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Abstract. We introduce a population-age-time (PAT) model which describes
the temporal evolution of the population distribution in age. The surprising
result is that the qualitative nature of the population distribution dynamics
is robust with respect to the birth rate and death rate distributions in age,
and initial conditions. When the number of children born per woman is 2,
the population distribution approaches an asymptotically steady state of a kink
shape; thus the total population approaches a constant. When the number
of children born per woman is greater than 2, the total population increases
without bound; and when the number of children born per woman is less than
2, the total population decreases to zero.
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1 Introduction

In human history, technological advances are the main factors for human population
increase, such as tool-making revolution, agricultural revolution and industrial revo-
lution. Technological advances provide human with more food supply and medicine.
More food supply is the main driver of population increase. Medicine prolongs hu-
man life span. Diseases such as plagues could cause human population to temporar-
ily decrease. But since 1700, human population has been monotonically increasing
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due to technological advances. Since 1960s, due to the introduction of high yield
grains, agricultural machineries, fertilizers, chemical pesticides, and better irriga-
tion systems, human population has been increasing by 1 billion every 12 years,
from 3 billion to 8 billion by 2023. Thus enrichment of food has increased human
population dramatically. It seems that both the Cornucopian and the Malthusian
views were realized [6, 7]. Human indeed dramatically advanced technology to pro-
vide abundant food supply to meet the demand of population growth according to
Cornucopian view. Human population also dramatically increased with the abun-
dant food supply according to Malthusian view. The question is whether or not
we are heading to a new Malthusian catastrophe, i.e. some people are going to
starve. Technologies may be advanced further to support more humans. But the
earth resource is limited, and the human population cannot increase without bound
on earth.

Human overpopulation not only can cause huge damage to earth resource and
environment, but also has serious sustainability consequence. If there is a global
food scarcity, huge famine can cause major population loss. According to World
Wide Fund for Nature [9], the current human population is already exceeding its
earth carrying capacity. On the other hand, estimating earth’s carrying capacity
for human is more difficult than for other animals due to the fact that human
choices may play an important role [1]. In the long run, human population cannot
continue to grow; there are clear human resource limits of food, energy and territory
(individual human space) as discussed by von Hoerner [5]. The key moment is when
human population reaches its maximum. The crucial question is: How will the
human population change afterward? Will human population more or less stay at a
stagnation population or decrease substantially? If human population decreases, is
the decrease due to birth control, normal death or abnormal death? Birth control
and normal death are hopeful for reducing human population from the example of
China. Abnormal death corresponds to various kinds of disasters such as diseases,
wars etc.. Von Hoerner also proposed the possibility of moving humans out of earth,
i.e. stellar expansion [5]. But wars and diseases are more probable.

There were studies on human population dynamics from logistic point of view [8]
and ecological perspectives [4]. Here we are focusing on the temporal evolution of
the population distribution in age, and introduce the population-age-time model.

2 The population-age-time (PAT) model

Let p(t,a) be the population of age a (in year) at time t (in year). One can think
p(t,a) as the spectrum of population in age, a=0,1,2,··· ,A; t=0,1,2···. We introduce
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the following population-age-time (PAT) model,

p(t+1,a)=p(t,a−1)−ω(t,a−1)p(t,a−1), a=1,2,··· ,A, (2.1a)

p(t+1,0)=

B2∑
b=B1

α(t,b)p(t,b), (2.1b)

where ω(t,a−1) is the death rate of the population p(t,a−1), α(t,b) is the birth rate
of the population p(t,b), p(t,A) is set to zero, and A, B1 and B2 are e.g.,

A=120, B1 =18, B2 =40. (2.2)

Here the effects of immigration/emigration and migration are not included. The
total birth rate

α=

B2∑
b=B1

α(t,b), (2.3)

roughly represents half of the number of children born per woman (under the as-
sumption that male and female populations are roughly the same). For Europe, α
is about 0.7; for Africa, α is 2 to 2.5; and for China, α is about 0.5. Factors that can
affect birth rate include food supply, medical technology, social norm, and afford-
ability (expense). Factors that can affect death rate include age, disease (medical
technology), food supply, war, accident, disaster.

The evolution of the total population

P (t)=
A∑
a=0

p(t,a), (2.4)

satisfies

P (t+1)=P (t)+

B2∑
b=B1

α(t,b)p(t,b)−
A∑
a=1

ω(t,a−1)p(t,a−1),

where the second term is the total birth and the last term is the total death in the
year t.

The steady state population distribution p(t,a)=p(a), (a=0,1,2,··· ,A) satisfies

p(a)=p(a−1)−ω(a−1)p(a−1), a=1,2,··· ,A, (2.5a)

p(0)=

B2∑
b=B1

α(b)p(b), (2.5b)
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thus

p(a)=[1−ω(a−1)]···[1−ω(0)]p(0), a=1,2,··· ,A,

p(0)=

B2∑
b=B1

α(b)[1−ω(b−1)]···[1−ω(0)]p(0),

and we arrive at the following constraint on α(b) and ω(b):

1=

B2∑
b=B1

α(b)[1−ω(b−1)]···[1−ω(0)].

We are interested in the dynamics of the population distribution and the total popu-
lation, and its dependence upon birth/death rate distribution and initial conditions.

3 Robustness of the population distribution

dynamics

With the choice of parameters (2.2), we start with the following piecewise linear
birth and death rates:

α(t,b)=


ε

12
(b−18), 18≤b≤30,

ε

10
(40−b), 30<b≤40,

(3.1a)

ω(t,a)=

 0, 0≤a≤n,
1

119−n
(a−n), n<b≤119.

(3.1b)

See Fig. 1 for a graphical illustration. These are the simplest birth rate and death
rate that we can think of. The key point is that we are going to show that the
qualitative nature of the population distribution dynamics is robust with respect to
different forms of birth rate and death rate distributions in age.

The total birth rate is given by

α=
40∑
b=18

α(t,b)=
30∑
b=18

ε

12
(b−18)+

40∑
b=31

ε

10
(40−b).

In the following, we present some claims for the behavior of the solution p(t,a) to
(2.1a)-(2.1b), which are verified by numerical experiments. Some heuristic argu-
ments for the claims are also given. It will also be of interest to prove these claims
rigorously in the future.
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Figure 1: (a). The graphical illustration of the linear birth rate (3.1a). (b). The graphical illustration
of the linear death rate (3.1b).

Choosing n=50, the temporal dynamics of the population is shown in Figs. 2-
4. The most interesting feature is the development of a sharp transition region
right after the death rate starts to be nonzero. That is, old age population sharply
declines with aging due to death. The sharp transition region makes the population
distribution bearing a kink shape. We will show later that the kink shape is universal
with respect to different forms of birth and death rates. When α= 1 (roughly
two children born per woman), the population distribution p(t,a) approaches an
asymptotically steady state (see Fig. 2). The steady state bears the typical kink
shape with the age region before the sharp transition being constant. When α<1,
the total population decreases to zero (see Fig. 3). The left portion of the kink
shape population distribution is an increasing function in age. When α> 1, the
total population increases without bound (see Fig. 4). The left portion of the kink
shape population distribution is a decreasing function in age. We summarize these
numerical results in the following claim.

• Claim 1. The population distribution p(t,a) develops a sharp transition region
in time, bears a kink shape, and has the following asymptotics

1. If α<1, then limt→+∞p(t,a)=0,

2. If α=1, then limt→+∞p(t,a)=p(a) (a kink),

3. If α>1, then limt→+∞p(t,a)=+∞.
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Figure 2: (a). From the top to the bottom is the temporal evolution of the population distribution:
p(0,a); p(20,a); p(100,a); p(200,a). The total birth rate α=αn = 1 for n= 50. (b). The temporal
evolution of the total population P (t). (c). From the top to the bottom is the temporal evolution of the
population distribution difference: p(20,a)−p(0,a); p(40,a)−p(20,a); p(120,a)−p(100,a); p(220,a)−
p(200,a).

Now we are going to show the robustness of the qualitative nature of the popu-
lation distribution dynamics with respect to initial conditions, birth rate, and death
rate. When perturbing the initial condition with zero mean random perturbation
(with Gaussian distribution), the random perturbation is quickly washed away in
time; with α=1, the population distribution p(t,a) approaches the same asymptot-
ically steady state as in Fig. 2, see Fig. 5. When α= 1, the birth dynamics (2.1b)
amounts to a weighted averaging of the fertile population. Such an averaging washes
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Figure 3: (a). From the top to the bottom is the temporal evolution of the population distribution:
p(0,a); p(20,a); p(100,a); p(200,a). The total birth rate α=αn =0.77 for n=50. (b). The temporal
evolution of the total population P (t). (c). From the top to the bottom is the temporal evolution of the
population distribution difference: p(20,a)−p(0,a); p(40,a)−p(20,a); p(120,a)−p(100,a); p(220,a)−
p(200,a).

away the random perturbation.

Replacing the linear birth or death rates with sublinear or superlinear rates
does not change the nature of the dynamics (see Fig. 6). Since the birth dynamics
amounts to a weighted averaging of the fertile population when α= 1. Such an
averaging does not change substantially when we replace the linear birth rates with
sublinear or superlinear rates. The death rate always creates a sharp transition
region in the population distribution.
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Figure 4: (a). From the top to the bottom is the temporal evolution of the population distribution:
p(0,a); p(20,a); p(100,a); p(200,a). The total birth rate α=αn =1.32 for n=50. (b). The temporal
evolution of the total population P (t). (c). From the top to the bottom is the temporal evolution of the
population distribution difference: p(20,a)−p(0,a); p(40,a)−p(20,a); p(120,a)−p(100,a); p(220,a)−
p(200,a).

Replacing the initial condition with general initial conditions does not change
the nature of the dynamics either (see Fig. 7). When α=1, the weighted averaging in
the birth dynamics keeps reducing the maximum and increasing the minimum of the
population distribution in the region a≤40. This leads to the constant asymptotics
of the population distribution before the sharp transition. We summarize these
numerical results in the following claim.

• Claim 2. The behavior of the population distribution p(t,a) described in
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Claim 1 is universal, that is, it is robust with respect to initial conditions,
birth rate, and death rate.

Finally, we consider a nonlinear birth rate case. Replacing the birth rates α(t,b)
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Figure 5: (a). With zero mean random perturbation on the initial condition of Fig. 2, from the top
to the bottom is the temporal evolution of the population distribution: p(0,a); p(20,a); p(100,a);
p(200,a). The total birth rate α= αn = 1 for n= 50. (b). The temporal evolution of the total
population P (t) with zero mean random perturbation on the initial condition of Fig. 2. (c). With
zero mean random perturbation on the initial condition of Fig. 2, from the top to the bottom is
the temporal evolution of the population distribution difference: p(20,a)−p(0,a); p(40,a)−p(20,a);
p(120,a)−p(100,a); p(220,a)−p(200,a).
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Figure 6: (a). The graphical illustration of a mixed superlinear and sublinear birth rates. (b). With
the mixed birth rates in (a) and zero mean random perturbation on the initial condition of Fig. 2,
from the top to the bottom is the temporal evolution of the population distribution: p(0,a); p(20,a);
p(100,a); p(200,a). The total birth rate α=αn=1.0001 for n=50. (c). The temporal evolution of the
total population P (t). (d). From the top to the bottom is the temporal evolution of the population
distribution difference: p(20,a)−p(0,a); p(40,a)−p(20,a); p(120,a)−p(100,a); p(220,a)−p(200,a).

in (2.1b) with

α(t,b)
P (0)

P (t)
, (3.2)

we have the nonlinear birth rates that we are interested in. In another word, we
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Figure 7: (a). With the mixed birth rates in Fig. 6 and a general initial condition, from the top to the
bottom is the temporal evolution of the population distribution: p(0,a); p(20,a); p(100,a); p(200,a).
The total birth rate α=αn=1.0001 for n=50. (b). The temporal evolution of the total population P (t).
(c). From the top to the bottom is the temporal evolution of the population distribution difference:
p(20,a)−p(0,a); p(40,a)−p(20,a); p(120,a)−p(100,a); p(220,a)−p(200,a).

consider the following modified population-age-time (mPAT) model,

p(t+1,a)=p(t,a−1)−ω(t,a−1)p(t,a−1), a=1,2,··· ,A, (3.3a)

p(t+1,0)=

B2∑
b=B1

α(t,b)
P (0)

P (t)
p(t,b). (3.3b)

The idea is that when the total population P (t) increases, the birth rate decreases.
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Figure 8: (a). With the nonlinear birth rate (3.2) where α(t,b) is given in Fig. 6, from the top to the
bottom is the temporal evolution of the population distribution: p(0,a); p(20,a); p(100,a); p(200,a).
The total birth rate α=αn=1.0001 for n=50. (b). The temporal evolution of the total population P (t).
(c). From the top to the bottom is the temporal evolution of the population distribution difference:
p(20,a)−p(0,a); p(40,a)−p(20,a); p(120,a)−p(100,a); p(220,a)−p(200,a).

The total birth rate is replaced by αP (0)/P (t). When αP (0)/P (t)>1, the total pop-
ulation increases (as in Fig. 4), thus αP (0)/P (t) will decrease. When αP (0)/P (t)<1,
the total population decreases (as in Fig. 3), thus αP (0)/P (t) will increase. This
causes that αP (0)/P (t) approaches 1 as t→+∞. Thus the population distribution



Z. Feng and Y. Li / Ann. Appl. Math., 38 (2022), pp. 223-239 235

0 20 40 60 80 100 120
0

50

100

p
o
p
u
la

ti
o
n

Age dist  = 0.05822, 
n
 = 0.65999

0 20 40 60 80 100 120
0

50

100

p
o
p
u
la

ti
o
n

0 20 40 60 80 100 120
0

50

100

p
o
p
u
la

ti
o
n

0 20 40 60 80 100 120

age

0

50

p
o
p
u
la

ti
o
n

0 50 100 150 200 250 300

year

3500

4000

4500

5000

5500

6000

6500

7000

p
o
p
u
la

ti
o
n

Annual population,  = 0.05822, 
n
 = 0.65999

0 20 40 60 80 100 120

-50

0

50

0 20 40 60 80 100 120
-20

0

20

40

60

0 20 40 60 80 100 120
-20

-10

0

10

0 20 40 60 80 100 120

age

-2

0

2

Figure 9: (a). With the nonlinear birth rate (3.2) where α(t,b) is given in Fig. 6, from the top to the
bottom is the temporal evolution of the population distribution: p(0,a); p(20,a); p(100,a); p(200,a).
The total birth rate α=αn =0.65999 for n=50. (b). The temporal evolution of the total population
P (t). (c). From the top to the bottom is the temporal evolution of the population distribution
difference: p(20,a)−p(0,a); p(40,a)−p(20,a); p(120,a)−p(100,a); p(220,a)−p(200,a).

p(t,a) always approaches an asymptotically steady state with the total population

P (t)=αP (0), (3.4)

given by αP (0)/P (t)=1 (see Figs. 8-10). We summarize these results in the following
claim.

• Claim 3. Under the dynamics of the mPAT model (3.3a)-(3.3b), the total
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population P (t) has the following asymptotics

lim
t→+∞

P (t)=αP (0)

for all values of α.
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Figure 10: (a). With the nonlinear birth rate (3.2) where α(t,b) is given in Fig. 6, from the top to the
bottom is the temporal evolution of the population distribution: p(0,a); p(20,a); p(100,a); p(200,a).
The total birth rate α=αn=2.2672 for n=50. (b). The temporal evolution of the total population P (t).
(c). From the top to the bottom is the temporal evolution of the population distribution difference:
p(20,a)−p(0,a); p(40,a)−p(20,a); p(120,a)−p(100,a); p(220,a)−p(200,a).
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4 Tracking mortality and birth–Euler’s studies

Instead of looking at the whole population at the same time, Euler [2] tracked
the sub-population of people who were born in the same year and studied their
mortality problems. We consider the stationary death rate ω(t,a)=ω(a) and birth
rate α(t,b) =α(b). Let N be the number of infants born in the same year. At age
m, this sub-population will be reduced to [2]

N(1−ω(0))···(1−ω(m−1)), m=1,2,··· .

In general, let M be the number of people at the same age m, then at age m+n,
this sub-population will be reduced to

M(1−ω(m))···(1−ω(m+n−1)), n=1,2,··· .

The probability that a person in the age m year will live into the age m+n year is

(1−ω(m))···(1−ω(m+n−1)), n=1,2,··· .

The above information can be used to calculate retirement pension [2]. Let M be
the number of people at the same age m (the retiring age is m+1), and each has
paid the same amount a. Thus the total fund amount is Ma. Assume that each
person is paid the same amount x per year until death. Then at the year of age
m+n for this sub-population, the fund will pay out

xM(1−ω(m))···(1−ω(m+n−1)), n=1,2,··· .

Assume that the fund is invested at a fixed annual interest of r%. Let λ= 1+r%,
then the above payout is worth

x

λn
M(1−ω(m))···(1−ω(m+n−1)), n=1,2,··· ,

in the original fund. If the entire original fund is going to be paid out to the retirees
(x will be called the fair amount), then [2]

Ma=
∑
n=1

x

λn
M(1−ω(m))···(1−ω(m+n−1)),

x=
a∑

n=1
1
λn

(1−ω(m))···(1−ω(m+n−1))
.

One can also track the birth given by the sub-population of women of the same
age. Assuming the male and female populations of the same age are equal, then on
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average, the number of children that a woman of age b gives birth to is 1
2
α(b), which

is nonzero only for certain age range. Thus the number of children that a woman
gives birth to from age m to age n is on average

1

2

n∑
b=m

α(b).

Using this information, a company can plan benefits for maternity leaves of its female
employees. Assume the company has Mm female employees of age m. In the next
n years, the total number of children that these females give birth to is on average

1

2

m+n−1∑
b=m

α(b+1)Mm(1−ω(m))···(1−ω(b)).

Adding all age groups together, the company should expect the number of maternity
leaves in the next n years to be

1

2

∑
m

m+n−1∑
b=m

α(b+1)Mm(1−ω(m))···(1−ω(b)).

For a big company, this number can be quite large.

5 Conclusions

A population-age-time (PAT) model is introduced that models the temporal evo-
lution of population distribution in age. The model is focused on the effects of
birth rate and death rate distribution in age, ignoring the effects of immigra-
tion/emigration and migration. To our surprise, the qualitative nature of the popu-
lation distribution is very robust with respect to different forms of initial conditions,
birth rate distributions, and death rate distributions. This indicates that the pop-
ulation distributions often take certain universal asymptotic shape–a kink, which
indeed agrees with typical population distribution in reality (such as the population
distribution in US). When the number of children born per woman is 2, the popu-
lation distribution approaches an asymptotically steady state of a kink shape; thus
the total population approaches a constant. When the number of children born per
woman is greater than 2, the total population increases without bound; and When
the number of children born per woman is less than 2, the total population decreases
to zero.
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