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Abstract. In this paper, we are concerned about the stability analysis for a
Perfectly Matched Layer (PML) recently developed by Bécache et al. [5] for
simulating wave propagation in the Drude metamaterial. This PML is proved to
be stable originally in [6] through a modal analysis. Here we establish its stability
by the energy method. A FDTD scheme is developed and analyzed. Numerical
simulations illustrate the stability of the PML model and its effectiveness in
absorbing outgoing waves in the Drude medium.
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1 Introduction

One of the challenges to simulate wave propagation in unbounded domains is how
to construct effective artificial boundary conditions to absorb the outgoing waves
without reflecting them back into the computational domains. A widely adopted
technique is the so-called Perfectly Matched Layer (PML) proposed by Bérenger [7]
in 1994 for solving the three-dimensional (3D) time-dependent Maxwell’s equations.
Since 1994, in addition to many PML models proposed and studied further for
Maxwell’s equations [1,8,10,11,28,35,36], the PML technique has also been extended
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to solve other wave propagation problems, such as acoustics and elastodynamics [2,
5, 16].

In late 1990s, the so-called negative index metamaterials (NIMs) was manu-
factured successfully [30, 32] and immediately became a very hot research topic as
evidenced by numerous papers (cf. [37] and references therein) and books published
on metamaterials (e.g., [13, 17, 24] and references therein). Due to the importance
of numerical simulation for NIMs, many studies of PMLs in NIMs have been carried
out (e.g., [12,15,31]). Cummer [14] first noticed that the classical PMLs fail in NIMs
and proposed stable PMLs for the Drude metamaterial with ωe=ωm (see (2.2) be-
low). Stable PMLs were later extended to the general case ωe 6=ωm in [15,31]. In [5],
Bécache et al. presented a rigorous development of a stable PMLs for the Drude
model for the general case ωe 6=ωm. The stability is proved in [6] through a modal
analysis. Since the modal analysis is limited to the constant damping coefficients,
one of our main goals of this paper is to make an effort in establishing a stability for
the practical variable damping functions by using the energy method. To our best
knowledge, this is the first energy stability established for this PML model.

Since the PML models (cf. [33, Ch. 7], [34], [24, Ch. 8] and references therein)
are much more complicated than the corresponding Maxwell’s equations, the sta-
bility analysis is quite challenging. For example, the stability for the classical
Bérenger PML with variable damping functions is made possible through an equiv-
alent form [4]. Furthermore, developing and analyzing effective numerical methods
for solving the PML models is not trivial, and many researchers have made contri-
butions in this direction (e.g., [3, 9, 19–23, 26, 27]). Though Bécache et al. [5] have
presented Finite-Difference Time-Domain (FDTD) simulation for their developed
metamaterial PML model, but no detail has been given for the FDTD scheme and
its analysis. Hence, another major goal of our paper is to fill the gap by develop-
ing and analyzing a FDTD scheme for the metamaterial PML model proposed by
Bécache et al. [5].

The rest of the paper is organized as follows. In Section 2, we first introduce
the 2D metamaterial PML model proposed in [5], and then carry out its stability
analysis. In Section 3, we propose a FDTD scheme for this PML model, and establish
a discrete stability. Numerical results are presented in Section 4 to demonstrate the
stability of this PML model and its effectiveness in absorbing outgoing waves. We
conclude the paper in Section 5.

2 The 2-D metamaterial PML model

A general 2-D Transverse Electric (TEz) metamaterial PML model wth 16 unknowns
was developed in Bécache et al. Here we focus on the popular ωe=ωm case whose
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governing equations can be written as follows (cf. [5, Eq. (48)]): For any (x,y,t)∈
Ω×(0,T ],

∂tEx+ω2
eJx+ε−1

0 σyEx=ε−1
0 ∂y(H

x+Hy), (2.1a)

∂tJx−Ex=0, (2.1b)

∂tEy+ω2
eJy+ε−1

0 σxEy=−ε−1
0 ∂x(H

x+Hy), (2.1c)

∂tJy−Ey=0, (2.1d)

∂tH
x+ω2

mK
x+µ−1

0 σyH
x=µ−1

0 ∂yEx, (2.1e)

∂tK
x−Hx=0, (2.1f)

∂tH
y+ω2

mK
y+µ−1

0 σxH
y=−µ−1

0 ∂xEy, (2.1g)

∂tK
y−Hy=0, (2.1h)

where ε0 and µ0 are the permittivity and permeability in free space, E = (Ex,Ey)
and H=Hx+Hy are the electric field and magnetic field (in split form) respectively,
J=(Jx,Jy) and K=(Kx,Ky) are the auxiliary variables, σx(x)≥0 and σy(y)≥0 are
the damping functions in the x and y directions, ωe>0 and ωm>0 are the electric
and the magnetic plasma frequencies in the Drude model described by the following:

ε(ω)=ε0

(
1−ω

2
e

ω2

)
, µ(ω)=µ0

(
1−ω

2
m

ω2

)
. (2.2)

Here and in the rest of the paper, ω denotes the general wave frequency.
Since no detailed derivation for the above PML model is given in [5], to make

our paper self-contained, we now present some details in deriving this model. As
mentioned in [5], this PML model can be derived by splitting the magnetic field and
using the change of variable technique (cf. [24, Ch. 8]) from the Maxwell’s equations
given in the frequency domain:

iωε(ω)Ẽx=∂ỹ(H̃
x+H̃y), (2.3a)

iωε(ω)Ẽy=−∂x̃(H̃x+H̃y), (2.3b)

iωµ(ω)H̃x=∂ỹẼ
x, (2.3c)

iωµ(ω)H̃y=−∂x̃Ẽy, (2.3d)

where the magnetic field H̃ is splitted into the sum of H̃x and H̃y, and Ẽx, Ẽy, H̃
x

and H̃y are the electric and magnetic fields in the frequency domain.
Let us first show the derivation of (2.1a)-(2.1b) from (2.3a). Applying the map-

ping

ỹ(y)=

∫ y

0

1

α(ξ)
dξ
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with

α(y)=
(

1+
σy

iωψ(ω)

)−1

, ψ(ω)=ε0

(
1−ω

2
e

ω2

)
, (2.4)

and the Drude model permittivity ε(ω) given in (2.2) to (2.3a), we have

iωε0

(
1−ω

2
e

ω2

)
Ẽx=α(y)∂y(H̃

x+H̃y)=
(

1+
σy

iωε0(1− ω2
e

ω2 )

)−1

∂y(H̃
x+H̃y), (2.5)

which can be simplified further as(
iω+

ω2
e

iω
+ε−1

0 σy

)
Ẽx=ε−1

0 ∂y(H̃
x+H̃y). (2.6)

Now let us introduce an auxiliary variable

J̃x=
1

iω
Ẽx. (2.7)

Using the assumption that the electromagnetic fields are time-harmonic (i.e., the
time-domain fields and the frequency-domain fields satisfy the relation u(x,t) =
eiωtũ(x)), we immediately obtain (2.1b) from (2.7). Furthermore, using (2.7), we
can rewrite (2.6) as

iωẼx+ω2
e J̃x+ε−1

0 σyẼx=ε−1
0 ∂y(H̃

x+H̃y). (2.8)

Applying the time-harmonic assumption to (2.8), we immediately obtain (2.1a).
Similarly, (2.1c)-(2.1d) can be obtained from (2.3b) by using the mapping

x̃(x)=

∫ x

0

1

α(ξ)
dξ

with

α(x)=
(

1+
σx

iωψ(ω)

)−1

, ψ(ω)=ε0

(
1−ω

2
e

ω2

)
, (2.9)

and introducing the auxilary variable J̃y= 1
iω
Ẽy.

By symmetry, (2.1e)-(2.1f) can be derived from (2.3c) by using the mapping

ỹ(y)=

∫ y

0

1

α(ξ)
dξ

with

α(y)=
(

1+
σy

iωψ(ω)

)−1

, ψ(ω)=µ0

(
1−ω

2
m

ω2

)
, (2.10)
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and introducing the auxilary variable K̃x= 1
iω
H̃x. Finally, (2.1g)-(2.1h) can be de-

rived from (2.3d) by using the mapping x̃(x)=
∫ x

0
1

α(ξ)
dξ with

α(x)=
(

1+
σx

iωψ(ω)

)−1

, ψ(ω)=µ0

(
1−ω

2
m

ω2

)
, (2.11)

and introducing the auxilary variable K̃y= 1
iω
H̃y.

Since the PML is used in a rectangular domain outside the physical domain, we
consider solving (2.1a)-(2.1h) in a rectangular domain Ω=[a,b]×[c,d]. To complete
the model (2.1a)-(2.1h), we assume that the model problem is subject to the initial
conditions

Ex(x,y,0)=Ex0(x,y), Ey(x,y,0)=Ey0(x,y), (2.12a)

Jx(x,y,0)=Jx0(x,y), Jy(x,y,0)=Jy0(x,y), (2.12b)

and

Hx(x,y,0)=Hx0(x,y), Hy(x,y,0)=Hy0(x,y), (2.13a)

Kx(x,y,0)=Kx0(x,y), Ky(x,y,0)=Ky0(x,y), (2.13b)

and the perfect conduct (PEC) boundary condition

Ex(x,y,t)|y=c,d=0, Ey(x,y,t)|x=a,b=0, (2.14)

where Ex0, Ey0, Jx0,Jy0, Hx0,Hy0, Kx0, and Ky0 are some properly given functions.
In the rest of the paper, we denote the L2 norm over Ω as ||·|| := ||·||L2(Ω).

Theorem 2.1. For the solution of (2.1a)-(2.1h), define the energy

E1(t)=
1

2

[
ε0(||Ex||2+||Ey||2)+ε0ω

2
e(||Jx||2+||Jy||2)

+µ0||Hx+Hy||2+µ0ω
2
m||Kx+Ky||2

]
. (2.15)

Then for any nonnegative functions σx(x) and σy(y), we have

d

dt
E1(t)+||σ

1
2
y Ex||2+||σ

1
2
xEy||2+||σ

1
2
yH

x||2

+||σ
1
2
xH

y||2+((σx+σy)H
x,Hy)=0. (2.16)

When σx=σy=σ≥0 (i.e., a positive constant), the energy is decreasing:

E1(t)≤E1(0), ∀t∈ [0,T ]. (2.17)
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Proof. To make our proof easy to follow, we divide the proof into three major parts.

(I) Multiplying (2.1a) and (2.1b) by ε0Ex and ε0ω
2
eJx, respectively, integrating

each over Ω, then adding up the results, we have

1

2

d

dt

[
ε0||Ex||2+ε0ω

2
e ||Jx||2

]
+||σ

1
2
y Ex||2 =(∂y(H

x+Hy),Ex). (2.18)

Multiplying (2.1c) and (2.1d) by ε0Ey and ε0ω
2
eJy, respectively, integrating each

over Ω, then adding up the results, we have

1

2

d

dt

[
ε0||Ey||2+ε0ω

2
e ||Jy||2

]
+||σ

1
2
xEy||2 =−(∂x(H

x+Hy),Ey). (2.19)

(II) Multiplying (2.1e) and (2.1f) by µ0(Hx+Hy) and µ0ω
2
m(Kx+Ky), respec-

tively, integrating each over Ω, then adding up the results, we have

1

2

d

dt

[
µ0||Hx||2+µ0ω

2
m||Kx||2

]
+µ0(∂tH

x,Hy)+µ0ω
2
m(∂tK

x,Ky)

+µ0ω
2
m [(Kx,Hy)−(Ky,Hx)]+||σ

1
2
yH

x||2+(σyH
x,Hy)

=(∂yEx,H
x+Hy). (2.20)

Similarly, multiplying (2.1g) and (2.1h) by µ0(Hx+Hy) and µ0ω
2
m(Kx+Ky),

respectively, integrating each over Ω, then adding up the results, we have

1

2

d

dt

[
µ0||Hy||2+µ0ω

2
m||Ky||2

]
+µ0(∂tH

y,Hx)+µ0ω
2
m(∂tK

y,Kx)

+µ0ω
2
m [(Ky,Hx)−(Kx,Hy)]+||σ

1
2
xH

y||2+(σxH
x,Hy)

=−(∂xEy,H
x+Hy). (2.21)

Adding up (2.20) and (2.21), and using the identity

d

dt
(||Hx||2+||Hy||2)+2(∂tH

x,Hy)+2(∂tH
y,Hx)=

d

dt
(||Hx+Hy||2),

we obtain

1

2

d

dt

[
µ0||Hx+Hy||2+µ0ω

2
m||Kx+Ky||2

]
+||σ

1
2
yH

x||2+||σ
1
2
xH

y||2+((σx+σy)H
x,Hy)

=(∂yEx,H
x+Hy)−(∂xEy,H

x+Hy)

=−(Ex,∂y(H
x+Hy))+(Ey,∂x(H

x+Hy)), (2.22)
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where in the last step we used integration by parts and the PEC boundary condition
(2.14).

(III) Now adding up (2.18), (2.19) and (2.22), we have

1

2

d

dt

[
ε0(||Ex||2+||Ey||2)+µ0ω

2
e(||Jx||2+||Jy||2)

+µ0||Hx+Hy||2+µ0ω
2
m||Kx+Ky||2

]
+||σ

1
2
y Ex||2+||σ

1
2
xEy||2

+||σ
1
2
yH

x||2+||σ
1
2
xH

y||2+((σx+σy)H
x,Hy)=0, (2.23)

which concludes the proof of (2.16).
When σx=σy=σ is a positive constant, using the identity

||σ
1
2
yH

x||2+||σ
1
2
xH

y||2+((σx+σy)H
x,Hy)= ||σ

1
2 (Hx+Hy)||2

in (2.23) and using the energy definition (2.15), we immediately have

dE
dt

(t)≤0,

which completes the proof of (2.17).

We like to remark that for general σx and σy, we can use the following identity

||σ
1
2
yH

x||2+||σ
1
2
xH

y||2+((σx+σy)H
x,Hy)

=
1

2
||(σx+σy)

1
2 (Hx+Hy)||2+

1

2
((σy−σx)Hx,Hx)+

1

2
((σx−σy)Hy,Hy). (2.24)

But the last two terms of (2.24) are not guaranteed to be nonnegative, i.e., how to
obtain a nice stability of the model is still open in the general case.

3 The FDTD scheme and its analysis

To develop our difference scheme, we assume that the physical domain Ω=[a,b]×[c,d]
is partitioned by a uniform rectangular grid

a=x0<x1< ···<xNx =b, c=y0<y1< ···<yNy =d,

and the time interval [0,T ] is partitioned into Nt uniform intervals, i.e., we have
discrete times tk=kτ, τ= T

Nt
, k=0,1,··· ,Nt, grid points xi=ihx, hx= b−a

Nx
, i=0,1,··· ,Nx
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Figure 1: A sample grid showing how the unknown variables are placed.

in the x-direction, and grid points yj=jhy, hy= d−c
Ny
, j=0,1,··· ,Ny in the y-direction.

Note that hx and hy can be different.
Following the classic Yee scheme, we choose the unknowns Hx (and Kx) at the

mid-points of the horizontal edges, Hy (and Ky) at the mid-points of the vertical
edges, and Ez (and Jz) at the element centers (cf. Fig. 1).

To define the fully-discrete scheme, we introduce the following difference and
averaging operators: For any discrete function uni,j,

δτu
n+ 1

2
i,j :=

un+1
i,j −uni,j
τ

, uni,j =
u
n+ 1

2
i,j +u

n− 1
2

i,j

2
,

δxu
n
i,j :=

un
i+ 1

2
,j
−un

i− 1
2
,j

hx
, δyu

n
i,j :=

un
i,j+ 1

2

−un
i,j− 1

2

hy
.

We can develop the following FDTD scheme for solving the system of (2.1a)-(2.1h):

δτE
n+ 1

2

x,i+ 1
2
,j

+ω2
eJ

n+ 1
2

x,i+ 1
2
,j

+ε−1
0 σy,jE

n+ 1
2

x,i+ 1
2
,j

=ε−1
0 δy(H

x+Hy)
n+ 1

2

i+ 1
2
,j
, (3.1a)

δτJ
n
x,i+ 1

2
,j
−En

x,i+ 1
2
,j

=0, (3.1b)

δτE
n+ 1

2

y,i,j+ 1
2

+ω2
eJ

n+ 1
2

y,i,j+ 1
2

+ε−1
0 σx,iE

n+ 1
2

y,i,j+ 1
2

=−ε−1
0 δx(H

x+Hy)
n+ 1

2

i,j+ 1
2

, (3.1c)

δτJ
n
y,i,j+ 1

2
−En

y,i,j+ 1
2

=0, (3.1d)

δτH
x,n+1

i+ 1
2
,j+ 1

2

+ω2
mK

x,n+1

i+ 1
2
,j+ 1

2

+µ−1
0 σy,j+ 1

2
H
x,n+1

i+ 1
2
,j+ 1

2
=µ−1

0 δyE
n+1
x,i+ 1

2
,j+ 1

2

, (3.1e)

δτK
x,n+ 1

2

i+ 1
2
,j+ 1

2

−Hx,n+ 1
2

i+ 1
2
,j+ 1

2

=0, (3.1f)
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δτH
y,n+1

i+ 1
2
,j+ 1

2

+ω2
mK

y,n+1

i+ 1
2
,j+ 1

2

+µ−1
0 σx,i+ 1

2
H
y,n+1

i+ 1
2
,j+ 1

2
=−µ−1

0 δxE
n+1
y,i+ 1

2
,j+ 1

2

, (3.1g)

δτK
y,n+ 1

2

i+ 1
2
,j+ 1

2

−Hy,n+ 1
2

i+ 1
2
,j+ 1

2

=0, (3.1h)

where we denote

σy,j =σy(yj) and En
x,i+ 1

2
,j
≈Ex(xi+ 1

2
,yj,tn),

i.e., the approximate solution of Ex at point (xi+ 1
2
,yj,tn). Similar notations are used

for other variables.
The given initial conditions (2.12)-(2.13) can be discretized as follows:

E0
x,i+ 1

2
,j

=Ex0(xi+ 1
2
,yj), E0

y,i,j+ 1
2

=Ey0(xi,yj+ 1
2
), (3.2a)

J
0

x,i+ 1
2
,j =Jx0(xi+ 1

2
,yj), J

0

y,i,j+ 1
2

=Jy0(xi,yj+ 1
2
), (3.2b)

H
x,0

i+ 1
2
,j+ 1

2
=Hx0(xi+ 1

2
,yj+ 1

2
), H

y,0

i+ 1
2
,j+ 1

2
=Hy0(xi+ 1

2
,yj+ 1

2
), (3.2c)

Kx,0

i+ 1
2
,j+ 1

2

=Kx0(xi+ 1
2
,yj+ 1

2
), Ky,0

i+ 1
2
,j+ 1

2

=Ky0(xi+ 1
2
,yj+ 1

2
). (3.2d)

The scheme (3.1a)-(3.1h) can be implemented as follows.
When n= 0, we need to couple the discretized initial conditions (3.2a)-(3.2d)

with the scheme (3.1a)-(3.1h). For example, using (3.2a), (3.2b), and (3.1b) with
n=0, we have

J
1
2

i+ 1
2
,j

=Jx0(xi+ 1
2
,yj)+

τ

2
Ex0(xi+ 1

2
,yj).

Then at every time step,

Step 1: Solve (3.1b) for J
n+ 1

2

x,i+ 1
2
,j

, (3.1d) for J
n+ 1

2

y,i,j+ 1
2

, (3.1f) for Kx,n+1

i+ 1
2
,j+ 1

2

, and (3.1h)

for Ky,n+1

i+ 1
2
,j+ 1

2

. Note that these can be done in parallel.

Step 2: Solve (3.1a) for En+1
x,i+ 1

2
,j

, (3.1c) for En+1
y,i,j+ 1

2

, (3.1e) for H
x,n+ 3

2

i+ 1
2
,j+ 1

2

, and (3.1g)

for H
y,n+ 3

2

i+ 1
2
,j+ 1

2

. Note that these can be done in parallel.

In the rest of this section, we will carry out the discrete energy analysis of the
scheme (3.1a)-(3.1h). To simplify the notation, we denote the discrete L2 norm and
the corresponding discrete inner product as follows:

||En
x ||2∗ :=hxhy

∑
0≤i≤Nx−1
0≤j≤Ny−1

|En
x,i+ 1

2
,j
|2, 〈un,vn〉=hxhy

∑
0≤i≤Nx−1
0≤j≤Ny−1

un
x,i+ 1

2
,j
vn
x,i+ 1

2
,j
.
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Similar notations will be used for other variables, which have different shifts for the
indexes. We also introduce the notation cv = 1√

ε0µ0
for the wave propagation speed

in the free space.

Theorem 3.1. For the solution of (3.1a)-(3.1h), define the discrete energy

Edis(m) :=
ε0
2

(||Em+1
x ||2∗+||Em+1

y ||2∗)+
ε0ω

2
e

2
(||Jm+ 1

2
x ||2∗+||J

m+ 1
2

y ||2∗)

+
µ0

2
||(Hx+Hy)m+ 3

2 ||2∗+
µ0ω

2
m

2
||(Kx+Ky)m+1||2∗. (3.3)

Then for any m∈[1,Nt−1] and nonnegative damping functions σx(x) and σy(y), we
have the discrete energy identity:

1

τ
(Edis(m)−Edis(−1))+

∑
0≤n≤m

(||σ
1
2
y E

n+ 1
2

x ||2∗+||σ
1
2
xE

n+ 1
2

y ||2∗)

+
∑

0≤n≤m

[
||σ

1
2
yH

x,n+1||2∗+||σ
1
2
xH

y,n+1||2∗+〈(σx+σy)H
x,n+1

,H
y,n+1〉

]
+
µ0ω

2
m

2

[
〈(Kx+Ky)m+1,(Hx+Hy)m+ 3

2 〉−〈(Kx+Ky)0,(Hx+Hy)
1
2 〉
]

+
ε0ω

2
e

2

[
〈Jm+ 1

2
x ,Em+1

x 〉−〈J−
1
2

x ,E0
x〉+〈J

m+ 1
2

y ,Em+1
y 〉−〈J−

1
2

y ,E0
y〉
]

=
1

2

[
〈(Hx+Hy)m+ 3

2 ,δyE
m+1
x −δxEm+1

y 〉−〈(Hx+Hy)
1
2 ,δyE

0
x−δxE0

y〉
]
. (3.4)

When σx=σy=σ is a positive constant, under the time step constraint

τ≤min
( 1√

2ωe
,

1√
2ωm

,
hx

8
√

2cv
,
hy

8
√

2cv

)
, (3.5)

the following discrete stability for the scheme (3.1a)-(3.1h) holds true:

Edis(m)≤3Edis(−1). (3.6)

Proof. To make our proof easy to follow, we divide the proof into several major
parts.

(I) Multiplying (3.1a) by hxhyε0E
n+ 1

2

x,i+ 1
2
,j

, then summing up over i and j, we have

ε0
2τ

(||En+1
x ||2∗−||En

x ||2∗)+||σ
1
2
y E

n+ 1
2

x ||2∗+ε0ω2
e〈J

n+ 1
2

x ,E
n+ 1

2
x 〉

=〈δy(Hx+Hy)n+ 1
2 ,E

n+ 1
2

x 〉. (3.7)
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Multiplying (3.1b) by ε0ω
2
ehxhyJ

n

x,i+ 1
2
,j, then summing up over i and j, we have

ε0ω
2
e

2τ
(||Jn+ 1

2
x ||2∗−||J

n− 1
2

x ||2∗)−ε0ω2
e〈En

x ,J
n

x〉=0. (3.8)

Adding (3.7) and (3.8) together, then summing up the result from n= 0 to any
m≤Nt−1, and using the following identity

〈Jn+ 1
2

x ,E
n+ 1

2
x 〉−〈En

x ,J
n

x〉=
1

2
(〈Jn+ 1

2
x ,En+1

x 〉−〈Jn−
1
2

x ,En
x 〉),

we obtain

ε0
2τ

(||Em+1
x ||2∗−||E0

x||2∗)+
∑

0≤n≤m

||σ
1
2
y E

n+ 1
2

x ||2∗+
ε0ω

2
e

2τ
(||Jm+ 1

2
x ||2∗−||J

− 1
2

x ||2∗)

+
ε0ω

2
e

2
(〈Jm+ 1

2
x ,Em+1

x 〉−〈J−
1
2

x ,E0
x〉)

=
∑

0≤n≤m

〈δy(Hx+Hy)n+ 1
2 ,E

n+ 1
2

x 〉. (3.9)

Similarly, multiplying (3.1c) by hxhyε0E
n+ 1

2

y,i,j+ 1
2

, multiplying (3.1d) by

ε0ω
2
ehxhyJ

n

y,i,j+ 1
2
, and summing up the results from n = 0 to any m ≤ Nt−1,

we obtain

ε0
2τ

(||Em+1
y ||2∗−||E0

y ||2∗)+
∑

0≤n≤m

||σ
1
2
xE

n+ 1
2

y ||2∗+
ε0ω

2
e

2τ
(||Jm+ 1

2
y ||2∗−||J

− 1
2

x ||2∗)

+
ε0ω

2
e

2
(〈Jm+ 1

2
y ,Em+1

y 〉−〈J−
1
2

y ,E0
y〉)

=−
∑

0≤n≤m

〈δx(Hx+Hy)n+ 1
2 ,E

n+ 1
2

y 〉. (3.10)

Adding (3.9) and (3.10) together, we have

ε0
2τ

[
(||Em+1

x ||2∗+||Em+1
y ||2∗)−(||E0

x||2∗+||E0
y ||2∗)

]
+
∑

0≤n≤m

(||σ
1
2
y E

n+ 1
2

x ||2∗+||σ
1
2
xE

n+ 1
2

y ||2∗)

+
ε0ω

2
e

2τ

[
(||Jm+ 1

2
x ||2∗+||J

m+ 1
2

y ||2∗)−(||J−
1
2

x ||2∗+||J
− 1

2
y ||2∗)

]
+
ε0ω

2
e

2

[
(〈Jm+ 1

2
x ,Em+1

x 〉−〈J−
1
2

x ,E0
x〉)+(〈Jm+ 1

2
y ,Em+1

y 〉−〈J−
1
2

y ,E0
y〉)
]

=
∑

0≤n≤m

[
〈δy(Hx+Hy)n+ 1

2 ,E
n+ 1

2
x 〉−〈δx(Hx+Hy)n+ 1

2 ,E
n+ 1

2
y 〉

]
. (3.11)
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(II) Multiplying (3.1e) by hxhyµ0(H
x,n+1

i+ 1
2
,j+ 1

2
+H

y,n+1

i+ 1
2
,j+ 1

2
), then summing up over i

and j, we have

µ0

2τ
(||Hx,n+ 3

2 ||2∗−||Hx,n+ 1
2 ||2∗)+µ0〈δτHx,n+1,H

y,n+1〉

+µ0ω
2
m〈Kx,n+1,H

x,n+1
+H

y,n+1〉+||σ
1
2
yH

x,n+1||2∗+〈σyH
x,n+1

,H
y,n+1〉

=〈δyEn+1
x ,H

x,n+1
+H

y,n+1〉. (3.12)

Multiplying (3.1f) by hxhyµ0ω
2
m(K

x,n+ 1
2

i+ 1
2
,j+ 1

2

+K
y,n+ 1

2

i+ 1
2
,j+ 1

2

), then summing up over i and

j, we have

µ0ω
2
m

2τ
(||Kx,n+1||2∗−||Kx,n||2∗)+µ0ω

2
m〈δτKx,n+ 1

2 ,K
y,n+ 1

2 〉

−µ0ω
2
m〈Hx,n+ 1

2 ,K
x,n+ 1

2 +K
y,n+ 1

2 〉=0. (3.13)

Adding (3.12) and (3.13) together, then summing up the result from n= 0 to any
m≤Nt−1, and using the following identity

〈Kx,n+1,H
x,n+1〉−〈Hx,n+ 1

2 ,K
x,n+ 1

2 〉= 1

2
(〈Kx,n+1,Hx,n+ 3

2 〉−〈Kx,n,Hx,n+ 1
2 〉),

we have
µ0

2τ
(||Hx,m+ 3

2 ||2∗−||Hx, 1
2 ||2∗)+

∑
0≤n≤m

µ0〈δτHx,n+1,H
y,n+1〉+

∑
0≤n≤m

||σ
1
2
yH

x,n+1||2∗

+
µ0ω

2
m

2
(〈Kx,m+1,Hx,m+ 3

2 〉−〈Kx,0,Hx, 1
2 〉)+

∑
0≤n≤m

µ0〈σyH
x,n+1

,H
y,n+1〉

+
µ0ω

2
m

2τ
(||Kx,m+1||2∗−||Kx,0||2∗)+

∑
0≤n≤m

µ0ω
2
m〈δτKx,n+ 1

2 ,K
y,n+ 1

2 〉

+
∑

0≤n≤m

µ0ω
2
m(〈Kx,n+1,H

y,n+1〉−〈Hx,n+ 1
2 ,K

y,n+ 1
2 〉)

=
∑

0≤n≤m

〈δyEn+1
x ,H

x,n+1
+H

y,n+1〉. (3.14)

By symmetry, from (3.1g) and (3.1h), we have

µ0

2τ
(||Hy,m+ 3

2 ||2∗−||Hy, 1
2 ||2∗)+

∑
0≤n≤m

µ0〈δτHy,n+1,H
x,n+1〉+

∑
0≤n≤m

||σ
1
2
xH

y,n+1||2∗

+
µ0ω

2
m

2
(〈Ky,m+1,Hy,m+ 3

2 〉−〈Ky,0,Hy, 1
2 〉)+

∑
0≤n≤m

µ0〈σxH
y,n+1

,H
x,n+1〉
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+
µ0ω

2
m

2τ
(||Ky,m+1||2∗−||Ky,0||2∗)+

∑
0≤n≤m

µ0ω
2
m〈δτKy,n+ 1

2 ,K
x,n+ 1

2 〉

+
∑

0≤n≤m

µ0ω
2
m(〈Ky,n+1,H

x,n+1〉−〈Hy,n+ 1
2 ,K

x,n+ 1
2 〉)

=−
∑

0≤n≤m

〈δxEn+1
y ,H

x,n+1
+H

y,n+1〉. (3.15)

Adding (3.14) and (3.15), and using the following identities:∑
0≤n≤m

(〈δτHx,n+1,H
y,n+1〉+〈δτHy,n+1,H

x,n+1〉)

=
1

τ

∑
0≤n≤m

(〈Hx,n+ 3
2 ,Hy,n+ 3

2 〉−〈Hx,n+ 1
2 ,Hy,n+ 1

2 〉)

=
1

τ
(〈Hx,m+ 3

2 ,Hy,m+ 3
2 〉−〈Hx, 1

2 ,Hy, 1
2 〉), (3.16a)∑

0≤n≤m

[
(〈Kx,n+1,H

y,n+1〉−〈Hx,n+ 1
2 ,K

y,n+ 1
2 〉)+(〈Ky,n+1,H

x,n+1〉−〈Hy,n+ 1
2 ,K

x,n+ 1
2 〉)
]

=
1

2

∑
0≤n≤m

[
(〈Kx,n+1,Hy,n+ 3

2 〉−〈Kx,n,Hy,n+ 1
2 〉)+(〈Ky,n+1,Hx,n+ 3

2 〉−〈Ky,n,Hx,n+ 1
2 〉)
]

=
1

2

[
(〈Kx,m+1,Hy,m+ 3

2 〉−〈Kx,0,Hy, 1
2 〉)+(〈Ky,m+1,Hx,m+ 3

2 〉−〈Ky,0,Hx, 1
2 〉)
]
, (3.16b)∑

0≤n≤m
(〈δτKx,n+ 1

2 ,K
y,n+ 1

2 〉+〈δτKy,n+ 1
2 ,K

x,n+ 1
2 〉)

=
1

τ

∑
0≤n≤m

(〈Kx,n+1,Ky,n+1〉−〈Kx,n,Hy,n〉)

=
1

τ
(〈Kx,m+1,Ky,m+1〉−〈Kx,0,Ky,0〉), (3.16c)

we obtain
µ0

2τ
(||Hx,m+ 3

2 +Hy,m+ 3
2 ||2∗−||Hx, 1

2 +Hy, 1
2 ||2∗)

+
µ0ω

2
m

2τ
(||Kx,m+1+Ky,m+1||2∗−||Kx,0+Ky,0||2∗)

+
µ0ω

2
m

2

[
〈Kx,m+1+Ky,m+1,Hx,m+ 3

2 +Hy,m+ 3
2 〉−〈Kx,0+Ky,0,Hx, 1

2 +Hy, 1
2 〉
]

+
∑

0≤n≤m

[
||σ

1
2
yH

x,n+1||2∗+||σ
1
2
xH

y,n+1||2∗+〈(σx+σy)H
x,n+1

,H
y,n+1〉

]
=
∑

0≤n≤m

[
〈δyEn+1

x ,H
x,n+1

+H
y,n+1〉−〈δxEn+1

y ,H
x,n+1

+H
y,n+1〉

]
. (3.17)
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(III) To add up the right hand side (RHS) terms of (3.11) and (3.17), we need
the following estimate:∑

0≤i≤Nx−1
0≤j≤Ny−1

0≤n≤m

[
δy(H

x+Hy)
n+ 1

2

i+ 1
2
,j
·En+ 1

2

x,i+ 1
2
,j

+δyE
n+1
x,i+ 1

2
,j+ 1

2

·(Hx,n+1

i+ 1
2
,j+ 1

2
+H

y,n+1

i+ 1
2
,j+ 1

2
)
]

=
1

2hy

∑
0≤i≤Nx−1

0≤n≤m

[
(Hx+Hy)

n+ 1
2

i+ 1
2
,− 1

2

En+1
x,i+ 1

2
,0
−(Hx+Hy)

n+ 1
2

i+ 1
2
,Ny− 1

2

En+1
x,i+ 1

2
,Ny

]

+
1

2hy

∑
0≤i≤Nx−1
0≤j≤Ny−1

[
(Hx+Hy)

1
2

i+ 1
2
,j+ 1

2

E0
x,i+ 1

2
,j
−(Hx+Hy)

m+ 3
2

i+ 1
2
,j+ 1

2

Em+1
x,i+ 1

2
,j

]

+
1

2hy

∑
0≤i≤Nx−1
0≤j≤Ny−1

[
(Hx+Hy)

m+ 3
2

i+ 1
2
,j+ 1

2

Em+1
x,i+ 1

2
,j+1
−(Hx+Hy)

1
2

i+ 1
2
,j+ 1

2

E0
x,i+ 1

2
,j+1

]

+
1

2hy

∑
0≤i≤Nx−1

0≤n≤m

[
(Hx+Hy)

n+ 1
2

i+ 1
2
,Ny− 1

2

En
x,i+ 1

2
,Ny
−(Hx+Hy)

n+ 1
2

i+ 1
2
,− 1

2

En
x,i+ 1

2
,0

]

=
1

2

∑
0≤i≤Nx−1
0≤j≤Ny−1

[
(Hx+Hy)

m+ 3
2

i+ 1
2
,j+ 1

2

δyE
m+1
x,i+ 1

2
,j+ 1

2

−(Hx+Hy)
1
2

i+ 1
2
,j+ 1

2

δyE
0
x,i+ 1

2
,j+ 1

2

]
, (3.18)

where in the last step we used the PEC boundary conditions (2.14). Similarly, we
have ∑

0≤i≤Nx−1
0≤j≤Ny−1

0≤n≤m

[
δx(H

x+Hy)
n+ 1

2

i,j+ 1
2

·En+ 1
2

y,i,j+ 1
2

+δxE
n+1
y,i+ 1

2
,j+ 1

2

·(Hx,n+1

i+ 1
2
,j+ 1

2
+H

y,n+1

i+ 1
2
,j+ 1

2
)
]

=
1

2hx

∑
0≤j≤Ny−1

0≤n≤m

[
(Hx+Hy)

n+ 1
2

Nx− 1
2
,j+ 1

2

En+1
y,Nx,j+

1
2

−(Hx+Hy)
n+ 1

2

− 1
2
,j+ 1

2

En+1
y,0,j+ 1

2

]

+
1

2hx

∑
0≤i≤Nx−1
0≤j≤Ny−1

[
(Hx+Hy)

1
2

i+ 1
2
,j+ 1

2

E0
y,i,j+ 1

2
−(Hx+Hy)

m+ 3
2

i+ 1
2
,j+ 1

2

Em+1
y,i,j+ 1

2

]

+
1

2hx

∑
0≤i≤Nx−1
0≤j≤Ny−1

[
(Hx+Hy)

m+ 3
2

i+ 1
2
,j+ 1

2

Em+1
y,i+1,j+ 1

2

−(Hx+Hy)
1
2

i+ 1
2
,j+ 1

2

E0
y,i+1,j+ 1

2

]

+
1

2hx

∑
0≤j≤Ny−1

0≤n≤m

[
(Hx+Hy)

n+ 1
2

Nx− 1
2
,j+ 1

2

En
y,Nx,j+

1
2
−(Hx+Hy)

n+ 1
2

− 1
2
,j+ 1

2

E0
y,0,j+ 1

2

]
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=
1

2

∑
0≤i≤Nx−1
0≤j≤Ny−1

[
(Hx+Hy)

m+ 3
2

i+ 1
2
,j+ 1

2

δxE
m+1
y,i+ 1

2
,j+ 1

2

−(Hx+Hy)
1
2

i+ 1
2
,j+ 1

2

δxE
0
y,i+ 1

2
,j+ 1

2

]
, (3.19)

where in the last step we used the PEC boundary conditions (2.14).
Now adding up (3.11) and (3.17), and using (3.18), (3.19) and the discrete energy

definition (3.3), we complete the proof for the discrete energy identity (3.4).

(IV) When σx=σy=σ is a positive constant, using the identity

||σ
1
2
yH

x,n+1||2∗+||σ
1
2
xH

y,n+1||2∗+〈(σx+σy)H
x,n+1

,H
y,n+1〉

=||σ
1
2 (H

x,n+1
+H

y,n+1
)||2∗,

and dropping the second and third terms on the left hand side of (3.4), we have

Edis(m)−Edis(−1)

≤− τµ0ω
2
m

2

[
〈(Kx+Ky)m+1,(Hx+Hy)m+ 3

2 〉−〈(Kx+Ky)0,(Hx+Hy)
1
2 〉
]

− τε0ω
2
e

2

[
〈Jm+ 1

2
x ,Em+1

x 〉−〈J−
1
2

x ,E0
x〉+〈J

m+ 1
2

y ,Em+1
y 〉−〈J−

1
2

y ,E0
y〉
]

+
τ

2

[
〈(Hx+Hy)m+ 3

2 ,δyE
m+1
x −δxEm+1

y 〉−〈(Hx+Hy)
1
2 ,δyE

0
x−δxE0

y〉
]
. (3.20)

Now we just need to estimate those right hand side terms of (3.20). By the Cauchy-
Schwarz inequality, we have

τµ0ω
2
m

2
〈(Kx+Ky)m+1,(Hx+Hy)m+ 3

2 〉

≤ µ0ω
2
m

4
||(Kx+Ky)m+1||2∗+

(τωm)2

4
·µ0||(Hx+Hy)m+ 3

2 ||2∗, (3.21a)

τε0ω
2
e

2
〈Jm+ 1

2
x ,Em+1

x 〉≤ ε0ω
2
e

4
||Jm+ 1

2
x ||2∗+

(τωe)
2

4
·ε0||Em+1

x ||2∗, (3.21b)

τε0ω
2
e

2
〈Jm+ 1

2
y ,Em+1

y 〉≤ ε0ω
2
e

4
||Jm+ 1

2
y ||2∗+

(τωe)
2

4
·ε0||Em+1

y ||2∗. (3.21c)

Similarly, we have
τ

2
〈(Hx+Hy)m+ 3

2 ,δyE
m+1
x −δxEm+1

y 〉

=〈√µ0(Hx+Hy)m+ 3
2 ,
τcv
√
ε0

2
(δyE

m+1
x −δxEm+1

y )〉

≤µ0

8
||(Hx+Hy)m+ 3

2 ||2∗+4(τcv)
2ε0(||δyEm+1

x ||2∗+||δxEm+1
y ||2∗)

≤µ0

8
||(Hx+Hy)m+ 3

2 ||2∗+
16(τcv)

2

h2
y

·ε0||Em+1
x ||2∗+

16(τcv)
2

h2
x

·ε0||Em+1
y ||2∗, (3.22)
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where in the last step we used the following estimates

||δyEm+1
x ||2∗=hxhy

∑
0≤i≤Nx−1
0≤j≤Ny−1

|Em+1
x,i+ 1

2
,j+1
−Em+1

x,i+ 1
2
,j
|2

h2
y

≤ 2

h2
y

·hxhy
∑

0≤i≤Nx−1
0≤j≤Ny−1

(|Em+1
x,i+ 1

2
,j+1
|2+|Em+1

x,i+ 1
2
,j
|2)=

4

h2
y

||Em+1
x ||2∗,

and

||δxEm+1
y ||2∗≤

4

h2
x

||Em+1
y ||2∗.

Substituting (3.21a)-(3.22) and similar estimates for the rest terms into (3.20), we
obtain

Edis(m)−Edis(−1)

≤
((τωe)

2

2
+

32(τcv)
2

h2
y

)
· ε0

2
||Em+1

x ||2∗+
((τωe)

2

2
+

32(τcv)
2

h2
x

)
· ε0

2
||Em+1

y ||2∗

+
ε0ω

2
e

4
(||Jm+ 1

2
x ||2∗+||J

m+ 1
2

x ||2∗)+
((τωm)2

2
+
τcv
2

)µ0

2
||(Hx+Hy)m+ 3

2 ||2∗

+
µ0ω

2
m

4
||(Kx+Ky)m+1||2∗+

((τωe)
2

2
+

32(τcv)
2

h2
y

)
· ε0

2
||E0

x||2∗

+
((τωe)

2

2
+

32(τcv)
2

h2
x

)
· ε0

2
||E0

y ||2∗+
ε0ω

2
e

4
(||J−

1
2

x ||2∗+||J
− 1

2
x ||2∗)

+
((τωm)2

2
+

1

4

)
·µ0

2
||(Hx+Hy)

1
2 ||2∗+

µ0ω
2
m

4
||(Kx+Ky)0||2∗. (3.23)

If we choose τ satisfying the following (which is equivalent to the time step constraint
(3.5)):

(τωm)2

2
≤ 1

4
,

(τωe)
2

2
≤ 1

4
,

32(τcv)
2

h2
y

≤ 1

4
,

32(τcv)
2

h2
x

≤ 1

4
,

then the estimate (3.23) can be simplified to

1

2
Edis(m)−Edis(−1)≤ 1

2
Edis(−1), (3.24)

which concludes our proof of (3.6).
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4 Numerical results

In this section, we present some numerical results to demonstrate the wave absorbing
efficiency of the PML model. We adopt the same examples of [5] and our simulation
was carried out by MATLAB installed under Windows 10 on a Dell XPS Notebook
(with Intel Core i5-1035G1 1.10GHz CPU and 8GB RAM).

4.1 Wave absorbing by the PML model

To test the effectiveness and stability of the PML model (2.1a)-(2.1h) on absorbing
the outgoing waves, we simulate a source wave propagating in a Drude metamaterial
of dimension [−17,17]×[−17,17]. The Drude metamaterial region (governed by
(2.1a)-(2.1h) with σx =σy = 0) is surrounded by the PML with thickness d= 15h,
where h denotes the mesh size. The incident source wave is imposed in the Hx

equation (2.1e) as a source function

f(x,y,t)=g(x,y)h(t),

where
g(x,y)=e−5(x2+y2) and h(t)=−20(t−1)e−10(t−1)2 .

In our simulation, we use ε0=1, µ0=1, hx=hy=h=0.2 and τ=0.1. The damping
function σx is a fourth-order polynomial given as follows:

σx(x)=


σmax

(x−17

d

)m
, if x≥17,

σmax

( |x+17|
d

)m
, if x≤−17,

0, elsewhere,

(4.1)

where σmax =−(m+1)log(R)/(2d) with R=10−6 and m=4. The damping function
σy(y) has exactly the same form as σx(x). The Hz fields obtained by our scheme
(3.1a)-(3.1h) at various time steps are presented in Fig. 2, which shows that both
of forward and backward waves are well absorbed by the PML as observed in the
paper [5, Fig. 10].

4.2 A refocusing simulation

In this example, we simulate a transmission problem between the vacuum and a
Drude medium surrounded by Berenger’s PML and the metamaterial PML respec-
tively (see Fig. 3) with thickness d= 15h on all sides. In this simulation, we put
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Figure 2: Snapshots ofH=Hx+Hy obtained by scheme (3.1a)-(3.1h) with τ=0.1 at 200,400,800,2000,
5000, and 8000 time steps.
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Figure 3: The setup of the refocusing simulation.

a periodic time source h(t) = sin(ω0t) in the center of vacuum region, while the
computational domain is a rectangle Ω = [−20,20]×[0,20]. To create a refocusing
phenomenon, we choose parameters ε0 =µ0 =1, and ωe=ωm=

√
2ω0, which leads to

ε(ω0) =µ(ω0) =−1 by the Drude model, i.e., the effective index of metamaterial is
−1. We use the wave frequency ω0 =

√
2, and the fourth-order damping functions

σx and σy.

For this simulation, we need to solve a coupled problem with different governing
equations in different subdomains: on the left subdomain Ω1, the equations are
governed by the 2D Berenger PML model (cf. [7, Eq. (3)] and [24, p. 219]); on
the right subdomain Ω2, the governing equations are the metamaterial PML model
(2.1a)-(2.1h). We can unify these models together and rewrite them as follows:

∂tEx+DJJx+ε−1
0 σyEx=ε−1

0 ∂y(H
x+Hy), (4.2a)

D(∂tJx−Ex)=0, (4.2b)

∂tEy+DJJy+ε−1
0 σxEy=−ε−1

0 ∂x(H
x+Hy), (4.2c)

D(∂tJy−Ey)=0, (4.2d)

∂tHx+DKKy+DH1H
x=DE1∂yEx−DE2∂xEy, (4.2e)

D(∂tKx−Hx)=0, (4.2f)

∂tHy+DKKy+DH2H
y=DE2∂yEx−DE1∂xEy, (4.2g)

D(∂tKy−Hy)=0, (4.2h)
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Figure 4: Snapshots of H = Hx+Hy obtained by the scheme (3.1a)-(3.1h) with τ = 0.01 at
800,1500,2000,8000,10000,12000 time steps.
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where the coefficients are defined as:

D=

{
0, (x,y)∈Ω1,

1, (x,y)∈Ω2,
DJ =

{
0, (x,y)∈Ω1,

ω2
e , (x,y)∈Ω2,

DK =

{
0, (x,y)∈Ω1,

ω2
m, (x,y)∈Ω2,

DH1 =

{
ε−1

0 σx, (x,y)∈Ω1,

µ−1
0 σy, (x,y)∈Ω2,

DH2 =

{
ε−1

0 σy, (x,y)∈Ω1,

µ−1
0 σx, (x,y)∈Ω2,

DE1 =

{
0, (x,y)∈Ω1,

µ−1
0 , (x,y)∈Ω2,

DE2 =

{
µ−1

0 , (x,y)∈Ω1,

0, (x,y)∈Ω2.

The source wave sin(ω0t) is imposed on the Hy field. We use the scheme (3.1a)-
(3.1h) with hx =hy = 0.2 (i.e.,Nx =Ny = 200) and τ = 0.01 to obtain the snapshots
of the H fields in Fig. 4, which shows a refocusing property as originally obtained
in [5, Fig. 12].

5 Conclusions

In this paper, by using the energy method we established a stability for the metama-
terial PML model developed by Bécache et al. [5]. This PML was originally proved
to be stable through a complicated modal analysis in [6]. But the stability obtained
by the energy method offers more practical use for proving numerical stability of the
FDTD scheme. Currently, both stability proved in [6] and this paper are limited
to the constant damping coefficient case. How to obtain a stability in the practical
variable damping functions are still open. We will continue the investigation in the
future. More advanced numerical methods such as discontinuous Galerkin meth-
ods [18, 25] and edge element methods [24, 29] for this Drude PML model will be
explored in the future too.
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