, y/π
µ
α
1 is nonincreasing. The proof is complete.

Theorem 2.11 Assume (H1)-(H4) and γ = αβ. Furthermore, suppose that

(2.33) holds and λ and µ are constants satisfying (2.45)-(2.47). If

lim sup
t→∞

πλ
1 (t)π

α−λ−µ
1 (σ(t))

∫ t

t1

πµ
1 (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du >

(
1− λ

α

)α

,

(2.53)

for any t1 ≥ t0, then (1.1) is oscillatory.

Proof Suppose on the contrary that y is a nonoscillatory solution of (1.1) on

[t0,∞). Without loss of generality, we may assume that y(t) > 0 and y(σ(t)) > 0

for t ∈ [t1,∞) ⊆ [t0,∞). Then we know that y eventually belongs to one of the four

classes in Lemma 2.1. We will consider each of them separately.

Before proceeding further, note that (2.11) and∫ ∞

t0

q(s)πγ
1 (σ(s))ds = ∞ (2.54)

are necessary for (2.19) to be valid. To verify this, it suffices to see that (H2) implies

π
λ
α
1 (t)π

1− λ
α
− µ

α
1 (σ(t)) ≤ π

1− λ
α

1 (t) → 0, t → ∞. (2.55)

From the above inequality, we conclude that the function∫ t

t0

πµ
1 (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

and consequently ∫ t

t1

r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

must be unbounded.
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Assume y ∈ S1. Similar to the proof of Theorem 2.3, we arrive at (2.26), that is

−r1(t)(y
′(t))α ≥ −r1(t1)(y

′(t1))
α +

∫ t

t1

y
γ
β (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

≥
∫ t

t1

yα(σ(u))r
− 1

β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du. (2.56)

Using the conclusions of Lemma 2.5 that y/π
µ
α
1 is nonincreasing and y/π

1− λ
α

1 is

nondecreasing, we obtain

−r1(t)(y
′(t))α ≥

∫ t

t1

yα(σ(u))

πµ
1 (σ(u))

πµ
1 (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

≥

(
y(σ(t))

π
µ
α
1 (σ(t))

)α ∫ t

t1

πµ
1 (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

=

(
y(σ(t))π

1− λ
α

1 (σ(t))

π
µ
α
1 (σ(t))π

1− λ
α

1 (σ(t))

)α ∫ t

t1

πµ
1 (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du

≥

(
y(t)π

1− λ
α
− µ

α
1 (σ(t))

π
1− λ

α
1 (t)

)α ∫ t

t1

πµ
1 (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du.

(2.57)

Using (2.52) in the above inequality, we have

−r1(t)(y
′(t))α ≥ −r1(t)(y

′(t))α

(
π

λ
α
1 (t)π

1− λ
α
− µ

α
1 (σ(t))

1− λ
α

)α

·
∫ t

t1

πµ
1 (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du,

that is,

1 ≥

(
π

λ
α
1 (t)π

1− λ
α
− µ

α
1 (σ(t))

1− λ
α

)α ∫ t

t1

πµ
1 (σ(u))r

− 1
β

2 (u)

(∫ u

t1

q(s)ds

) 1
β

du.

Taking the limsup on both sides of the above inequality, we reach a contradiction

with (2.53). Thus, S1 = Ø.

Accounting to Remark 2.2 with (2.33), we have S2 = Ø. Also, using Theorem

2.1, we arrive at S3 = S4 = Ø. The proof is complete.

Theorem 2.12 Assume (H1)-(H4) and γ = αβ. Furthermore, suppose that

(2.3) and (2.33) hold, and λ ∈ [0, α) is a constant satisfying (2.46). If there exists a

function ρ ∈ C1([t0,∞), (0,∞)) and T ∈ [t0,∞) such that
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lim sup
t→∞

{
πα
1 (t)

ρ(t)

∫ t

T

(
ρ(u)r

− 1
β

2 (u)

(∫ u

T
q(s)ds

) 1
β
(
π1(σ(u))

π1(u)

)α−λ

−r1(u)(ρ
′(u))α+1

(α+1)α+1ρα(u)

)
du

}
>1,

(2.58)

then (1.1) is oscillatory.

Proof For the proof of this theorem, it suffices to use (2.48) instead of (2.16)

in (2.25) in the proof of Theorem 2.10.

Corollary 2.5 Assume (H1)-(H4) and γ = αβ. Furthermore, suppose that (2.3)

and (2.33) hold and λ ∈ [0, α) is a constant satisfying (2.46). If

lim sup
t→∞

∫ t

T

r
− 1

β

2 (u)

(∫ u

T
q(s)ds

) 1
β

πα−λ
1 (σ(u))πλ

1 (u)−
(

α

α+1

)α+1 1

r
1
α
1 (u)π1(u)

du>1,

(2.59)

for any T ∈ [t0,∞), then (1.1) is oscillatory.

3 Examples

In this section, we illustrate the strength of our results using two Euler-type

differential equations, as two examples.

Example 3.1 Consider the third-order advanced differential equation(
t3((t4(y′(t))

5
3 )′)

1
7
)′
+ t6y

9
5 (2t) = 0, t ≥ 1. (3.1)

It is easy to verify that condition (2.1) is satisfied. Using Theorem 2.1, we obtain

that equation (3.1) has property A.

Example 3.2 Consider the third-order advanced differential equation(
tn((tmy′(t))′)

1
3
)′
+ q0t

m
3
+n− 5

3 y
1
3 (δt) = 0, t ≥ 1, (3.2)

where m > 1, n > 1
3 , q0 > 0 and δ ≥ 1.

Clearly, r1(t) = tm, r2(t) = tn, α = 1, β = 1
3 , γ = αβ = 1

3 , q(t) = q0t
m
3
+n− 5

3 ,

σ(t) = δt, and

π1(t) =

∫ ∞

t
r
− 1

α
1 (s)ds =

∫ ∞

t
s−mds =

t1−m

m− 1
.

From Theorem 2.1 (On the asymptotic properties of nonoscillatory solutions),

it is easy to verify that condition (2.1) holds. Thus, any nonoscillatory, say positive

solution of equation (3.2) converges to zero as t → ∞, without any additional

requirement.

In following, we consider the oscillation of equation (3.2).
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After some computations, we note that conditions (2.23), (2.28) and (2.33) re-

duce to

27q30δ
1−m > (m+ 3n− 2)3(m− 1)2, (3.3)

27q30 ln δ >
(m+ 3n− 2)3(m− 1)

e
, (3.4)

and

27q30

{
δm+3n−2 − 1

(m+ 3n− 2)(3n− 1)
+

ln δ

m− 1

+
27
(
δ

2m+6n−4
3 − 1

)
(m− 6n+ 1)(2m+ 6n− 4)

−
27
(
δ

m+3n−2
3 − 1

)
(2m− 3n− 1)(m+ 3n− 2)

−δm−1 − 1

m− 1

(
1

3n− 1
+

9

m− 6n+ 1
− 9

2m− 3n− 1
+

1

m− 1

)}
>

(m+ 3n− 2)3

e
, (3.5)

respectively.

Theorem 2.5 and Remark 2.2 imply if both (3.4) and (3.5) hold, then equation

(3.2) is oscillatory.

Since condition (2.19) is not satisfied, the related result from Theorem 2.7 can

not be applied.

Theorems 2.8 and 2.9 can deduce that oscillation of equation (3.2) is guaranteed

by conditions (3.3) and (3.5).

4 Summary

In this paper, we studied the third-order differential equation (1.1) with non-

canonical operators. First, we established one-condition criteria for property A of

(1.1). Next, we presented various two-condition criteria ensuring oscillation of all

solutions of (1.1). Finally, our results are applicable on Euler-type equations of the

forms (3.1) and (3.2). It remains open how to generalize these results for higher-order

noncanonical equations with deviating arguments.
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[1] G.E. Chatzarakis, J. Džurina, I. Jadlovská, New oscillation criteria for second-order
half-linear advanced differential equations, Appl. Math. Comput., 347(2019),404-416.
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