quotation:[Copy]
[Copy]
【Print page】 【Online reading】【Download 【PDF Full text】 View/Add CommentDownload reader Close

←Previous page|Page Next →

Back Issue    Advanced search

This Paper:Browse 573   Download 653
0
ASYMPTOTIC EIGENVALUE ESTIMATION FOR A CLASS OF STRUCTURED MATRICES
Juan Liang,Jiangzhou Lai,Qiang Niu
(School of Math. and Statistics, Minnan Normal University, Zhangzhou 363000, Fujian, PR China;School of Math. and Computer Science, Fuzhou University, Fuzhou 350108, Fujian, PR China;Dept. of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, PR China)
DOI:
Abstract:
In this paper we consider eigenvalue asymptotic estimations for a class of structured matrices arising from statistical applications. The asymptotic upper bounds of the largest eigenvalue (\lambda_{\max}) and the sum of squares of eigenvalues \Big(\sums_{i=1}^n\lambda_i^2\Big) are derived. Both these bounds are useful in examining the stability of certain Markov process. Numerical examples are provided to illustrate tightness of the bounds.
Key words:  Toeplitz matrix; eigenvalue; rank-one modification; trace